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Preference Modeling with Possibilistic Networks and

Nahla Ben Amor1 and Didier Dubois2 and Héla Gouider3 and Henri Prade4

Abstract.

The use of possibilistic networks for representing conditional pref-

erence statements on discrete variables has been proposed only re-

cently. The approach uses non-instantiated possibility weights to de-

fine conditional preference tables. Moreover, additional information

about the relative strengths of these symbolic weights can be taken

into account. The fact that at best we have some information about

the relative values of these weights acknowledges the qualitative na-

ture of preference specification. These conditional preference tables

give birth to vectors of symbolic weights that reflect the preferences

that are satisfied and those that are violated in a considered situation.

The comparison of such vectors may rely on different orderings: the

ones induced by the product-based, or the minimum-based chain rule

underlying the possibilistic network, the discrimin, or leximin refine-

ments of the minimum-based ordering, as well as Pareto ordering,

and the symmetric Pareto ordering that refines it. A thorough study

of the relations between these orderings in presence of vector com-

ponents that are symbolic rather numerical is presented. In particu-

lar, we establish that the product-based ordering and the symmetric

Pareto ordering coincide in presence of constraints comparing pairs

of symbolic weights. This ordering agrees in the Boolean case with

the inclusion between the sets of preference statements that are vi-

olated. The symmetric Pareto ordering may be itself refined by the

leximin ordering. The paper highlights the merits of product-based

possibilistic networks for representing preferences and provides a

comparative discussion with CP-nets and OCF-networks.

1 Introduction

For more than a decade, representing preferences has attracted much

interest in Artificial Intelligence. Preference models having a graphi-

cal basis are particularly appealing since they offer a compact rep-

resentation, fit quite well with preference elicitation, and offer a

basis for computation. Roughly speaking, one may distinguish be-

tween qualitative and quantitative settings. In quantitative models,

such as Generalized Additive Independence networks (GAI nets)

[19, 20, 21], representing preferences comes down to constructing

a value function that enables us to compare all possible situations.

However, decision-makers are rarely able to express their preferences

directly in terms of numerical local value functions due to the con-

siderable cognitive burden of determining accurate numerical values.
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Instead, qualitative models such as Conditional Preference networks

(CP-nets) [5, 6] allow the representation of partially specified and

contextually expressed preference relations. The problem is then to

reconstruct, if not a value function, at least an order relation between

all possible situations.

Recently, a new graphical model for preferences representation,

called π-Pref nets, based on possibilistic networks, has been briefly

outlined and studied in [3, 2]. Possibilistic networks use a graphical

structure similar to the one of Bayesian nets, where conditioning ei-

ther relies on a minimum-based, or on a product-based equation, de-

pending on whether we are in a qualitative or in a numerical setting.

Since their introduction, possibilistic networks have been applied to

reasoning under uncertainty only. Both types of such networks have

a direct logical counterpart in terms of possibilistic logic knowledge

bases [4], where formulas are assigned degrees of necessity [13]. In

contrast, sets of formulas weighted by probability values are gen-

erally not equivalent to a single probability distribution, hence can-

not encode Bayesian nets. Logical encodings of Bayesian nets re-

quire other methods [8]. Conditional preference statements can be

represented using product-based possibilistic networks on discrete

variables. They use non-instantiated numerical possibility degrees

(we call them symbolic weights) in the conditional preference tables,

and possibly additional information about the relative strengths of

symbolic weights can be taken into account. Such a symbolic model

is situated halfway between quantitative and qualitative models. In-

deed, it can be handled qualitatively if the symbolic weights remain

non-instantiated, or quantitatively when instantiating them.

π-Pref nets and CP-nets share the same graphical structure and

conceptual simplicity. CP-nets rely on the Ceteris Paribus principle,

and may induce debatable priorities between decision variables [15].

π-Pref nets do not suffer from such a questionable behavior and leave

complete freedom for stating relative priorities between variables.

Ordering two possible situations in π-Pref nets amounts to compar-

ing two vectors of symbolic weights reflecting the user’s specifica-

tions that are satisfied and those that are violated.

One may think of different orderings for comparing these vectors,

starting with the ones induced by the product-based, or the minimum-

based chain rules underlying possibilistic networks, as well as the

Pareto ordering, and refinements of previous orderings, such as the

discrimin, the leximin, or the symmetric Pareto orderings. In this pa-

per, we provide a thorough comparative study between these order-

ings in the case of symbolic weights, which departs from the numer-

ical situation, in presence, or not, of additional constraints between

symbolic weights.

Moreover, we also compare π-Pref nets with OCF-networks

[17, 18, 22] that use integer additive penalty costs to define con-

ditional preference tables. They appear to be similar to product-
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based possibilistic networks. In [3], it was proved that such costs can

be expressed in terms of possibility degrees. This suggests that the

two graphical network representations are closely related. Numerical

OCF-networks have been recently proposed to mimic the ordering

of CP-nets in [16]. In this paper, we also discuss the possibility to

induce CP-nets ordering using numerical, or symbolic π-Pref nets.

The paper is organized as follows. Section 2 provides a brief back-

ground on possibilistic networks, while Section 3 introduces pos-

sibilistic networks with symbolic weights as a way of representing

preferences. Section 4 defines the different possible orderings we

may think of for comparing vectors with symbolic components, and

establishes that the product-based and the symmetric Pareto order-

ings always coincide in the presence of non-zero symbolic weights.

Section 5 presents a thorough comparison of different possible or-

derings between symbolic vectors, including the case of additional

constraints between the symbolic weights. Lastly, Section 6 provides

a compative discussion between π-Pref nets, OCF-nets, and CP-nets.

2 Background on possibility theory

Let V = {A1, . . . , AN} be a set of N variables. Each variable Ai

has a value domain D(Ai). Elements ai ∈ D(Ai) denote values of

Ai. Ω = {ω1, . . . , ω|Ω|} denotes the universe of discourse, which

is the Cartesian product of all variable domains in V . Each element

ωi ∈ Ω is called a configuration (or a solution). It corresponds to a

complete instantiation of the variables in V . If U ⊆ V , then ω[U ]
denotes the restriction of solution ω to variables in U .

We start by a brief refresher on possibility theory [11, 27] in the

setting of uncertainty representation. It relies on the idea of a possi-

bility distribution π, which is a mapping from a universe of discourse

Ω to the unit interval [0, 1], or to any bounded totally ordered scale.

