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Abstract. Scheduling urban and trans-urban transportation is an important issue
for industrial societies. The Urban Transit Crew Scheduling Problem is one of
the most important optimization problem related to this issue. It mainly relies on
scheduling bus drivers’ workday respecting both collective agreements and the
bus schedule needs. If this problem has been intensively studied from a tactical
point of view, its operational aspect has been neglected while the problem be-
comes more and more complex and more and more prone to disruptions. In this
way, this paper presents how the constraint programming technologies are able
to recover the tactical plans at the operational level in order to efficiently help in
answering regulation needs after disruptions.

1 Context and opportunities

Scheduling urban and trans-urban transportation is an important issue for industrial
societies. Several aspects are considered by territorial collectivities and transportation
operators: human and material resource for, environmental and social constraint en-
forcement, user need requirements. Basically, there exists two central problems: transit
scheduling (vehicles - buses, trains, tramways - planning on routes) and driver duty
planning (assigning crew to those routes). These problems become more and more
complex (regulation, network expansion) and more and more prone to disruptions (city
events, accidents, resource failures) in the operational phase.

This is the context in which the Urban Transit Crew Scheduling Problem (UTCSP)
has been introduced [5]. In our proposal, we have to schedule bus drivers’ workdays ac-
cording to several constraints mainly related to: (1) collective agreements, e.g. breaking
rules (basically, how long a bus driver can work before a break) ; (2) the bus sched-
ule itself, e.g. chaining rules (geographic position, schedule compatibility between two
tasks, etc.). From a tactical point of view, the UTCSP has been thoroughly studied both
at the academic and industrial levels. Primarily, the technologies derived from mathe-
matical programming (from integer linear programming to column generation and dy-
namic programming) dominate the literature and offer satisfying results. The problem
is mainly solved using a set covering approach that represents bus schedule as a set
of tasks, linked together by chaining rules and respecting the breaking rules. From an
operational point of view, these technologies become useless due to their time consump-
tion. Such a pitfall leads the operators to manually repair the tactical solutions after a



disruption (at the operational level), and to consequently derive the applied schedule
quality.

Focusing on the operational point of view of the UTCSP, a.k.a. Urban Transit Crew
Rescheduling Problem (UTCRP), this paper presents how the Constraint Programming
(CP) technologies are able to recover the tactical plans at the operational level in order
to efficiently help answer regulation needs after disruptions. Precisely, it is shown how
a constraint model of the UTCSP can be simply modified to address the UTCRP, its
operational reformulation.

The paper is composed of six parts. The present one has introduced the context of
the UTCSP and has motivated the opportunities for the CP technologies to tackle the
rescheduling problem, namely the UTCRP. Next, Section 2 is dedicated to the related
works and the operational context of the UTCSP. Section 3 is the main section of the
paper. A CP model for the UTCSP is first presented. Next, it is shown how simple
modifications of the UTCSP lead to a model for the UTCRP. Then, Section 4 introduces
a common search strategy for UTCSP and its operational version. Section 5 reports
the empirical evaluations of both UTCSP and UTCRP on industrial instances. Finally,
Section 6 concludes.

2 Related Works and Operational context

The most widely used approach for this problem is related to a set partitioning prob-
lem [2]. It is mainly solved by a Branch-and-Bound algorithm where the lower bound
is computed through a column generation procedure [4]. In this case, the subproblem
corresponds to an Elementary Shortest Path Problem with Resource Constraints (ESP-
PRC). Most of the time, it is solved using dynamic programming [6, 10]. However,
according to the number and the nature of the resource constraints, generating a pool
of column during a preprocessing may sometimes be more efficient [11]. The resulting
Branch-and-Price algorithm is designed to be an exact model which, nevertheless, may
fail to optimally solve very large problems (with more than thousands tasks) [3, 5, 20].
To bypass this issue, a common approach consists in truncating the search tree [8], the
lower bound quality is ensured then to be the nearest possible from optimal solutions.
Even if many meta-heuristic algorithms have been proposed for the UTCSP [20, 7, 12,
19], the most efficient industrial softwares such as Austrics,1 Hastus,2 GoalDriver3 or
LP-EasyDriver 4 are based on a truncated version of the exact Branch-and-Price algo-
rithm.

