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ABSTRACT

The issue of privacy in video surveillance has drawot of interest lately. However, thorough pemiance analysis and
validation is still lacking, especially regardiniget fulfilment of privacy-related requirements. this paper, we first
review recent Privacy Enabling Technologies (PENgxt, we discuss pertinent evaluation criteriadtiective privacy
protection. We then put forward a framework to assthe capacity of PET solutions to hide distiniginig facial
information and to conceal identity. We conduct poamensive and rigorous experiments to evaluatpehfermance of
face recognition algorithms applied to images atleby PET. Results show the ineffectiveness ofe®ET such as
pixelization and blur. Conversely, they demonstth&effectiveness of more sophisticated scramhéobniques to foil
face recognition.
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1. INTRODUCTION

Privacy is a cornerstone of our civilization ancessential in many societal functions [1]. Howewbis fundamental
principle is quickly eroding due to widespreadusiveness enabled by some modern information téabies.

In particular, privacy is quickly becoming a vergntral issue in video surveillance. While videovsilfance can help
repress crime and terrorism, hence benefiting spdiee widespread use of security cameras halae!l documented
forms of abuse, including: criminal abuse by lavioecement officers, institutional abuse by spyimpn and harassing
political activists, abuse for personal purposehsas stalking women or estranged girlfriends/spsudiscrimination

including racial discrimination, voyeurism whererbd male operators spy on women, and release dicpcéamera

footage in the public domain. Moreover, its bigthey nature is hindering wider acceptance of viseweillance. The
perspective of forthcoming powerful video analytieshnologies, combined with pervasive networkgigh resolution

cameras is further raising the threat of privasslo

Fortunately, recent research results have shownntha Privacy Enabling Technologies (PET) are eingravith the
potential to effectively protect privacy, withoutpering video surveillance tasks. These resulifiasige the common
conjecture that increased security should incasa In privacy. Recent overviews of PET are givej2][3].

However, although the issue of privacy protecti@s kirawn a lot of interest, thorough performancalyais is still
lacking. In particular, it is paramount to validgieoposed PET against user and system requirenfientgrivacy.
Moreover, it is still unclear whether current apmbes can be efficiently integrated into existingvsillance
architecture and deployed in large scale systems.



In this paper, we address the problem of assessidgalidating PET. For this purpose, we identife fkey evaluation
criteria for effective PET: intelligibility of thevideo, cryptographic security, compression efficencomputational
complexity, and ease of integration in existingag@durveillance systems.

The first criterion represents a significant chadle and is the focus of this study. More specififcd ET should make
regions containing privacy-sensitive informationntelligible. Simultaneously, the remaining of teeene should be
intelligible in order not to hamper video surveilte tasks. However, assessing the intelligibilitydtelligibility of a
video is a difficult problem. Existing objectivesual quality measures, such as Peak-Signal-to-Neasgi® (PSNR) and
Structural Similarity (SSIM) index [4], have beepsijned with the goal to assess distortions reguftiom typical
image and video processing techniques, but naddoess intelligibility.

In this paper, we tackle this problem by asses#iegcapability of PET to make facial informationintelligible and
henceforth to foil face recognition techniques @odceal identity. Indeed, this is a major threaptivacy in video
surveillance. A face de-identification algorithmpiposed in [5], which preserves many facial cttsréstics but makes
the face unrecognizable. It is also shown that EnRET do not prevent successful face recognitiorour previous
work [6], we defined a framework to evaluate thef@enance of face recognition algorithms appliedniages altered
by PET, based on the Face Identification EvaluaBystem (FIES) [7]. Experiments on the Facial Redam
Technology (FERET) database [8] showed the ingffeness of naive PET such as pixelization and bdung
demonstrated the effectiveness of more sophisticateambling techniques to foil face recognitiom.this paper, we
extend this earlier work. We identify and discusaleation criteria for PET. We also conduct mordeasive
experiments, including with PSNR and SSIM objectjuality measures.

This paper is structured as follow. An overviewre€ent PET is presented in Sec. 2. Evaluationr@ite assess PET
effectiveness are presented in Sec. 3. Next, aefrark for face identification evaluation is presghin Sec. 4. An
outline of four PET under consideration is giverSiec. 5. In order to validate PET, performancessssent using the
proposed framework is analyzed in Sec. 6. Finaliyclusions are summarized in Sec. 7.