This possibilistic scale could be interpreted at least in two ways: a nu-

merical interpretation when values must be the result of a clear mea-

surement procedure, and an ordinal one when values only reflect a to-

tal preorder between the different interpretations. π(ωi) = 0 means

that ωi is fully impossible, while π(ωi) = 1 means that ωi is fully

possible. The possibility distribution π is normalized if ∃ ωi ∈ Ω
s.t. π(ωi) = 1. Given a normalized possibility distribution π, we can

describe the uncertainty about the occurrence of an event F ⊆ Ω via

a possibility measure Π(F ) = supωi∈F π(ωi) and its dual neces-

sity measure N(F ) = 1 − Π(F̄ ) = 1 − supωi /∈F π(ωi). Measure

Π(F ) evaluates to which extent F is consistent with the knowledge

represented by π while N(F ) evaluates at which level F is certainly

implied by π. Conditioning in possibility theory is defined from the

Bayesian-like equation Π(F ∩ E) = Π(F |E) ⊗ Π(E), where ⊗
stands for the product in a quantitative setting (numerical), or for the

minimum in a qualitative setting (ordinal).

Possibilistic networks [4, 1] are defined as counterparts of

Bayesian networks [25] in the context of possibility theory. They

share the same basic components, namely: (i) a graphical compo-

nent which is a DAG (Directed Acyclic Graph) G= (V,E) where V
is a set of nodes representing variables and E a set of edges encod-

ing conditional (in)dependencies between them. (ii) a valued compo-

nent associating a local normalized conditional possibility distribu-

tion to each variable Ai ∈ V in the context of its parents (denoted

by Pa(Ai)). The two definitions of possibilistic conditioning lead to

two variants of possibilistic networks: in the numerical context, we

can express product-based networks, while in the qualitative context,

we only have min-based networks (also known as qualitative possi-

bilistic networks). Given a possibilistic network, we can compute its

encoded joint possibility distribution using the following chain rule:

π(A1, . . . , AN ) = ⊗i=1..N Π(Ai | Pa(Ai)) (1)

where⊗ is either the minimum, or the product operator ∗, depending

on the semantic underlying it.

In the following, we advocate possibilistic networks for represent-

ing knowledge about preferences (rather than uncertain knowledge

as it has been the case until now). Thus, π(ω) defines the level of sat-

isfaction of ω, Π(F ) evaluates to what extent satisfying a constraint

modeled by F is satisfactory and N(F ) evaluates to what extent this

constraint is imperative.

3 Possibilistic networks for handling preferences

This section provides a generic definition of conditional preference

possibilistic networks and, shows various ranking procedures to in-

duce an ordering between the solutions. Then, we propose a com-

parison between these distinct induced orderings. Conditional pref-

erence statements can be associated to a graphical structure. In this

approach, this graphical structure is understood as a possibilistic net-

work where each node Ai is associated with a conditional possibility

table used for representing the preferences.

Definition 1 (Preference Network) A preference network G over a

set V = {A1, . . . , AN} of decision variables is a DAG G where

each node Ai ∈ V is associated to local preference relations (pref-

erence table for short), such that to each instantiation ui of its par-

ents Pa(Ai) is associated a complete preordering �ui
of D(Ai),

directly provided by the user.

In a possibilistic preference network, for each particular instanti-

ation ui of Pa(Ai), the preference order between the values of Ai

stated by the user will be encoded by a local conditional possibility

distribution expressed by symbolic weights. By a symbolic weight,

we mean a symbol representing a real number whose value is un-

specified. We rely on symbolic weights in the absence of available

numerical values. These weights may be instantiated totally or par-

tially when possible.

Definition 2 (Conditional Preference Possibilistic network)

A possibilistic preference network (π-Pref net) ΠG over a set

V = {A1, . . . , AN} of decision variables is a preference network

where each local preference relation at node Ai is associated with

a symbolic conditional possibility distribution (πi-table for short),

encoding the ordering between the values of Ai such that:

• If ai ≺ui
a′
i then π(ai|ui) = α, π(a′

i|ui) = β where α and β
are non-instantiated variables on (0, 1] we call symbolic weights,

and α < β ≤ 1;

• If ai ∼ui
a′
i then π(ai|ui) = π(a′

i|ui) = α where α is a symbolic

weight such that α ≤ 1;

• For each instantiation ui of Pa(Ai), ∃ ai ∈ D(Ai) such that

π(ai|ui) = 1.

Let C0 be the set storing the constraints existing between the symbolic

weights introduced as above.

In addition to the preferences encoded by a π-Pref net, additional

constraints in C1 can be taken into account. Such constraints may

represent, in particular, the relative strength of preferences associated

to different instantiations of parent variables of the same variable. Let

C = C0
⋃
C1. In the case one cannot infer any relation between two

weights by transitivity, we consider them as incomparable.



Example 1 Consider a preference specification about an evening

dress over 3 decision variables V = {J, P, S} standing for

jacket, pants and shirt respectively, with values in D(J) =
{Red (jr), Black (jb)}, D(P ) = {White (pw), Black (pb)}
and D(S) = {Black (sb), Red (sr), White (sw)}. The DAG is

given by Figure 1 and the conditional possibility weights are given in

Table 1. Preference statements (s1) and (s2) are unconditional. Note

that the user is indifferent between the values of variable S in context

uj = jrpw. The constraints between symbolic weights inherent from

the preference specification are represented by the set C0 such that

C0 = {(δ1 > δ2), (θ1 > θ2), (λ1 > λ2)}.

J P 

S 

Figure 1: A preference network and its corresponding preference

specification

π(jb) π(jr)
1 α

π(pb) π(pw)
1 β

π(.|.) jbpb jbpw jrpb jrpw
sb 1 θ1 λ1 1
sr δ1 θ2 1 1
sw δ2 1 λ2 1

Table 1: Possibilistic conditional preference tables

From now on, we assume the complete specification of conditional

preferences, i.e., in each possible context, the user provides a com-

plete preordering of the values of the considered variable in terms of

strict preference or indifference.

These particular possibilistic networks have a logical counterpart

[3, 4], namely symbolic possibilistic logic bases. In fact, in previous

works [10, 15], possibilistic logic was advocated to represent sym-

bolic preferences. However, beside the lack of a graphical structure,

it is much less flexible than this symbolic graphical approach. Indeed,

it supports only binary variables and associates to each variable ex-

actly one symbolic weight. Precisely, a possibilistic logic encoding

uses at most one symbolic weight per πi-Table.

The ultimate aim of graphical representations of preference is to

efficiently compare all possible solutions in Ω. Each possibility de-

gree of a solution, computed from the possibilistic chain rule (1),

expresses its satisfaction level. This leads to the following definition

of the induced ordering.

