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Volume mean operator and differentiation results

associated to root systems

Chaabane REJEB∗

Abstract

Let R be a root system in Rd with Coxeter-Weyl group W and let k be a non-
negative multiplicity function on R. The generalized volume mean of a function f ∈
L1
loc(Rd,mk), withmk the measure given by dmk(x) := ωk(x)dx :=

∏
α∈R | ⟨α, x⟩ |k(α)dx,

is defined by: ∀ x ∈ Rd, ∀ r > 0, Mr
B(f)(x) :=

1
mk[B(0,r)]

∫
Rd f(y)hk(r, x, y)ωk(y)dy,

where hk(r, x, .) is a compactly supported nonnegative explicit measurable function
depending on R and k. In this paper, we prove that for almost every x ∈ Rd,
limr→0M

r
B(f)(x) = f(x).

MSC (2010) primary: 42B25, 42B37, 43A32; secondary: 31B05, 33C52.

Key words: Generalized volume mean value operator, harmonic kernel, Dunkl-Laplace operator,
Dunkl transform.

1 Introduction and statement of the result

We consider the Euclidean space Rd equipped with a reduced root system R i.e. R is a
finite subset of Rd \ {0} such that for any α ∈ R, R∩Rα = {±α} et σα(R) = R, where σα
is the reflection with respect to the hyperplane Hα orthogonal to α (see [9] and [11]). Let
us denote by W the Coxeter-Weyl group generated by the reflections σα, α ∈ R and by k a
multiplicity function defined on R (i.e. W -invariant) which will be supposed nonnegative
throughout this paper.
The Dunkl intertwining operator Vk, associated to the paire (R, k), is the topological
isomorphism of C∞(Rd) onto itself given by

Vk(f)(x) :=

∫
Rd

f(y)dµk
x(y), x ∈ Rd, (1.1)

where µk
x is a probability measure with compact support contained in the convex hull of

W.x, the orbit of x under the W -action (see [4], [13], [14] et [17]). This operator satisfies
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the following intertwining relation ∆kVk = Vk∆, where ∆ is the usual Laplacian and ∆k

is the Dunkl Laplacian acting on C2-functions as follows

∆kf(x) := ∆f(x) + 2
∑
α∈R+

k(α)
(⟨∇f(x), α⟩

⟨x, α⟩
− ∥α∥2

2

f(x)− f(σα.x)

⟨x, α⟩2
)
,

with R+ a fixed positive subsystem of R.

In order to build a potential theory associated to reflection groups, a type volume
mean operator has been introduced in [7] (see also [6]) as a crucial tool. In particular,
it allowed us to characterize the notion of ∆k-harmonicity by the volume mean property
(see [7] and [6] for more details).
The volume mean operator of f ∈ C(Rd) has the following form

∀ x ∈ Rd, ∀ r > 0, M r
B(f)(x) :=

1

mk[B(0, r)]

∫
Rd

f(y)hk(r, x, y)ωk(y)dy, (1.2)

where mk is the measure

dmk(x) := ωk(x)dx :=
∏

α∈R+

| ⟨α, x⟩ |2k(α)dx (1.3)

and hk is the so-called harmonic kernel ( its properties will be recalled in section 2) defined
by

∀ r > 0, ∀ x, y ∈ Rd, hk(r, x, y) =

∫
Rd

1[0,r]
(√

∥x∥2 + ∥y∥2 − 2 ⟨x, z⟩
)
dµk

y(z). (1.4)

Note that if k is the zero function, the measure µk
x is equal to δx the Dirac measure at x,

the Dunkl Laplacian coincides with ∆ and as hk(r, x, y) = 1[0,r]
(
∥x−y∥

)
= 1B(x,r)(y), the

generalized volume operator is none other than the classical one.