Constraint programming attempt. The UTCSP has not been many studied by the CP
community. The most related work is [21]. It introduced a pure CP model for a variant
of the UTCSP, as well as a hybrid approach composing a column generation algorithm
with a CP model dedicated to generate the columns. Nevertheless, the proposed pure
CP approach is quite poor because it does not embed global constraints, like REGULAR,

1 http://www.trapezegroup.com
2 http://www.giro.ca
3 http://www.goalsystems.com
4 http://www.eurodecision.fr



to express the regulation needs. Moreover, the search strategy is limited to the first-fail
principle which is clearly inappropriate. Consequently, not more than 30 tasks can be
scheduled to optimality and feasible solutions can be provided with only at most 125
tasks. However, the main contribution is related to the hybridization. Thus, it is shown
that the hybrid approach (combining column generation and CP) can be efficient up to
150 tasks.

Operational context. To the best of our knowledge, there is no literature dealing with
the rescheduling of the UTCSP. So, we present an industrial point of view which mo-
tivates our proposal. Disruptions can occur a few days before the buses run. Typically,
some special event is programmed in the city, like a football match or local roadworks
and the bus schedules must be adapted “accordingly”. Without loss of generality, tasks
to be performed by the buses can either be added, deleted or their duration modified. In
some cases buses have connections with trains at the coach station, and a slight change
of the train timetable (imposed by French Railways for instance) can have an impact on
the bus task at this place in the network. From an operational point of view, a compro-
mise must be found by the planning team: on the one hand, building a new cost-efficient
schedule covering the modified tasks and, on the other hand, building a schedule not
“too different” from the regular daily schedules. For bus drivers, new workdays might
have an impact on either security or comfort, for instance when the new workday ends
later than usual.

Today, tools are mainly focussed on finding optimal solutions and tends to produce
- when tasks are altered - bran-new schedules that “destroy” the daily ones. In prac-
tice, human operators adopt a workaround strategy and manually fix large parts of the
schedule, asking the solver tool to optimize only subparts of the schedule. This approach
clearly avoids too much perturbation but consequently offer suboptimal solutions. It is
also a time consuming effort. The UTCRP consists then in managing a good balance
between cost optimality and schedule updates, with dedicated metric and constraints
on top on the classical ones. On the converse to pure tactical crew scheduling tools,
the computational time of rescheduling must be short, as various trials and errors can
have to be experimented by the planning team which is evaluating the impact of what-if
scenarios.

3 Constraint programming model

In the UTCSP, tasks have to be assigned to bus drivers. Formally, given n tasks that
are to be assigned to at most m bus drivers, the objective is to find a full assignment
that minimizes the cost and satisfies breaking rules and chaining rules. A bus driver is
mainly characterized by a unique identifier, a skill level, among novice and expert, and
a workday duration and a hourly cost induced by its skill. A novice can only execute
low level skill tasks while an expert can execute any type of tasks and can work longer
but at a higher hourly cost. The maximal number of novices, nbNovices and experts,
nbExperts , needed to trivially satisfy the problem is determined from the input. A same
bus driver can perform many tasks, but one task is only processed by a single bus driver.
Each task is defined by its fixed beginning time, Bi, its fixed duration, Di, its fixed



end time, Ei such that, Ei = Bi + Di, ∀i ∈ 1..n. The initially unknown bus driver
performing the task is denoted Ai. In addition, a task requires exactly one skill, Ki:
either high level skill, only experts can do it, or low level skill, anyone can do it.