Definition 3 (Preference ordering) Given a symbolic possibilistic

preference network ΠG and a set C of constraints between the sym-

bolic weights, given two solutions ωi and ωj in Ω, let πΠG(ωi) (resp.

πΠG(ωj)) be the symbolic possibility degree of ωi (resp. ωj) com-

puted by (1). Then, ωi �⊗ ωj iff πΠG(ωi) ≥ πΠG(ωj).

Other relations can be derived from �⊗ as usual: ωi ∼⊗ ωj if and

only if ωi �⊗ ωj and ωj �⊗ ωi (indifference); ωi ≻⊗ ωj if and

only if ωi �⊗ ωj but not ωj �⊗ ωi (strict preference); ωi±⊗ ωj iff

neither ωi �⊗ ωj nor ωj �⊗ ωi (non comparability). ⊗ stands for

either the min or the product operator ∗. Note that ⊗ is associative,

monotonic in the wide sense and 1 represents the identity element

such that 1⊗ α = α.

Since we use symbolic weights, preference between some solu-

tions cannot be established (as long as we do not instantiate all the

symbolic weights). To each solution ω = a1 . . . aN can be associ-

ated with a vector Fω = (α1, . . . , αN ), where αi = π(ai|ui) and

ui = ω[Pa(Ai)]. Vectors associated to the preference possibilistic

network of Example 1 are represented by Table 2. Thus, comparing

solutions amounts to comparing those vectors of symbolic weights,

and the use of the chain rule is just one way of comparing solutions,

among other ones as discussed in the next section.

Symbolic vectors

configurations J P S

jbpbsb 1 1 1
jbpbsr 1 1 δ1
jbpbsw 1 1 δ2
jbpwsb 1 β θ1
jbpwsr 1 β θ2
jbpwsw 1 β 1
jrpbsb α 1 λ1

jrpbsr α 1 1
jrpbsw α 1 λ2

jrpwsb α β 1
jrpwsr α β 1
jrpwsw α β 1

Table 2: Vectors associated to each configuration of Example 1

4 Symbolic weights

In Section 3, we have shown how to encode the preference specifica-

tions in a possibilistic network format. In this section we will present

a number of partial order relations with the purpose to use them to

generate a particular ordering over configurations.

Vectors of these weights, Fω = (α1, . . . , αN ) and Fω′ =
(β1, . . . , βN ) for instance, can be compared using different ordering

procedures namely, Product, symmetric Pareto, Minimum or Lex-

imin orderings. These procedures can be defined for partially ordered

symbolic weights. They are defined as follows:

Definition 4 (Product) Fω �prod
Fω′ iff prod(Fω) ≥ prod(Fω′)

where prod(Fω) =
∏N

i=1
αi.

Definition 5 (Minimum) Fω �min
Fω′ iff min(Fω) ≥ min(Fω′),

where min(Fω) = minN
i=1 αi.

Definition 6 (Pareto) Fω �Pareto
Fω′ iff ∀ k, αk ≥ βk.

Definition 7 (Symmetric Pareto) Fω �SP
Fω′ iff there exists a per-

mutation σ of the components of Fω = (α1, . . . , αN ), yielding a vec-

tor Fωσ = (α1, . . . , αN ), s.t. Fωσ �Pareto
Fω′.

Definition 8 (Discrimin) First, delete all pairs (αi, βi) from Fω and
Fω′ such that αi = βi. Let D be the set of indices of components not

deleted. Then, Fω ≻discrimin
Fω′ iff mini∈D αi > mini∈D βi.

Definition 9 (Leximin) Let Fωσ be the reordered vector Fω
by permutation σ of its components. Fω ≻leximin

Fω′ iff

∃ σ, Fωσ ≻discrimin
Fω′.

In the standard case of a totally ordered scale, the leximin order is

defined by first reordering the vectors in an increasing way, and then

applying the min order to the sub-parts of the reordered vectors with-

out consideration of identical components. However, here we deal

with symbolic possibility degrees between which the ordering can

be unknown. In the extreme case, we may just know that α < 1 for

a weight α. Thus, reordering the vectors is no longer possible, and

leximin must be defined as proposed above.

We need the concept of refinement of a strict preference relation.



Definition 10 (Refinement) [9]. Let ≻ and ≻ be any two strict or-

der relations on Ω. Then, we say that ≻′ refines ≻ iff:

∀ ω, ω′ ∈ Ω, ω ≻ ω′ ⇒ ω ≻′ ω′.

As shown in [9], in the instantiated case, leximin is a refinement of

the symmetric ordering of Pareto. As well, the discrimin ordering

refines the ordering induced by the minimum as well as the Pareto

ordering, and is itself refined by leximin. Leximin refinements of

min-based orderings can be very discriminant, as they would solve

cases left pending by minimum orders. Moreover, product-based or-

derings refine symmetric Pareto orderings of vectors containing no

zero components. As for product-based orderings, they can strongly

differ (including preference reversal) from the min-based orderings.

These refinement relationships are illustrated by Figure 2(a) (where

each arrow a→ b expresses that a refines b).

Product 

Pareto 
Symmetric 

Pareto 

Minimum Leximin Discrimin 

Pareto Symmetric Pareto 

Product 

Minimum Leximin Discrimin 

(c) 

Discrimin 

Pareto 

Leximin 

Symmetric Pareto 

Product 

Minimum 

(a) (b) 

Figure 2: Refinements between orderings in numerical setting (a),

symbolic setting without constraints (b), or with constraints (c)

The orderings do not behave in the same manner in the numerical

case and in the symbolic case, as exemplified in the following.

Example 2 Consider the vectors (α, β) and (γ, δ) where α < β
and γ < δ. If α < γ then (α, β) < (γ, δ) for leximin and min, while

according to symmetric Pareto these vectors are still incomparable.

If α = γ < δ < β then min considers (α, β) and (γ, δ) as equal,

while we have (α, β) > (γ, δ) with the product and the Leximin is

unable to compare them. However, if α < γ < δ < β then (α, β) <
(γ, δ) with the min while the product operator fails to order them.

In the symbolic framework, it has been suggested in [3] that, when

there is no constraint between symbolic weights in the vectors, the or-

dering induced by the product-based chain rule corresponds exactly

to the a symmetric Pareto ordering. This result actually holds even in

the presence of inequality constraints between symbolic weights.

Proposition 1 Given any set of constraints C of the form αi ≥ βj

or αi > βj between symbolic weights:

Fω ≻SP
Fω′ iff Fω ≻prod

Fω′ and Fω �SP
Fω′ iff Fω �prod

Fω′.