2. PRIVACY ENABLING TECHNOLOGIES

The raising awareness about privacy issues in Biamnvee systems has led to the development of neWw Wwith the goal
to effectively protect privacy [2][3].

The system introduced in [9] relies on computeioviso analyze the video content and to automdgicattract its
components. Different users can selectively geesg to these components, depending on their acoassl rights.
More specifically, the system renders a differegrtsion of the video where privacy-sensitive objdztge been hidden.
This is achieved while information required to filifhe surveillance task is preserved. The pagso aescribes a
PrivacyCam, with built-in privacy protection toolsyhich directly outputs video streams with privaBasitive
information removed.

The Networked Sensor Tapestry (NeST) architectuopgsed in [10] supports secure capture, processhaying and
archiving of surveillance data. It relies on priyafilters which operate on incoming video sensotadé remove
privacy-sensitive information. These filters areafied using a privacy grammar.

With Privacy through Invertible Cryptographic Obsation (PICO) proposed in [11], data correspondindaces is

encrypted in order to conceal identity. The processeversible for authorized users in possessibthe secret
encryption key. In other words, it does not undeerthe objective of surveillance, as a subjectstéirbe identified by

decrypting the face, provided an appropriate warismssued. Similarly, a permutation-based endoyptechnique in

the pixel domain is introduced in [12]. The solati@mains independent of the compression algoréhthis robust to
transcoding. The scheme presented in [13], Seduapesand Texture SPIHT (SecST-SPIHT), permits gecoding of

arbitrarily shaped visual objects. More specifizadl novel selective encryption is introduced,legobin the compressed
domain. Likewise, data hiding method based on cleagstography is introduced in [14]. The technigseapplied to

selected Regions of Interest (ROI) correspondingrwacy-sensitive information, and allows for selelevels of

concealment.



The methods in [15][16] propose PET for JPEG 20@@w [17]. Conditional access control techniques@oposed in
[15] to scramble ROIls, e.g. corresponding to peapléaces. The scrambling is applied either in iegvdomain or
codestream-domain. In [16], code-blocks correspumndd ROI are trimmed down to the lowest qualityelaof the
codestream. Subsequently, the quality of the R@lbeadecreased by limiting the video bit rate.

Two efficient region-based transform-domain andesbeam-domain scrambling techniques are proposgi8i to
hide privacy-sensitive information in MPEG-4 vid¢d9]. In the first approach, the sign of selectednsform
coefficients is pseudo-randomly inverted duringaatieg. In the second approach, bits of the codastrare pseudo-
randomly flipped after encoding. In [20], the ragibased transform-domain scrambling is extendedl264/AVC [21].
In particular, to discriminate between scrambledl amscrambled regions, the technique exploits thexiliie
Macroblock Ordering (FMO) mechanism of H.264/AVCdefine two slice groups composed of MacroBlockBjM
corresponding to the foreground and backgroundectagely.

The technique in [22] removes privacy-sensitiveotinfation from the video sequence. A perceptuallseda
compressed-domain watermarking technique is thed ts securely embed this data in the video str&imilarly, a

secure reversible data hiding technique is intredua [23] for privacy data embedding. A framewdok privacy data
management is also proposed to allow individuatigecontrol access to their private data.

Face recognition techniques pose the risk to autioaily and quickly identify people captured by ideo surveillance
system. This issue is addressed in [5], where idel&ifying algorithm is introduced to effectivelgil face recognition.
A face anonymization framework for mobile phoneprisposed in [24]. In this system, people who dowant to have
their picture taken inform other mobile phone usershe vicinity using Bluetooth. Whenever a pigtus taken, the
corresponding faces are then anonymized.

3. EVALUATION CRITERIA

Despite the significant efforts to develop new HERTecent years, a methodical validation of thedfectiveness is still
lacking. More specifically, it is important to céully assess these solutions against user andmsystquirements for
privacy. In this section, we discuss evaluatiotecia for PET.

3.1. Intelligibility / Unintelligibility
The foremost criterion for PET is to successfuliyiceal private information in the video streantyfiically implies to

render some regions, with privacy-sensitive datitelligible. At the same time, PET should leale temaining of the
video scene comprehensible in order not to hampeeslance tasks.