A first constraint is that tasks assigned to the same bus driver should not overlap in
time. A second constraint deals with the allocation of breaks to each bus driver. This is
done by stating a SHIFT constraint, which we now describe.

Definition 1 (Shift). A shift is a maximum sequence of tasks assigned to a same bus
driver such that the time gap between any two consecutive tasks is shorter than a given
threshold minBreak .

Two consecutive shifts of a bus driver are separated by a break of minimum duration
minBreak and define its workday. Two consecutive tasks of a shift are separated by a
gap shorter than minBreak . The span of a shift is the difference between the end time
of its last task and the beginning time of its first task. It is bounded by a given threshold
maxSpan .

3.1 Modeling the SHIFT constraint

Concisely expressing constraints like SHIFT is hard and has been recently studied.
In [1], a possible model is presented to manage the SHIFT problem based on the REGU-
LAR [14] and GLOBAL CARDINALITY [17] constraints. We do not report such a model
in this paper because of its time generation and memory consumption. Another in-
teresting model, also introduced in [1], addresses most of the pitfalls of the previous
one: a STABLEKEYSORT-based model. In such a model, a decomposition of the SHIFT
constraint is expressed as a conjunction of a STABLEKEYSORT constraint and sim-
ple arithmetical and logical constraints. The STABLEKEYSORT(L,P, S, k) constraint
is declared with:

– L = 〈Ai, Bi, Di, Ei〉 | i ∈ 1..n]: a list of task attribute tuples,
– P : an optional permutation list (not required here),
– S = 〈A′i, B′i, D′i, E′i〉 | i ∈ 1..n]: a stable and non decreasing rearrangement of L,
– k = 2: number of first positions to consider in the tuples.

Doing so, the STABLEKEYSORT(L,P, S, k) provides a view of tasks of L in which
tasks are sorted by workdays. Hence, it eases the expression of the required constraints
which can be directly expressed on sorted variables, while their expression could be
more tedious otherwise.

Decomposition 1 depicts how the SHIFT constraint is expressed using a STABLE-
KEYSORT constraint in the state-of-the-art. Constraint (1) ensures tasks integrity. Con-
straint (2) maintains the rearrangement of task attribute tuples, here only Ai and Bi
are considered to sort tuples. Constraint (3) ensures that two consecutive tasks either
belong to the different workdays or are chronologically ordered in the same workday
and thus do not overlap in time. Constraints (4) and constraint (5) introduce auxiliary
0..1 variables: Yi indicates whether two consecutive tasks i− 1 and i are in the same
workday, Xi indicates if two tasks i− 1 and i are in the same shift. Finally, a last set of
auxiliary 1..maxSpan variables Ri are needed in constraint (6), they compute the shift
length up to the end of task i.



SHIFT([〈Ai, Bi, Di, Ei〉 | i ∈ 1..n], [
〈
A′i, B

′
i, D

′
i, E
′
i, Yi

〉
| i ∈ 1..n],

minBreak ,maxSpan)⇔ (1) ∧ (2) ∧ (3) ∧ (4) ∧ (5) ∧ (6)

Ei = Bi +Di, ∀i ∈ 1..n (1)

STABLEKEYSORT([〈Ai, Bi, Di, Ei〉 | i ∈ 1..n], [
〈
A
′
i, B
′
i, D

′
i, E
′
i

〉
| i ∈ 1..n], 2) (2)

A
′
i−1 < A

′
i ∨ E

′
i−1 ≤ B

′
i, ∀i ∈ 2..n (3)

Yi = 1⇔
{
false if i = 1

A′i = A′i−1 if i ∈ 2..n
(4)

Xi = 1⇔
{
false if i = 1

Yi ∧ B′i − E
′
i−1 < minBreak if i ∈ 2..n

(5)

Ri =

{
D′i if i = 1

D′i +Xi · (Ri−1 + B′i − E
′
i−1) if i ∈ 2..n

(6)

where
Ri ∈ 1..maxSpan, ∀i ∈ 1..n

Decomposition 1: Decomposition of the SHIFT constraint [1].