Proof: The proof is not straightforward. We proceed in several steps.

First notice that the implications:

Fω ≻SP
Fω′ implies Fω ≻prod

Fω′

and Fω �SP
Fω′ implies Fω �prod

Fω′

are obvious since the product is symmetric and monotonically in-

creasing. For the converse, we must basically show that if Fω is SP-

incomparable with Fω′ then they are also incomparable wrt the prod-

uct ordering. We use several lemmas.

Lemma 1 If Proposition 1 holds for a set of constraints C, it holds

a fortiori for any subset of constraints in C.

Indeed taking away constraints from C yields more freedom to the

choice of values for the coefficients in order to ensure the non compa-

rability of the symbolic product expressions associated to each vec-

tor. As a consequence of this lemma, the result should be established

with the maximal amount of constraints, namely assuming a (non-

trivial) complete pre-ordering of the symbolic coefficients appearing

in the two vectors.

Lemma 2 ([7]) Consider two symbolic vectors Fω = (α1, . . . αN )
such that C enforces α1 ≤ . . . ≤ αN and Fω′ = (β1, . . . βN ). Let τ
be a permutation of the components of Fω′ such that βτ(1) ≤ . . . ≤

βτ(N) and Fω′
τ the corresponding reordered vector. Then Fω ≻SP

Fω′

if and only if Fω ≻P
Fω′
τ .

In the totally ordered setting it gives a constructive way of expressing

the SP ordering by applying the Pareto ordering to the increasingly

reordered vectors.

Without loss of generality, due to Lemma 2, we can assume that

vectors are increasingly ordered. Now we can try to prove that if

Fω and Fω′ are SP-incomparable then they are so for product. If they

are SP-incomparable then there are i (= j such that αi > βi and

αj < βj . The most constrained case is when there is one constraint

of the form αi > βi, while all the other ones are of the form αj < βj .

In that case
∏

j "=i
βj >

∏
j "=i

αj and denoting by Fα−i the vector Fα

deprived of component i, we also have Fω−i ≻SP
Fω′
−i.

Let us show that this strong prerequisite does not enforce an in-

equality between
∏N

j=1
βi and

∏N

j=1
αj . First, if αi and βj are very

close, then
∏N

j=1
βj >

∏N

j=1
αj . Now, for the reversed inequality,

replace αj by α1 for j < i, and by αi for j > i, βj by βi for

j < i and by βn for j > i. The inequality (α1)
i−1 · (αi)

N−i+1 >

(βi)
i · (βN )N−i is more demanding than the inequality

∏N

j=1
αj >

∏N

j=1
βj . Let us show we can satisfy the former because αi > βi,

even if α1 < αi, βi < βN . To see it, we can write α1 = αi/p and

βn = qβi with p, q > 1. It is easy to see that the inequality now

writes
αi

βi
> p

i−1

N q
N−i

N > 1. It is clear that we can set p, q > 1 and

find αi > βi ∈ [0, 1] that verifies this inequality. ✷

The consequence of this result is that the use of product of sym-

bolic values in the approach is just one way of implementing the

SP-ordering, whose essence is qualitative. In particular the compen-

satory effect, usually present in product of numbers (whereby, e.g.

0.5 × 0.5 is the same as 0.25 × 1) is absent from the SP-ordering,

which creates cases for incomparability.

5 Comparison of orderings between vectors of
symbolic weights

We pursue the comparison of the different orderings defined in the

previous section, first in the absence, and then in the presence of

additional constraint on symbolic weights.

5.1 Comparison of orderings without additional
constraints on symbolic weights

In this section we will study the possible relations between the dif-

ferent orderings in the particular case where the constraints known

between the symbolic weights are only the ones relative to the ex-

pression of conditional preferences, as allowed by Definition 2. Thus,



a constraint of this kind focuses only on a unique vector component,

and we have C1 = ∅.

Under this assumption, Pareto ordering and symmetric Pareto

yield the same ordering. Indeed, for two vectors Fω = (α1, . . . , αN )
and Fω′ = (β1, . . . , βN ) each symbolic weight αi (= 1 of Fω can be

only compared to the symbolic weight βi (= 1 of Fω′. Thus, there is

no need to permute components as the result would definitely be non

comparable with another component weight since C1 = ∅. This is as

well true for leximin and discrimin orderings since they coincide in

this case. In fact, with this hypothesis, the difference between leximin

and discrimin is that leximin deletes some components with value 1
which cannot affect the result of the final application of the min.

We first compare the different orderings induced by the use of

product or minimum, depending on the chain rule applied to the pos-

sibilistic network. We will evaluate how well each option uses the in-

formation given to rank-order alternative solutions. We keep in mind

that the product-based ordering and the symmetric Pareto ordering

are the same.

Example 3 presents the different orderings induced by min-based

and product-based chain rule for Example 1.

Example 3 Let us consider the possibilistic preference network of

Example 1. Using the chain rule, we obtain the symbolic vectors

presented in Table 2. The product-based induced ordering without

additional inequality constraint is represented by Figure 3.

jbpbsb 

jbpbsr 

jbpbsw 

jbpwsw 

jrpbsr 

jrpbsb jbpwsb 

jbpwsr jrpwsb,  jrpwsr,  jrpwsw jrpbsw 

Figure 3: Possibilistic product-based order relative to Example 1

Now, if we use the min-based chain rule, we will not be able

to compare many configurations as long as no other constraint is

added. In fact, the only strict ordering information we can get at

that stage is that jbpbsb > jbpbsr > jbpbsw, jbpbsb > jbpwsw
and jbpbsb > jrpbsb. Otherwise, we only get at best weak in-

equalities ; for example jbpwsw and jrpwsb, since πmin(jbpwsb) =
min(α, β) ≤ πmin(jrpwsw) = β. Figure 4 depicts this min-based

ordering.

jbpbsb 

jbpbsr 

jbpbsw 

jbpwsw 

jrpbsr 

jrpbsb jbpwsb 

jbpwsr jrpwsb,  jrpwsr,  jrpwsw jrpbsw 

Figure 4: Possibilistic minimum-based order relative to Example 1

Symmetric Pareto on symbolic vectors may have a discriminating

power greater than the one of the minimum operator, in the sense that

α·β < α, while we only have min(α, β) ≤ α. Clearly, when dealing

with instantiated numerical values both product and minimum lead

to total orders that can contradict each other: for instance 0.1 · 0.9 >
0.2 · 0.2, while with the min we get min(0.1, 0.9) < min(0.2, 0.2).

Proposition 2 ω ∼SP ω′ ⇔ ω ∼min ω′.