In most data security applications, the objects/&iguarantee full confidentiality of the messdgeés usually achieved
by applying encryption techniques. In contrastiriany multimedia security applications, it is suffitt to partially
protect the data so that versions of the contetiit aviquality above a commercially valuable thredtark protected, but
low quality/resolution previews remain clear. listbase, selective encryption techniques are nppsbariate [25].

In the context of PET for video surveillance, tliteation is to a certain extent similar. More sfiieaily, PET should

hide or deteriorate the visual quality of the scesgions corresponding to privacy-sensitive data.b& effective, the
alteration introduced should be such that it prévédentification. Simultaneously, the distortidmosld not prevent an
operator to correctly interpret the scene durinyaeillance operations. The key challenge is to ssséether this dual
requirement is fulfilled.

Existing objective visual quality measures, suchS&M [4], have been essentially developed to etallcommon
image/video coding and processing techniques. Eurtbre, they assess subjective quality insteachtefligibility
which is the primary concern with PET. Finally, yneave been tuned in a high quality range, rathan tthe highly
altered range typical with PET.

In [26], two visual similarity measures are propbseorder to measure security for multimedia eption. The first one
is based on luminance similarity, whereas the sttaome considers edge similarity. However, nonehef¢ measures
address the intelligibility of the content and hetlee ability to conceal private data.



A model to assess privacy loss is introduced if,[Pdsed on an analogy with statistical databasas.shown that
privacy issues encompass both explicit and implitierence channels. The latter considers the tgtuavhen the
identity of an individual can be indirectly deduckedm the examination of the video content, e.gselbon location,
time or behavior.

One of the major privacy threats in video surveitia is to automatically identify people in the szarsing face
recognition techniques. Hence, the effectivenedaas recognition techniques on images alterediy an be used as
a validation criterion to assess the unintelligipibf private information and hence the usefulnes®ET. In [5], it is
shown that simple ad-hoc de-identification methddsnot prevent successful face recognition. To esgftlly tackle
this issue, a more sophisticated algorithm to @evifly faces is required, such that many facialrabieristics are
preserved but the face cannot be reliably recogdnize[6], a framework is proposed to validate PEIbre specifically,
this framework, based on the FIES [7], assessescépability to effectively conceal identity by ewating the
performance of face recognition algorithms on insagiered by PET.

3.2.Cryptographic Security

Many PET rely on cryptographic techniques in orbeobscure regions containing privacy-sensitiveadédr instance
[11][12][13][14][15][18][20]. Cryptanalysis of a syem is often evaluated under the assumption kigabbjective is to
recover the whole encrypted message. In this cgnteg strength of the protection technique comes to the
difficulty of finding the secret encryption key.

However, the above scenario has a few shortcoramghown in [28]. Firstly, information leakage asciNamely, part
of the data which is not encrypted can be usedderao guess/interpolate the encrypted part. SHgpuideo content
typically presents well known statistical and stanal properties which can be exploited by an &#acFinally, even
though an attacker cannot totally recover the ptetk data, the security is still considered as comjsed if he is
capable of recovering an image with sufficientlypnoved subjective quality. For PET, the threshaldvhether the
visual quality is sufficient to identify privateformation.

3.3.Compression Efficiency

Bandwidth is a precious resources in video suaedé systems. On the one hand, a class of PET aga® relies on
encryption or scrambling [11][12][13][14][15][18]@. In this way, the statistics of the data is tcadly altered.

Depending on how it is integrated within a compi@sscheme, it may significantly increase bit n&quirements. On
the other hand, another class of techniques suqR2dR3] embed privacy-sensitive information usidgta hiding.

Straightforwardly, it may result in sizeable dateihead.

To be effective, PET should have a minimal impactompression efficiency.

3.4.Computational Complexity

Computational complexity is also an important issueideo surveillance application. Indeed, extoanplexity, either
embedded directly in the camera or performed oeraes, has a direct impact on the hardware cospalticular,
cryptographic functions tend to entail significas@mputations. For instance, one of the major istsref selective
encryption techniques is to reduce complexity rezraents by processing a subset of the data only.

3.5.Integration in Existing Surveillance Architecture / Utility for Surveillance

Easy integration of PET in existing video surveilta infrastructure is another important criterinrorder to foster rapid
adoption of the technology. Compatibility with legasystems ensure broader and cost-effective aiplity of PET.