3.2 A constraint-based model for the UTCSP

The targeted problem is based on a central SHIFT constraint but also comes with the
following additional variables and constraints, presented in Model 1. For modeling pur-
pose, bus drivers whom unique identifier is in 1..nbNovices are novices, those with
greater identifier, up to nbNovices + nbExperts , are experts. Hence, constraint (8)
introduces the auxiliary 0..1 variables Ki which indicate whether the bus driver per-
forming the task i is an expert. Pi, Wi, Ci denote respectively the period between two
consecutive tasks i− 1 and i, stated by constraint (9), the duration of a shift including
task i, stated by constraint (11), and the cost of a bus driver’s workday, stated by con-
straint (12). Note that the workday duration is bounded thanks to that last constraint.
It is expressed with a TABLE [9] constraint wherein possible combinations of skill and
workday and costs are listed. Constraint (10) ensures that, in a shift, the period between
two tasks i − 1 and i is less than or equal to the maxSpan . Based on an a priori anal-
ysis of the tasks network, ALLDIFFERENT [16] constraints (13) make sure that tasks
belonging to the same clique are performed by different bus drivers.

Finally, the model is improved by considering symmetries and their related sym-
metry breaking constraints, depicted by Model 2. First, we introduce MR

i and ME
i

which maintain, for each skill, the list of identifier of used bus drivers (constraints (14)
and (15)), they also help to count the number of bus drivers per skill. Then, con-
straints (16), (17), (18) and (19) break symmetries.

3.3 A constraint-based model for the UTCRP

In order to stay close to the operational context of the bus networks, we have built
instances for the UTCRP based on disruptions of UTCSP instances. Indeed, a daily
schedule is considered as known, and the tasks’ disruptions occur locally. So, the dis-
ruptions can be easily simulated from the UTCSP instances. We have to keep in mind
that these disruptions can either be:



Minimize
n∑

i=1

Ci (7)

subject to

SHIFT([〈Ai, Bi, Di, Ei〉 | i ∈ 1..n], [
〈
A
′
i, B
′
i, D

′
i, E
′
i, Yi

〉
| i ∈ 1..n],minBreak ,maxSpan)

Ki = 1⇔ A
′
i > nbNovices, ∀i ∈ 1..n (8)

Pi =

{
0 if i = 1

B′i − E
′
i−1 if i ∈ 2..n

(9)

Yi ⇒ Pi ≤ maxSpan, ∀i ∈ 2..n (10)

Wi =

{
D′i if i = 1

D′i +Xi · (Wi−1 + Pi) if i ∈ 2..n
(11)

Ci =

{
(1− Yi+1) · costKi,Wi

if i ∈ 1..n− 1

costKi,Wi
if i = n

(12)

Redundant constraint
ALLDIFFERENT([Ak | k ∈ clique(A)]) (13)

where ∀i ∈ 1..n,

Pi ∈ −dayDuration..dayDuration, Wi ∈ 0..dayDuration, Ci ∈ 0..dayDuration × costExpert,

Model 1: Formulation of the Urban Transit Crew Scheduling Problem.

– Creation of new tasks: the bus line has to serve the stadium station at 1 o’clock in
the morning, due to a rock concert;

– Task deletion: a roadwork prevents the bus to use the road and stop at the station;

– Duration change: roadworks slow down the traffic;

– Start time change: a train timetable has been modified, and the connection forces a
change of the bus departure time.

Consequently, UTCRP aims at producing new schedules which: a) cover all the tasks
(previous and new); b) do not differ too much in terms of cost from the initial daily
schedule; and c) ensure that the workday modifications are minimal for the bus drivers.
These schedules have to be produced within a few seconds of computational time so
that the planning team can test different scenarios and choose the most convenient one.