Proof: Trivial as it compares the same sets of weights. ✷

Indeed, if equalities are found between every pair of the same in-

dex then the two vectors contain the same symbolic weights. For in-

stance, we have jrpwsb ∼SP jrpwsr (resp . jrpwsb ∼min jrpwsr)

where Fjrpwsb = Fjrpwsr = (α, β, 1).

Proposition 3 ω ±SP ω′ ⇔ ω ±min ω′.

Proof: Let us consider two solutions ω and ω′ such that Fω =
(α1, . . . , αN ) and Fω′ = (β1, . . . , βN ). If ω ±SP ω′ which means

ω ±Pareto ω′, then we are in one of the following cases: either ∃ i,
s.t. αi ± βi or ∃ i, s.t. αi < βi and ∃ j, s.t. αj > βj . Besides, the

only case where minimum is able to compare is when ∀ i, αi ≥ βi.

It is not the case here, then ω±SP ω′⇒ ω±minω
′. For the converse,

if Fω ±min Fω then obviously Fω ±SP Fω since we would not have ∀ i,
αi ≥ βi. ✷

Many cases can be identified on Example 1 and the min-based

(resp. product-based) ordering presented by Figure 4 (resp. Figure

3). For instance, we have jrpbsr ±SP jbpwsw (resp . jrpbsr ±min

jbpwsw). Moreover, using symbolic weights, symmetric Pareto and

minimum provide consistent orderings in the sense that:

Proposition 4 If ω ≻SP ω′ ⇒ ω �min ω′.

Proof: Let us consider two solutions ω and ω′ such that Fω =
(α1, . . . , αN ) and Fω′ = (β1, . . . , βN ). If ω ≻SP ω′ then

Fω ≻Pareto
Fω′ more precisely ∀ i, αi ≥ βi and ∃ j, αj > βj where

i, j ∈ [1, . . . , N ]. From Proposition 3 we can deduce that it is impos-

sible to have Fω ±min
Fω′ since it is equivalent to having Fω ±SP

Fω′.

Moreover, it is impossible to have Fω ∼min
Fω′ because according

to Proposition 2 this would mean that Fω ∼SP
Fω′. Consequently,

since ∀i we have αi ≥ βi, we can only have min(α1, . . . , αN ) ≥
min(β1, . . . , βN ). This is due the fact that the min function is a non

decreasing function. ✷

For instance, one strict preference pattern is jbpbsb > jbpbsr >
jbpbsw induced by the min chain rule on Example 1 is found on

Figure 4 that depicts the preference relation induced by the product

chain rule. The rest of preferences are preferences in the wide sense

(�), for example, jrpbsr � jrpbsb.

Proposition 5 ω ≻min ω′ ⇒ ω ≻SP ω′.

Proof: Let us consider two solutions ω and ω′ such that Fω =
(α1, . . . , αN ) and Fω′ = (β1, . . . , βN ). If ω ≻min ω′ then ∀ i such

that αi (= 1 or βi (= 1, we have αi > βi. Thus clearly ω ≻SP ω′. ✷

This indicates that ≻min is a strong form of Pareto, namely,

ω ≻min ω′ ⇔ ∀i, either βi (= 1 and αi > βi or αi = βi = 1.

Thus, the symmetric Pareto is a refinement of the minimum-based

ordering. In Example 1 we can see that jbpwsb �min jbpwsr ,

while we have a strict order with the symmetric Pareto (equiva-

lently, the product-based) ordering jbpwsb ≻SP jbpwsr and we

have jbpbsr ≻SP |min jbpbsw.

Proposition 6 ω �min ω′ ⇒ ω �SP ω′.

Proof: It immediately follows from ω ≻min ω′ ⇒ ω ≻SP ω′

(Prop. 5) and from ω ∼min ω′ ⇒ ω ∼SP ω′ (by Prop. 2). ✷

When there is no additional constraint, i.e., C1 = ∅, Pareto and

discrimin orderings yield the same ordering:

Proposition 7 Pareto and discrimin coincide on vectors when C1=∅

Proof: Let us consider two vectors Fω = (α1, . . . , αN ) and Fω′ =
(β1, . . . , βN ), where a symbolic weight αi of Fω may only be com-

pared to the corresponding symbolic weight βi of Fω′ (if there is a

relevant constraint in C0). Three cases arise:



• Fω ≻Pareto
Fω′ iff Fω ≻discrimin

Fω′: (⇒) if Fω ≻Pareto
Fω′ then

Fω �min
Fω′. This means that min(Fω) ≥ min(Fω′) and since dis-

crimin deletes all equalities αi = βi. Thus we will have ∀i ∈ D
mini∈D αi > mini∈D βi s.t. D is the set of component indexes

not deleted. Therefore, Fω ≻discrimin
Fω′. (⇐) Since discrimin

deletes only weights where αi = βi and never strict comparisons,

then after the deletion process we only have constraints such that

αj > βj , which means that the strict order is the same as Pareto

ordering.

• Fω ∼Pareto
Fω′ iff Fω ∼discrimin

Fω′. Obvious.

• Fω ±Pareto
Fω′ iff Fω ±discrimin

Fω′: (⇒) if Fω ±Pareto
Fω′ we have

min(Fω) ± min(Fω′) (by Proposition 3), and discrimin can only

delete equalities, then the vectors remain non comparable with

discrimin. Thus Fω ±discrimin
Fω′. (⇐) if Fω ±discrimin

Fω′ then

we have not ∀i ∈ D αi < βi where D is the set of component

indexes not deleted. Thus we have Fω ±Pareto
Fω′. ✷

Consequently from Proposition 7, we can derive that≻leximin ⇔
≻discrimin⇔ ≻Pareto⇔ ≻SP . Relations between the different or-

derings are depicted by Figure 2(b) (inside each box, relations are

equivalent). This indicates a collapse of many notions when no addi-

tional constraints between symbolic weights applicable to different

components exist.

5.2 Comparison of orderings with additional
constraint on symbolic weights

As already mentioned, constraints between symbolic weights, beside

those induced from the preference specification, can be added when

available. In this section we will study the relations between the dif-

ferent ordering relations in the presence of such constraints. First, we

will see that the refinement relations that exist in the case of numeri-

cal values remain valid.

Proposition 8 Fω ≻Pareto
Fω′ ⇒ Fω ≻SP

Fω′ .