Accordingly, approaches which rely on widely usédew coding standards (e.g. H.264/AVC, MPEG-4, giotiPEG),
instead of proprietary representations, should freéepred. In addition, PET which preserve syntaxnfat compliance
offer a considerable advantage. In this case, atdndecoders can correctly decode and display idheovstream,
although some regions may be concealed. Moreovesepving the stream syntax and its features esmatdatent
adaptation based on scalability or transcodingndunetwork transmission.

Another valuable feature is to transmit the sanmeggted video stream to all end-users, regardied®m credentials.



Finally, video surveillance is most often used ostmortem forensic analysis by law enforcementaittbs. For this

purpose, it is paramount that PET are fully rexdesiNamely, it should be possible, for authorizedrs, to recover the
unaltered privacy-sensitive information. Obviousdgme trivial PET approaches merely applying bhaise, or black

box obscuration to hide private data do not futfill important requirement.

4. FRAMEWORK FOR FACE IDENTIFICATION EVALUATION

The objective of this paper is to validate the amoity functionality of PET. For this purpose, weeUusIES [7], which
provides standard face recognition algorithms atachdmard statistical methods for assessing perfocegnA brief
description of the framework is given hereafter.

4.1.Face Recognition

We consider two face recognition algorithms, namedincipal Components Analysis (PCA) [29] and lane
Discriminant Analysis (LDA) [30].

In PCA, eigenfaces corresponding to the eigenveaibthe covariance matrix of training face exarsmes computed.
Face images are then projected onto the eigenfamsis. In other words, a linear transformation ppli@d to rotate

feature vectors from the initially large and higlalyrrelated subspace to a smaller and uncorrefatbspace. Distance
between pair of images can then be computed ireitpenfaces subspace. Hereafter, the distance hetiheefeature

vectors, u and v, is given by the Euclidian measure

DEucIidian(u'V) = z (ui -V )2 (6)

|
PCA has shown to be effective for face recognitieinstly, it can be used to reduce the dimensitynalf the feature
space. Secondly, it eliminates statistical covaxéam the transformed feature space. In other wdtds covariance
matrix for the transformed feature vectors is alsvdiagonal.

LDA aims at finding a linear transformation whictresses differences between classes while lessetiifeggences
within classes, where a class corresponds to @bés of a given individual. The resulting transfedrsubspace is
linearly separable between classes. In [30], PC#vss performed to reduce the feature space difoeadity. LDA is
then applied to further decrease the dimensionailtite safeguarding the distinctive characteristi€she classes. The
final subspace is obtained by multiplying the PQ# 4. DA basis vectors. Feature vectors, i.e. facages are then
projected onto these basis vectors. Finally, thiedistance proposed in [30] is used, namely

D pasoft (U!V) = Z/]i . (ui -V )2 @)
where is); is the corresponding eigenvalue.

4.2.Face ldentification and Evaluation System

FIES is composed of four main components: imageppoeessing, training, testing and performanceyaiml[7]. The
framework is illustrated in Figure 1.

The preprocessing step aims at reducing detrimerdahtions between images. Faces are firstly géicady
normalized by aligning the eye coordinates. Thenelliptical mask is used to crop the images. Mgpecifically, the
face region between the forehead and chin as wgelefa cheek and right cheek is retained, while ridwaining is
discarded. Finally, histogram equalization is perfed, and contrast and brightness are normalized.

The next step is training. Its purpose is to creéhtesubspace into which test images are subsdgymojected and
matched. In this paper, we consider PCA and LDAnépes as previously described. Training is penéat using a
training set of images.

In the testing step, a distance matrix is compuidtie transformed subspace for all test imagesulmexperiments, we
use a Euclidian distance for PCA and the soft disafor LDA, as defined in Eq. (6) and (7). At tetage, two image
sets are defined: the gallery set is made of kniawes, whereas the probe set corresponds to fadesrecognized.



preprocessing training

training set | ) |
——®»  preprocessing - PCA/LDA
testing
| A
gallery set |
—— , projection onto distance
] preprocessing > transformed > N
probe set | : subspace computation

compute recognition rate
and cumulative match

performance analysis

Figure 1 — Framework for face identification and ewaluation.