From a constraint programming point of view, Model 3 presents how to turn the
UTCSP model, depicted in Section 3.2, into UTCRP. Given Is, an assignment of n
tasks to m bus drivers, let us denote C? its cost. Consider that some of the tasks have
been disrupted and that Is has to be repaired. First, the previous objective function,
equation (7) in Model 1, is turned into the hard constraint (21): new solutions have to
be at most ε% aboveC?. Then, for each set of tasks performed by the same bus driver in
Is, the number of bus drivers needed to perform the same tasks anew is maintained by
constraint (22). Finally, the objective function (20) aims at computing solutions similar
to Is in term of unmodified workdays.



M
R
i =


A′i ifKi = 0

0 ifKi = 1 ∧ i = 1

MR
i−1 ifKi = 1 ∧ i ∈ 2..n

(14)

M
E
i =


A′i ifKi = 1

nbNovices ifKi = 0 ∧ i = 1

ME
i−1 ifKi = 0 ∧ i ∈ 2..n

(15)

M
R
i−1 ≤M

R
i , ∀i ∈ 2..n (16)

M
E
i−1 ≤M

E
i , ∀i ∈ 2..n (17)

INTVALUEPRECEDECHAIN(A, [j | j ∈ 1..nbNovices]) (18)

INTVALUEPRECEDECHAIN(A, [j | j ∈ nbNovices..nbNovices + nbExperts]) (19)

where ∀i ∈ 1..n,

M
R
i ∈ 1..nbNovices, M

E
i ∈ nbNovices..nbNovices + nbExperts

Model 2: Improving Model 1 with symmetry breaking constraints.

Minimize
m∑

`=1

N` (20)

subject to
n∑

i=1

Ci < (C
? · ε)/100 (21)

NVALUES([A` | ` ∈ workday(A)],=, N`) (22)

where ∀` ∈ 1..m,
N` ∈ 0..n

Model 3: Modifications to bring to the CP model of UTCSP to turn it into UTCRP.

4 Search strategy

A constructive search strategy is defined to dive to a first solution quickly without fail-
ure. The Ai variables are selected in lexicographic order. The bus driver that performs
a task Ai is computed as follow. Bus drivers already performing at least one task are
considered first. Those whose workday is not directly compatible with the task to assign
(w.r.t. either break rules or chaining rules cannot be satisfied) are ruled out. Remaining
ones are then tried sequentially. Some more tries are finally considered, allowing the
addition of at most one bus driver per type of skill required.

Next solutions are obtained by plugging Large Neighborhood Search (LNS) [18]
in, a straightforward two-phase local search-like approach. It partially relaxes a given
solution and tries to repair it. Given an input solution, the relaxation phase builds a
partial solution: some variables are selected to be relaxed to their initial domain, while
the other ones are assigned to their value in the solution. The reparation phase tries to
extend the partial solution to a complete one that improves the objective function.

The efficiency of LNS lies in the way variables are selected to be relaxed. In our
case, it tries to find a better solution by locally rearranging bus drivers’ workday. So,



the workdays are first extracted from theA variables in a solution. Then, up to θ ∈ [[2, 4]]
workdays are randomly selected to be rearranged in such way that they overlap in time
at least one of the other selected one. The corresponding A variables are relaxed, the
other ones are assigned to the same bus driver as declared in the solution. To consolidate
even more the partial solution, bus drivers’ identifier corresponding of fixedA variables
are removed from relaxed A variables’ domain. The process is completed with a fast
restart strategy [13], which limits the reparation phase to 2n failures and avoids spend-
ing too much time in hard-to-repair partial solutions.

The same search strategy is applied to both the UTCSP and the UTCRP. The strategy
was initially designed to produce few dense workdays, with a local reasoning. When the
objective changes to repair assignments, the model is constrained enough to guide the
process towards workdays similar to the initial ones.