Proof: It suffices to consider the permutation σ as the identity. ✷

Minimum-based ordering suffer from a “drowning” effect. Ways

to overcome this problem are the discrimin or leximin orderings. In

the numerical case, these latter are refinements of the min-based or-

dering [9]. We will prove that this is still the case in the symbolic

framework. More formally:

Proposition 9 Fω ≻min
Fω′ ⇒ Fω ≻disrimin

Fω′ ,

Fω ≻disrimin
Fω′ ⇒ Fω ≻leximin

Fω′ .

Proof: Let us consider two solutions ω and ω′ such that Fω =
(α1, . . . , αN ) and Fω′ = (β1, . . . , βN ). If min(Fω′) < min(Fω), then

∃ βi s.t. βi < α1, . . . , αN and βi (= α1, . . . , αN . This symbolic

weight βi cannot be eliminated in the deletion process of discrimin

nor leximin. Thus, Fω ≻min
Fω′⇒ Fω ≻disrimin

Fω′ and Fω ≻min
Fω′

⇒ Fω ≻leximin
Fω′ . Besides, it is clear that leximin still refines dis-

crimin since it suffices to consider the permutation σ processed by

leximin as the identity. ✷

Example 4 Let us consider the possibilistic preference network of

Example 1. Let us consider some additional constraints such that

C1 includes (α < β), (β = λ1), (λ1 < θ1). Thus, C =
{(δ1 > δ2), (θ1 > θ2), (λ1 > λ2), (α < β), (β = λ1), (λ1 <
θ1)}. Let us take the two configurations jbpwsb and jrpbsb such

that Fjbpwsb = (β, θ1) and Fjrpbsb = (α, λ1). We can see that
Fjbpwsb ≻min |discrimin|leximin

Fjrpbsb.

If we consider only partially ordered symbolic weights, leximin may

lead to non comparability when discrimin or minimum considers two

configurations equal. Thus, leximin ordering will sometimes lead to

a partial ordering. This can be illustrated by the following example:

Example 5 Let us consider the same two vectors of example 4,
Fjbpwsb = (β, θ1) and Fjrpbsb = (α, λ1). We assume the set of

constraints C = {(δ1 > δ2), (θ1 > θ2), (λ1 > λ2)(λ1 <
α), (β = λ1), (β < θ1)}, then Fjbpwsb ∼min |discrimin

Fjrpbsb

while Fjbpwsb ±leximin
Fjrpbsb. Now if we suppose that Fjbpwsb =

(θ1, β), then Fjbpwsb ∼min
Fjrpbsb while Fjbpwsb ±discrimin|leximin

Fjrpbsb.

Let us now compare the discrimin and the Pareto orderings. Then

the leximin and the symmetric Pareto orderings will be in a simi-

lar relation. Besides, there is no relation between the discrimin and

the symmetric Pareto orderings when C1 (= ∅. Indeed there are

situations where discrimin can compare two vectors and the sym-

metric Pareto cannot (e.g., if we only know that the component of

one vector is smaller than all the other components of the two vec-

tors), and situations where symmetric Pareto can compare and dis-

crimin cannot (e.g., Fω = (α1, α2, α3) and Fω′ = (β1, β2, βN ) and

C = {α1 > β1, α2 > β3, α3 > β2}.

Proposition 10 Fω ≻Pareto
Fω′ ⇒ Fω ≻discrimin

Fω′.

Proof: Let us consider two solutions ω and ω′ such that Fω =
(α1, . . . , αN ) and Fω′ = (β1, . . . , βN ). By definition, if Fω ≻Pareto

Fω′ then ∀i, αi ≥ βi and ∃j, αi > βi. Let Fω∗ (resp. Fω′
∗) denote

the vector induced after deleting all vector components such that

αi = βi, ∀i ∈ N . Then, ∀i ∈ D, such that D is the set of the

remaining vector component indexes, we have αi > βi. This means

that ∃βj ∈ Fω′
∗ such that βj < min( Fω∗). Therefore, Fω ≻min

Fω′.

Since discrimin refines minimum (Proposition 9), hence Proposition

10. ✷

From Proposition 10 we can derive that symmetric Pareto and lex-

imin lead to consistent orderings. Moreover, each time when sym-

metric Pareto succeeds to order two configurations, discrimin will

induce, if not the same ranking, at most non comparability.

Let us compare the minimum based-ordering and the product-

based ordering (equivalently, SP). It is clear that we have:

Proposition 11 ω ∼SP ω′ ⇒ ω ∼min ω′.

Proof: Assume two solutions ω and ω′ such that Fω = (α1, . . . , αN )
and Fω′ = (β1, . . . , βN ). If ω ∼SP ω′ then ω ∼Pareto ω′

σ . Thus,

∀ i, αi = βiσ , where i ∈ [1 . . . N ]. Therefore, min(β1, . . . , βN ) =
min(α1, . . . , αN ). Hence the product ordering equalities are always

found in min-based ordering. ✷

Equalities between solutions in product-based ordering may ap-

pear when one assumes equalities between symbolic weights associ-

ated to the same nodes and the same context or to symbolic weights

of different nodes. This is unlike min-based ordering where it al-

ways considers the most important constraint violated, more pre-

cisely, having the smallest symbolic weight. Hence, in min-based

orderings equalities appear when two solutions violate the same pref-

erence with the highest priority compared to the set of the other vio-

lated preferences.

Proposition 12 shows that symmetric Pareto is a special kind of

refinement of the min-based ordering. Indeed:

Proposition 12 If ω ≻min ω′ we may either have ω ±SP

ω′ or ω ≻SP ω′.



Proof: Let us consider two solutions ω and ω′ such that Fω =
(α1, . . . , αN ) and Fω′ = (β1, . . . , βN ). Indeed, from Propo-

sition 11, if ω ∼SP ω′ then ω ∼min ω′. Moreover, if

ω ≺SP ω′ then by the definition we have ∀i, αi ≤ βi, thus

min(α1, . . . , αN , βi, . . . , βN ) ∈ {αi, . . . , αN}, this proves that we

cannot have ω ≻min ω′ in this case. Hence a contradiction, and

Proposition 12 follows. ✷

Relations between the different orderings can be illustrated by Fig-

ure 2(c). Leximin ordering refines symmetric Pareto ordering, which

in its turn refines Pareto ordering. Moreover, leximin refines dis-

crimin and both are refinements of minimum ordering. It is important

to notice that, in contrast with the numerical setting, minimum and

leximin orderings may lead to non comparability and thus to partial

orderings. Besides, symmetric Pareto still refines the minimum or-

dering, but in a wider sense since symmetric Pareto may yield non

comparability when minimum succeeds in comparing (this relation

is represented in Figure 2(c) by a dotted line).