Finally, face recognition performance is analyzilibre specifically, a cumulative match curve is gated. For this
purpose, for each probe image, the recognition remomputed. Namely, a rank O means that the roagth is of the
same subject, a rank 1 means that the best matamsanother person but the second best matchtiesame subject,
etc. Then, the cumulative match curve is obtainedudmming the number of correct matches for eack.ra

4.3. Attacks under Consideration

We study two types of attack. We consider a sinapiack, referred to as Attack A, where training gatlery sets are
made of unaltered images. Conversely, probe se¢smonds to images with privacy protection. In ptherds, altered
images are merely processed by the face recogmtgorithms without taking into account the faattiPET have been
applied.

We then consider a more sophisticated second attafdrred to as Attack B. Namely, PET are now igopto all
images in the training, gallery and probe setssTdurresponds to an attacker which gets accessotecped data.
Alternatively, an attacker may attempt replicatihg alteration due to PET on his own training aaliegy sets.

Table 1 summarizes the characteristics of botltlkdta

set Attack A Attack B
training unaltered privacy protection
gallery unaltered privacy protection
probe privacy protection  privacy protection

Table 1 — Attacks under consideration.

5.PET UNDER CONSIDERATION

In this section, we briefly describe four PET theg will subsequently evaluate for their capability hide facial
information and to provide anonymity.

As reference, we first consider two naive methagglying simple pixelization or Gaussian blur. Weoaconsider two
more sophisticated ROIl-based transform-domain dgiiagh methods [20]. Both methods are applied jginttith

H.264/AVC encoding [21], which is becoming the mkant format in video surveillance systems. Thet finethod
pseudo-randomly inverts the sign of transform dokefits of blocks belonging to ROI. The second applies a
pseudo-random permutation of the transform coeffits in blocks corresponding to ROI.



These four approaches to provide anonymity ardlddtan the following subsections.

5.1.Pixelization

We first consider pixelization as a naive approfchprivacy protection. Pixelization consists intigeably reducing
resolution in ROI. In practice, it can be achiew®sdsubstituting a square block of pixels with iteemge. Explicitly,
pixelization of the imagé(x,y) is given by

I pixelizaton (X' y) = bi-z izz Z I (LEJ + I ’ LZJ + J\J (1)

0.b-1j=0..b-1
wherex andy are the image pixel coordinatéss the block size angjl denotes the floored division.

Pixelization has the advantage to be very simpteemsy to integrate in existing systems. Consetueénis commonly
used in television news and documentaries in aalebscure the faces of suspects, withesses carests to preserve
their anonymity. The same technique is also usedettsor nudity or to avoid unintentional producageiment on
television.

Straightforwardly, using pixelization, privacy-séi@ information is lost and the process is irnesilele. Another
drawback of this approach is that integrating pixelong trajectories over time may allow to partgovering the
concealed information.

5.2.Gaussian Blur

The second naive approach for privacy protectiomores details in ROI by applying a Gaussian lowsgddter. More
precisely, Gaussian blur is obtained by the cortianiuof the image(x,y) with a 2D Gaussian functid@(x,y)

l Gaussiarblur(x1 y) =1 (X! y) DG(X! y) (2)
with G(x,y) defined by
(+y?)
Gy =o e 3

whereo is the standard deviation. Again, the processiy gimple and easy to implement. However, itligviersible
and privacy-sensitive information is irremedialdgtl Blurring is sometimes preferred to pixelizatio order to obscure
privacy-sensitive information.

5.3.Scrambling by Random Sign Inversion

Next, we consider a ROI-based transform-domainnsiliag method for H.264/AVC. First, the method soldes the
qguantized transform coefficients of each 4x4 bladkthe ROI, corresponding to privacy-sensitive mifation, by
pseudo-randomly flipping their sign [20]. More sifieally, defining the vector of quantized trangforcoefficients
gcoefffi] with i=0..15, the scrambling consistsgarforming the following operation for each i

ooeff [i]: - qcoeff [l] if rmdom_bitzl (4)
+ qcoeff [l] otherwise

The scrambling process is driven by a Pseudo Randamber Generator (PRNG) which is initialized bgesed value.

The seed is encrypted, e.g. using public key eticnypand embedded in the compressed stream a@date.

The process is illustrated in Figure 2.