5 Practical Experiments

For an empirical evaluation, we instantiate the UTCSP model of Section 3.2. The SHIFT
constraint holds for a 15-minute minBreak and 2-hour maxSpan . A novice cannot
work more than 8 hours and its hourly cost is fixed to 10. An expert cannot work more
than 9 hours, and its hourly cost is fixed to 17. We consider here the following additional
rule: any working bus driver has a minimal 6-hour pay, even if its workday lasts for
less than 6 hours. This constraint is directly encoded into constraint (12). Finally, the
UTCRP model depicted in Section 3.3 also instantiates ε, the distance to C?, to 10.

There are two sets of instances. A first set aims at comparing the constraint-based
approach with the state-of-the-art one on the UTCSP. It is composed of real-world prob-
lem instances involving up to 3,200 tasks. A second set aims at evaluating how repair-
ing a disrupted assignment is made easy with a constraint-based approach using the
UTCRP (Model 3). First of all, the best solution found by EURODECISION for the in-
stance with 800 tasks is selected, it is composed of 160 workdays. Then, this instance is
disrupted applying the following process: a task j is randomly selected to be removed.
Starting from j, within a range of β ∈ {30, 60, 90, 120} minutes before Bj and after
Ej , tasks on a path to j, that is w.r.t. breaking rules and chaining rules, are removed.
Tasks that overlap the range in time are reduced (either Bi or Ei is modified). The
selection-and-removing phase is repeated α ∈ [[1..5]] times. This results in a set of 20
instances to be repaired with up to 25% disrupted tasks, which corresponds to our real
life context.

Protocol. The experiments were run on a Mac Pro with 8-core Intel Xeon E5 at 3 GHz
under MacOS 10.11.3 and Java 1.8.0 25. Each instance of the first set was run with
a 2-hour limit on its own core, and each instance of the second set was run with a 1-
minute limit on its own core for CP approach. LP-EasyDriver was evaluated in a 2-hour
limit for both sets. All of them were run with up to 4 GB of memory. The tools used
are: Choco [15] for the constraint programming part, while EURODECISION provides
LP-Taskplanner, a generic framework for ESPPRC based column generation models,
relying on CPLEX 12.6.2. LP-Taskplanner is embedded in LP-EasyDriver: the latter
handles every business aspects while the former deals with the optimization parts. In
the following, this tool will be referred to as LP-EasyDriver.



5.1 Solving the UTCSP

In this section, we compare the constraint-based approach for the UTCSP with the one
being used by EURODECISION and introduced in Section 2. The results are given in
Table 1 which is divided into four parts. The first part indicates the instance size n.
The second part reports information related to the constraint-based approach: the time
to get the first solution (time, in seconds), its cost (first) and the best cost obtained
in 120 minutes (best@120). The third part is about LP-EasyDriver: the time (time, in
seconds) to compute the lower bound (LB) and a first upper bound (UB) then the best
upper bound in 120 minutes (UB@120). Finally, the last part reports, when possible,
the ratio

g(a, b) =
a

b
× 100

where, here, a = (best@120− UB@120) and b = UB@120. In addition, “N/A” de-
notes that the information is not available or applicable, “OOT” denotes that a particular
approach runs out of time.

n
Constraint-based approach LP-EasyDriver Gaptime first best@120 time LB time UB UB@120

200 0.97 5005.00 4352.75 9 4069.81 10 4150.25 4073.75 6.85
400 1.71 9131.75 8318.50 134 7654.78 140 8790.75 7677 8.36
600 2.65 13566.00 12218.25 499 10845.6 4152 11328.5 11014 10.93
800 3.80 17479.25 16375.00 1265 14472.8 23128 14690.2 N/A N/A

1000 5.51 20857.75 20211.25 2593 17868 OOT N/A N/A
1400 9.42 29210.75 28031.00 10245 24214.2 OOT N/A N/A
1800 15.22 37394.50 36431.00 33698 31578.2 OOT N/A N/A
2200 22.42 44849.50 43856.50 OOT OOT N/A N/A
2600 31.94 52885.75 52011.25 OOT OOT N/A N/A
3000 45.09 59138.50 58656.25 OOT OOT N/A N/A
3200 52.60 65382.75 64584.75 OOT OOT N/A N/A

Table 1. Empirical results on the UTCSP: time (time, in seconds) for finding the first solution
(first) and the best solution found in 120 minutes (best@120), and for finding the root lower
bound (LB), the first upper bound (UB), and the best upper bound in 120 minutes (UB@120).
The ratio of best@120 to UB@120 is also reported (Gap, in %).