One extreme case is when assuming a total preorder between the

symbolic weights. In that case, leximin and minimum orderings are

total. However, in the presence of such constraints, symmetric Pareto

may still lead to non comparability. Indeed, the only case, where

symmetric Pareto leads to a total ordering is when there are con-

straints between subsets of symbolic weights (corresponding to the

comparison of subproducts). Thus, the relationships between the dif-

ferent orderings are the same as in the numerical setting except for

the product and symmetric Pareto orderings, which are the same as

previously proved.

6 π-Pref nets vs. other preference graphical models

In this section we compare and discuss existing relationships be-

tween π-Pref nets and two models that are related to them in some

sense, namely, CP-nets and OCF-nets. The first one shares the same

preference specification and graphical structure, while the second is

based on an additive structure which parallels the one of π-Pref nets.

6.1 π-Pref nets vs. CP-nets

CP-nets can be viewed as a qualitative counterpart of Bayesian net-

works based on the Ceteris Paribus preferential independence re-

lation. To each variable we associate a table representing the local

preferences on its domain values in the context of its parents. The in-

duced order is often referred to as a Ceteris Paribus preference order

i.e. one partial outcome is preferred to another everything else being

equal. Formally, this preference independence is defined as follows:

Definition 11 (Preference Independence) Let V be the set of vari-

ables and W be a subset of V . We say that W is preferentially in-

dependent of its complement Z = V \W iff for any instantiations,

z, z′, w, w′ we have:

(w, z) ≻ (w′, z)⇔ (w, z′) ≻ (w′, z′) (2)

This form of independence clearly simplifies the preference elici-

tation process [23, 24]. However, it can only represent a part of the

preferences that a user may express. The following Example 6 repre-

sents a simple preference problem that CP-nets fail to represent.

Example 6 Let us consider two binary variables A and B standing

respectively for “vacations” and “good weather”. Suppose that we

have the following preference ordering: ab ≻ ¬a¬b ≻ a¬b ≻ ¬ab.

We observe that this complete preorder cannot be represented by a

CP-net. In fact, given two variables we can define two possible struc-

tures: either A depends on B or conversely, both of them are unable to

capture this order in the CP-net setting. This is due to the fact that in

both structures we have a reversal of the Ceteris Paribus preferences.

However, such preferences can be represented by a joint possibility

distribution such that: π(ab) > π(¬a¬b) > π(a¬b) > π(¬ab).
Thus, we have ⊤ : a ≻ ¬a, a : b ≻ ¬b and ¬a : ¬b ≻ b. It corre-

sponds to a network with two nodes with their corresponding condi-

tional possibility distributions: Π(a) = 1, Π(¬a) = α, Π(b|a) = 1,

Π(b|¬a) = γ, Π(¬b|a) = β and Π(¬b|¬a) = 1. This yields

π(ab) = 1 > π(¬a¬b) = α > π(a¬b) = β > π(¬ab) = αγ
taking α > β and β = γ.

From this simple example, we can see that π-Pref nets and CP-

nets do not share the same form of preference independence. Al-

though both graphical networks are syntactically based on the same

preference statements, they are semantically handled in different

ways. More precisely, orderings in CP-nets are induced from Ceteris

Paribus and transitivity, while orderings in π-Pref nets are built using

the chain rule and conditional preferences.

Indeed, if we consider the two preference (in)dependencies

closely, we can notice that both have somehow contrasting prop-

erties. Let desc(A) be the set of node A descendants and let

ndesc(A) = V \desc(A)\Pa(A) be the set of A non descendants,

their possible instantiations are denoted by d and n respectively. The

conjunction of instantiations is denoted by xy such that X ∩ Y = ∅
and X,Y ⊆ V . Let us consider a preference statement: u : a1 ≻ a2

where u an instantiation of Pa(A) and D(A) = {a1, a2}. In CP-

nets setting and based on the Ceteris Paribus independence, we can

deduce that ua1dn ≻ ua2dn. Aside the instantiations of A, the

rest of the variables have the same instantiation. In contrast, the

same preference statement is handled differently by possibilistic net-

works and means that π(a1|u) > π(a2|u). Therefore, we have

π(a1|un) > π(a2|un
′) thanks to the Markov properties of possi-

bilistic networks, namely, each node is independent from its non-

descendants in the context of it parents. Thus, in contrast with CP-

nets, the preference is still preserved even if some variables, pre-

cisely, ndesc(A) are configured differently. Moreover, we can see

that based on Ceteris Paribus independence we have desc(A) in-

stantiated similarly in both configurations, thus independently of A,

which cannot be the case with possibilistic networks since desc(A)
depends on the instantiation of A. This is illustrated by the next ex-

ample.

Example 7 Figure 5 represents a possibilistic network (1) and a CP-

net (2) induced from the same preference specification. If we consider

the preference statement at node C, based on (2) and from the pref-

erence statement ¬a : ¬c ≻ c, we can deduce that ¬a¬b¬cd ≻CP

¬a¬bcd, ¬a¬b¬c¬d ≻CP ¬a¬bc¬d, ¬ab¬c¬d ≻CP ¬abc¬d
and ¬ab¬cd ≻CP ¬abcd. Indeed, we can deduce as many com-

parisons as the number of possible configurations of the variables

other than C and A, namely B and D. However, from the same state-

ment, based on (1), we can deduce that ¬a¬b¬c¬d ≻π ¬a¬bcd and

¬ab¬c¬d ≻π ¬abcd. This is due the fact that node B is independent

of node C in the context of its parent A. Thus, the preference relation

holds no matter the instantiation of B. Node D depends on C, thus,

based on the context, we choose each time the best values for C.

Therefore, we can deduce that the main difference between the two

frameworks is in the completion principle underlying them. In fact,

CP-nets complete a partial preference statement with the same in-

stantiation of the rest of the variables. However, a π-Pref net, in a
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Figure 5: A π-Pref net (1) and a CP-net (2) modeling of the same

preference specification

first step considers the best instantiation for all the dependent vari-

ables, and, in a second step, completes the rest in all possible ways.

In [10, 15], attempts at representing a CP-net ordering using a pos-

sibilistic logic framework are reported. However, authors indicate

that it may not be possible to build an exact logical representation

due some paradoxical behavior of CP-nets. Besides, they show that

Symmetric Pareto and Leximin orderings respectively lower and up-

per bound the CP-net ordering. These results can be exploited with a

π-Pref-net since it is the graphical counterpart of a symbolic possi-

bilistic logic base [3].