MB ¢ {ROI}
— 4x4 DCT

seed coefficient i
PRNG scrambling entropy coding

l scrambled
codestream

encryption

key T

Figure 2 — Region-based transform-domain scramblindpy random sign inversion or random permutation.

encrypted'
seed

The method is fully reversible. Namely, authoriaegers, in possession of the secret encryption ¢a&y,reverse the
scrambling process and recover the truthful sc@uwaversely, other users obtain a video sequenceewR®| have
severe noise, concealing privacy-sensitive inforomat

Two slice groups are defined using FMO to distisgubetween the scrambled ROI and the unscrambledyimund. In
this way, background data will not use scrambled B&a for spatial intra prediction. An added bénaff FMO is that
the shape of the scrambled ROI is conveyed to d¢lsedker which needs this information for unscrangplin

This method offers a number of advantages. The smmaanbled stream is transmitted to all users ieddently from

their access rights. Furthermore, the syntax ottmapressed stream remains standard compliant.eliérean be used
in existing video surveillance infrastructures. Témambling is confined to ROI, whereas the badkgdoremains
unaltered. Finally, it has a small impact in telwhsoding efficiency, and requires a low computasibcomplexity.

5.4.Scrambling by Random Permutation

Finally, we consider an alternative ROI-baseddfam-domain scrambling method for H.264/AVC. listimethod, a
random permutation is applied to rearrange therastliransform coefficients in 4x4 blocks corresgimg to ROI [20].
The method is depicted in Figure 2. The random p#ation is expressed as follow

(O 1 .. 14 lSJ )
X X o Xy Xgs

The Knuth shuffle is used to generate a permutatfanitems with uniform random distribution [3Mlore explicitly, it
starts from the identity permutation and scansughoeach position i from 0 to 14, swapping the eeinturrently at
position i with the element at an arbitrarily chogmsitions from i through 15.

The remaining of the algorithm is similar to theasobling by random sign inversion as describeddn. $.3. Hence,
this method provides the same characteristics dndrdages.

5.5.Sample Images with Privacy Protection

The results of the four PET considered in this papamely pixelization {={8, 16}), Gaussian blurd={8, 12}),
scrambling by random sign inversion and scrambbggandom permutation are illustrated in FigureoBd sample
image of the FERET database.



Figure 3 — Examples of privacy protection approache& a) original image, b) pixelization with b=8, c)pixelization
with b=16, d) Gaussian blur withe=8, e) Gaussian blur withe=12, f) scrambling by random sign inversion, g)
scrambling by random permutation.



6. PRIVACY ENABLING TECHNOLOGIES PERFORMANCE ASSESSMEN T RESULTS
We now describe experiments carried out in ord@stess PET. Results are then reported and analyzed

6.1.Test Data

In this paper, we use the grayscale FERET datdBase carry out experiments. Indeed, this databssedely used for

face recognition research, although it is not repnéative of typical video surveillance footageorRrthis database, we
consider a subset of 3368 images of frontal faoesvhich eye coordinates are available. The imdge® 256 by 384
pixels with eight-bit per pixel. We further considevo series of images denoted by ‘fa’ and ‘fb’.eTfia’ indicates a

regular frontal image, and the ‘fb’ indicates atealative frontal image, taken within seconds ef tlorresponding ‘fa’

image, where a different facial expression was estgd from the subject.

In our experiments, we use standard training, ga@d probe sets from the FERET test. More spedi§i, the training
set includes 501 images from the ‘fa’ series. hntthe gallery set is composed of 1196 from théskries, whereas the
probe set is made of 1195 images from the ‘fb'eseri

6.2.0bjective Image Quality Measures

Next, we assess the quality of images altered lkyfttur PET under consideration using objective ienagality
measures. To measure the similarity between teeealtand unaltered images, we use PSNR

255 8)
m-1 n-1

Y06 1)-KG )Y

mn % =

PSNR(,K) =10log,,

wherel andK are the processed and reference images respgctiigi a size ofn x n. However, PSNR is often weakly
correlated with human perception.

Therefore, we use a second measure, the perceplzeéd SSIM index [4], which assesses the dedoedat structural
information. SSIM, computed on windows of an imagegiven by

(2/4 He t Cl),(ZOIK + Cz) \ (9)
2 2 2 2
T M +C1)(0| + 0y +C2)

ssIM(,,.K,) = m

wherel,, andK,, are two windows in the altered and unaltered imagspectivelyy, anduk are the average &f and
K., o° andoy? are the variances of andK,, andC, andC, are two constants to avoid instability. SSIM takekie in
the interval [-1, 1], where SSIM=1 indicates thattbprocessed and reference images are identical.