We observe that:

– The truncated Branch-and-Price approach fails at solving large problems. This ob-
servation confirms the state-of-the-art (Section 2). The bounds produced are very
sharp considering a 2-hour time limit. Indeed, such a time limit is below from what
is commonly allocated at the tactical level.

– The constraint-based approach is able to find a first solution for any problem size.
Moreover, the ability of the model to scale up combined with a constructive search
strategy makes possible to provide a first solution in a very short time. Nonetheless,
the quality of the best solution found in the given time limit tends to decrease when
the instance size n becomes larger. In the end, without any evaluation - neither
propagation - of the lower bound, the approach fails at proving optimality.

At a tactical level, where the run time matters less than the quality of the bounds, and
up to mid-size problems, the state-of-the-art approach is suitable. On any-size problems,
the constraint-based approach is responsive, yet less accurate. At an operational level,
when rescheduling tasks is needed, responsiveness becomes indispensable. This is the
point we want to evaluate in Section 5.2. e

5.2 Solving the UTCRP

When a disrupt occurs, its extent is measurable thanks to three indicators: the number of
removed or modified tasks (n′), the number of bus drivers whose workday is disrupted
(m′) and the total number of affected tasks, gathering all tasks of disrupted workdays
(n′′). In practice, when dealing with rescheduling, not all the tasks are set as input
of the model depicted in Section 3.3. Indeed, only affected tasks are considered. The
remaining workdays are immutable. Recall that the solution selected to be disrupted
was made of n = 800 tasks and m = 160 bus drivers (or workdays).

We report the results of constraint-based approach for the UTCRP. The results are
given in Table 2 which is composed of four parts. The first part indicates the disruption
parameters β and α and the indicators of its extent n′, m′ and n′′. The second part
reports information related to the constraint-based approach: the time to get the first
solution (time, in seconds) and gap@first that is the ratio g(m−m′+m1,m) wherem1

is the number of workdays covering the n′′ tasks (recall that the unaffected workdays
are kept immutable). This qualifies the distance from the first solution found to the
initial one in terms of number of modified workdays needed to cover the affected tasks.
The ratios based on the best solution found in ten seconds (gap@10) and 60 seconds
(gap@60) relative to the initial solution are also reported. Then, the cost of the best
solution found in 60 seconds is indicated (cost@60). For indication purpose, the results
found with LP-EasyDriver when solving the problems from scratch, without any time
limit, are reported in the third part (best). Finally, the ratio g(cost@60− best, best) can
be observed in the last part (Gap). In addition, “-” denotes that no better solution was
found in the elapsed time.

Our observations are threefold:

– The constraint-based approach is responsive as expected. Its ability to quickly
reschedule disrupted workdays does not depend on the extent of the disruption.



Inst. parameters Constraint-based approach LP-EasyDriver Gap
β α n′ m′ n′′ time gap@first gap@10 gap@60 cost@60 best

30

1 3 3 15 0.85 1.87 0.00 - 14489.50 14462.00 0.19
2 7 7 39 0.98 4.37 0.62 - 14584.75 14482.50 0.71
3 11 10 63 1.07 15.62 2.50 0.62 14576.25 14440.00 0.94
4 15 14 92 1.16 27.50 20.62 3.75 14597.50 14369.25 1.59
5 18 17 114 1.25 35.62 31.87 4.37 14729.75 14336.50 2.74