6.2 π-Pref nets vs. OCF-nets

Ordinal Conditional Functions (OCF) [26] are an uncertainty repre-

sentation framework very close to possibility theory [14]. OCF-nets

may also offer a semi-quantitative graphical model for preference

modeling [16]. OCF-nets obey Markov property as Bayesian net-

works (and possibilistic networks). Indeed, they have the same struc-

ture and carry the same conditional independence namely, each node

is independent from its descendant in the context of its parents. This

strong resemblance raises the question of a possible transformation

between OCF-nets and π-Pref nets.

Formally, an OCF-net κG has two components: (i) a graphical

component, a directed graph G = (V,E) where V denotes the set

of nodes and E denotes the set of edges representing the preferential

dependencies; (ii) a quantitative component: each variable Ai ∈ V is

associated to a normalized5 conditional rank, a non-negative integer

κ(Ai|ui), where ui is an instantiation of the parents Pa(Ai) of Ai.

The OCF relative to a solution ω, denoted by κ(ω) is the sum of

the elementary ranks of the conditional rank tables such that:

κ(ω) =

N∑

i=1

κ(Ai|ui) (3)

This expression parallels the product-based possibilistic chain rule,

where weights are combined by the product operator. The best so-

lution in an OCF-net has a cost equal to 0, while in the possibilistic

framework it has a possibility degree equal to 1. However, this prefer-

ence network with a rank interpretation has a close relationship with

product-based π-Pref nets. Indeed, the cost of a solution induced by

an OCF-net corresponds actually to a transformation of the possibil-

ity degree computed from a π-Pref net.

In [12], it was pointed out that the set-function πκ(Ai) = 2−κ(Ai)

is a possibility measure. The converse holds to some extent insofar

as if π(Ai) = α, the values κ(Ai) = − log2(α) are integer rank

5 ∀ui ∈ Pa(Ai), ∃j such that κ(aj |ui) = 0

weights. However, we can also extend the OCF framework to posi-

tive reals. Up to this proviso, the ordering induced by the product-

based chain rule of π-pref nets is the same as the order induced by

the corresponding rank function. In [3], it was proposed to use this

transformation at the symbolic level, yielding a symbolic additive

counterpart to π-pref nets.

Clearly, πΠG(ω) = α1 · . . . · αN ⇒ κKG(ω) = −(log2(α1) +
. . . + log2(αN )) and κκG(ω) = (α1 + . . . + αN ) ⇒ πΠG(ω) =
2−α1 · . . . ·2−αN ). Thus, after the logarithmic transformation, OCF-

nets yield the same ordering on configurations as π-Pref nets. Note

that π-pref nets with products cannot always be turned into OCF-nets

with integer values. However, OCF-nets can be turned into π-pref

nets with products.

Example 8 Let us consider the following conditional rank tables

corresponding to an OCF-net of two binary variables A and B:

κ(a) = 3, κ(¬a) = 0, κ(b|a) = 0, κ(b|¬a) = 2, κ(¬b|a) = 1
and κ(¬b|¬a) = 0. This yields κ(¬a¬b) = 0 < κ(¬ab) =
2 < κ(ab) = 3 < κ(a¬b) = 4. Thus we have ¬a¬b ≻κG

¬ab ≻κG ab ≻κG a¬b. The transformation from this OCF-net to

a numeric π-Pref net leads to the following possibilistic conditional

tables: π(a) = 0.125, π(¬a) = 1, π(b|a) = 1, π(b|¬a) = 0.25,

π(¬b|a) = 0.5 and π(¬b|¬a) = 1 which yields π(¬a¬b) = 1 >
π(¬ab) = 0.25 > π(ab) = 0.125 > π(a¬b) = 0.0625. Clearly

the two models lead to the same ordering after this transformation.

Until now, OCF-nets have been used for dealing with numerical val-

ues only. However, the transformation of a symbolic possibilistic net-

work leads to a symbolic OCF-net. Thus, the application of the dif-

ferent ordering relations defined above lead exactly to the same or-

derings induced by possibilistic networks. In fact, summation and

product are handled similarly when we work in a symbolic setting.

Recently, numerical OCF-nets have been shown to “mimic” the

CP-net ordering [16]. The proposed generation of an OCF-net from a

CP-net leads to a total ordering, which contrasts with CP-nets. How-

ever, they proved that such an ordering is always consistent with the

one induced by the corresponding CP-net. They also showed that the

CP-net formalism is able to represent only a subclass of OCF-nets,

which proves that OCF-nets are more expressive than CP-nets. These

remarks can be immediately applied to numerical π-Pref nets as well.

7 Conclusion

This paper proposes a detailed study of π-Pref nets, which, if based

on the product chain rule, are closer to Bayesian nets than CP-nets.

This model proves to be flexible enough to support different readings

leading to different orderings of solutions, and establishes the main

relationships between them. π-Pref nets correctly reflect the elicited

information in the sense that no further implicit priority is enforced

like with CP-nets (e.g., in favor of parent nodes). π-Pref nets also

offer a cautious way of modeling preferences without requiring nu-

merical values, which should make them attractive for the same class

of applications as CP-nets. In fact, precise numerical assessments

are hard to get for conditional preferences that are qualitative in na-

ture. Moreover, we have shown that symbolic possibilistic networks

can handle additional qualitative information when available. Beside

the fact that π-Pref nets can be put under an equivalent possibilistic

logic form suitable for inference, they have another additive graphi-

cal counterpart under the form of OCF-nets.
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décision’, Revue d’intelligence artificielle, 21(4), 555–587, (2007).

[22] G. Kern-Isberner and C. Eichhorn, ‘OCF-networks with missing val-
ues’, in Proceedings of the 4th Workshop on Dynamics of Knowledge

and Belief, pp. 46–60, (2013).
[23] F. Koriche and B. Zanuttini, ‘Learning conditional preference net-

works’, Artificial Intelligence, 174(11), 685–703, (2010).
[24] J. Lang and J. Mengin, ‘The complexity of learning separable ceteris

paribus preferences.’, in IJCAI, pp. 848–853, (2009).
[25] J. Pearl, ‘Bayesian networks: A model of self-activated memory for

evidential reasoning’, in Proc. of Cognitive Science Society (CSS-7),
(1985).

[26] W. Spohn, ‘Ordinal conditional functions: a dynamic theory of epis-

temic states’, in Causation in Decision, Belief Change, and Statistics,
eds., W. L. Harper and B. Skyrms, volume 2, 105–134, D. Reidel,
(1988).

[27] L. A. Zadeh, ‘Fuzzy sets as a basis for a theory of possibility’, Fuzzy

Sets and Systems, 1, 3–28, (1978).