Table 2 shows the PSNR and SSIM values obtainedyuke four PET: pixelization, Gaussian blur, sdvhng by sign
inversion and scrambling by permutation. The regmbrtalues correspond to the average over all 388és in the
considered FERET subset.

PET PSNR SSIM
Pixelization b=8 2414 0.71
Pixelization b=16 2111 0.64
Gaussian blus=8 2256 0.71
Gaussian blus=12 20.78 0.68
Scrambling sign inversion 8.47 0.42
Scrambling permutation 9.09 0.47

Table 2 — Objective quality measures.

These figures are very instructive. They clearlgwvglthat all the PET under consideration lead to $oMvjective quality.



Straightforwardly, the image quality decreases wiienblock size increases in pixelization, or whemcreases in
Gaussian blur. Nevertheless, for these two naieT, PSNR remains above 20 dB, whereas SSIM staggeab.6.
Conversely, both scrambling approaches result gmifstantly higher distortions when compared to gbixation or
Gaussian blur, with PSNR below 10 dB and SSIM bel®. However, these results do not allow to assless
intelligibility of the concealed data, and theref@re not sufficient to validate the effectivenecBET.

6.3.Face Recognition Performance Analysis

We now evaluate the capacity of PET to hide distisiging facial information in order to foil face cagnition
techniques and hence to conceal the identity aragm.

In the first round of experiments, we considerghmple Attack A (see Sec. 4.3). Figure 4 and Figushow cumulative
match curves for PCA and LDA respectively, compgtime recognition rate as a function of the rankodigginal image
data as well as for the four considered PET.
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Figure 5 — Cumulative match curve for LDA with sof distance: performance comparison for Attack A.



It can be observed that for both PCA and LDA scheapplied on original images, recognition rateuisesior to 70% at
rank O (i.e. the best match is of the same subjgtie probe), and superior to 90% at rank 50.

When applying a Gaussian blur, the performancesragically for LDA. However, recognition rate reimahigh for
PCA with 56% 6=8) and 26% ¢=12) success at rank 0. Pixelization fares worshidihg identity. Withb=8, the
performance only drops marginally compared to #eognition rate on original images. It is not ad ldth b=16, but
the recognition rate remains high with 56% and E%ank 0 for PCA and LDA respectively.

However, results clearly show that both region-dasensform-domain scrambling approaches are ssftdest hiding
identity. The recognition rate is nearly 0% at rahkand remains below 10% at rank 50, for both Pw LDA
algorithms. In addition, it can be observed thathb@mndom sign inversion and random permutatioreises achieve
nearly the same performance.

In the second round of experiments, we considemntbee sophisticated Attack B (see Sec. 4.3). Figuamd Figure 7
show corresponding cumulative match curves for RGé LDA respectively.
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Figure 6 — Cumulative match curve for PCA with Eucidian distance: performance comparison for Attack B
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With Gaussian blur, the performance remains ndddutical to the recognition rate on original ddtaeven improves
slightly for LDA. Pixelization is not much better laiding facial information. Withb=16, the recognition rate is still 45%
and 17% at rank O for PCA and LDA respectively.

Finally, both region-based transform-domain scramgblapproaches are again successful at hiding itglerithe
recognition rate is nearly 0% at rank 0 for bothAPahd LDA algorithms.

7. CONCLUSIONS

In this paper, we have considered the problem dflatng PET for video surveillance applicationseWave first
reviewed some existing PET solutions. We have fdentified relevant evaluation criteria as well @wmllenges for
performance assessment. We have also describathaviork to verify the effectiveness of PET at hiddtistinguishing
facial information and hence concealing identity.

We have conducted rigorous and comprehensive ewpats on the FERET database using objective imagdity)
metrics on the one hand, and PCA and LDA face neitiog algorithms on the other hand. Results haves that
naive PET approaches such as Gaussian blur dizpitien are ineffective at providing anonymity. hoth cases, the
recognition rate remains significant. Finally, waevh shown that region-based transform-domain sdiagnbpproaches
are successful at hiding identity, with the rectignirate dropping to nearly 0%.

Future work will concentrate in further analyzire tperformance of PET, verifying that they can ssstully address
privacy issues. In particular, it is important tary out experiments on larger data sets and usioig realistic video
surveillance footage. It is also imperative to &etinderstand user and system requirements regapdivacy issues.
Finally, performance analysis should also inclutgeimpact on compression efficiency, complexityd aacurity against
attacks.
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