60

1 4 4 21 0.86 2.50 0.62 - 14591.50 14446.00 1.01
2 9 9 41 0.93 4.37 0.62 - 14532.00 14416.00 0.80
3 15 14 72 1.06 10.62 3.12 0.62 14578.00 14373.50 1.42
4 18 16 83 1.09 13.12 2.50 0.62 14497.25 14314.50 1.28
5 22 18 99 1.11 18.75 11.87 0.62 14539.75 14345.00 1.36

90

1 6 6 35 0.91 3.75 0.62 - 14576.25 14464.00 0.78
2 13 12 76 1.07 13.75 2.50 1.25 14623.00 14466.75 1.08
3 16 14 84 1.09 16.25 5.62 1.87 14631.50 14424.00 1.44
4 24 21 125 1.24 29.37 23.12 1.25 14669.25 14434.25 1.63
5 32 28 168 1.37 42.50 41.25 2.50 14669.75 14294.00 2.63

120

1 8 7 41 0.94 6.25 1.25 - 14563.50 14458.50 0.73
2 18 15 103 1.18 29.37 19.37 0.62 14571.25 14423.00 1.03
3 27 20 134 1.31 38.12 31.87 0.62 14551.00 14334.25 1.51
4 37 28 185 1.39 55.62 53.12 3.75 14743.25 14319.00 2.96
5 44 33 209 1.45 63.75 61.25 3.75 14722.50 14259.50 3.25

Table 2. Empirical results on the UTCRP: range of the disruption (β) along a path involving a
randomly selected task, number of randomly selected tasks (α), number of directly affected tasks
(n′) and bus drivers (m′) and total number of affected tasks (n′′), time (time, in seconds) for
finding the first solution, the ratio of the number of workdays needed in, respectively, the first
solution (gap@first, in %), the solution found in 10 seconds to (gap@10, in %) and the solution
found in 60 seconds (gap@60, in %) to the initial number of workdays required, the cost of the
solution found in 60 seconds (cost@60), and the ratio of cost@60 to the best solution (best)
computed from scratch with the LP-EasyDriver (Gap, in %).

Nevertheless, the quality of the reparation is related to the total number of the af-
fected tasks n′′.

– The search strategy is able to compute good quality solutions in term of number of
workdays. When less than 83 tasks are affected by the disruption, ten seconds are
enough to provide solutions at most 5% above the number of workdays needed be-
fore the disruption. When more tasks are affected, sixty seconds are always enough
to find solution at most 5% above the initially required number of workdays.

– The search strategy is able to compute good quality solution in terms of cost. The
best solutions found with CP are very close to the ones computed from scratch by
LP-EasyDriver. Nevertheless, the EURODECISION approach fails at maintaining
the workdays which are not impacted by disruptions. Consequently, such approach
does not fit the needs of the planning teams.

6 Conclusion and Further Works

In the context of scheduling bus drivers’ workdays, this paper first described a con-
straint-based model for the UTCSP. We empirically confirmed that this CP model scaled
up to 3,200 tasks and was able to quickly build good quality solutions. Nevertheless, due
to a lack of any lower bound integration, it struggled to improve them enough to reach
and prove optimality. Second, we highlighted CP flexibility by turning the UTCSP into



its operational counterpart, the UTCRP. The ability of the constraint-based approach to
quickly reschedule workdays has been assessed on randomly disrupted instances. In-
deed, the closeness of the new scheduling to the initial one in terms of both workdays
and cost bears out that CP is a serious runner for that problem.

The responsiveness and the good quality of the solutions found by the CP approach
for UTCRP offer new perspectives and advocates for field experiments. EURODECI-
SION will launch pilots with groups of customers in order to measure the ease of use
of repaired solutions together with the real life metrics used by the planning teams. Our
goal is to reduce the hassle imposed to the planners by the disruptions without loosing
too much cost compared to optimality.
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