According to [8], for r and x fixed and under the condition k(α) > 0 for all α ∈ R, we
have

supp hk(r, x, .) = BW (x, r) := ∪g∈WB(g.x, r), (1.5)

where B(ξ, a) is the closed Euclidean ball centered at ξ and with radius a > 0.
When the function k vanishes, the support of the function hk(r, x, .) is contained in
BW (x, r) (see [7]) and contains B(x, r) (see [8]).

Our aim here is to prove the following result:

Theorem: Let Ω be a W -invariant open subset of Rd and let f ∈ L1
loc(Ω,mk). Then for

almost every x ∈ Ω, we have
lim
r↓0+

M r
B(f)(x) = f(x). (1.6)

Using (1.5), the volume mean of f ∈ L1
loc(Ω,mk) is well defined at (x, r) whenever

B(x, r) ⊂ Ω. Furthermore, by the formulas (1.3), we see that negligible sets for the
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Lebesgue measure coincide with negligible sets for the measure mk.
On other hand, an understood phenomena is that the relation (1.6) means that the function
hk(r, x, .), x is fixed, concentrates only in the neighborhood of x when r → 0 and not on
other point gx of the orbit W.x as we can could think from (1.5).

2 Some basics from Dunkl analysis

In this section we will recall some results from Dunkl theory which will be useful for the
sequel. These concern in particular the Dunkl transform, the Dunkl translation and the
harmonic kernel.

2.1 The Dunkl transform and Dunkl’s translation operators

• The Dunkl transform of a function f ∈ L1(Rd,mk) is defined by

Fk(f)(λ) :=

∫
Rd

f(x)Ek(−iλ, x)ωk(x)dx, λ ∈ Rd, (2.1)

where Ek(x, y) := Vk(e
⟨x,.⟩)(y), x, y ∈ Rd, is the Dunkl kernel which is analytically

extendable to Cd×Cd and satisfies the following properties (see [3], [5], [10] and [14]): for
all x, y ∈ Rd, all λ ∈ C and all g ∈ W ,

Ek(x, y) = Ek(y, x), Ek(x, λy) = Ek(λx, y), Ek(gx, gy) = Ek(x, y). (2.2)

Moreover the following inequality holds

∀ x, y ∈ Rd, |Ek(−ix, y)| ≤ 1. (2.3)

The Dunkl transform shares many properties with the usual Fourier transform (see [10],

[14]). In particular, it is an isomorphism of S(Rd) (the Schwartz space) onto itself and its
inverse is given by

F−1
k (f)(x) = c−2

k Fk(f)(−x) = c−2
k

∫
Rd

f(λ)Ek(ix, λ)ωk(λ)dλ, x ∈ Rd,

where ck is the Macdonald-Mehta constant (see [12]) given by

ck :=

∫
Rd

e−
∥x∥2

2 ωk(x)dx. (2.4)

Furthermore, the following Plancherel theorem holds: The transformation c−1
k Fk extends

uniquely to an isometric isomorphism of L2(Rd,mk) and we have the Plancherel formula:

∀ f ∈ L2(Rd,mk), ∥c−1
k Fk(f)∥L2(Rd,mk)

= ∥f∥L2(Rd,mk)
. (2.5)

• The Dunkl translation operators τx, x ∈ Rd, are defined on C∞(Rd) by (see [18])

∀ y ∈ Rd, τxf(y) =

∫
Rd

Vk ◦ Tz ◦ V −1
k (f)(y)dµx(z), (2.6)
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where Tx is the classical translation operator given by Txf(y) = f(x+ y).
The Dunkl translation operators have the following properties:

τ0f = f, τxf(y) = τyf(x), τx(∆kf) = ∆k(τxf), τxEk(., z)(y) = Ek(x, z)Ek(y, z).

Note that if f ∈ S(Rd), the function τxf ∈ S(Rd) and it can be defined by means of the
Dunkl transform as follows (see [18]):

τxf(y) = F−1
k [Ek(ix, .)Fk(f)](y) = c−2

k

∫
Rd

Fk(f)(λ)Ek(ix, λ)Ek(iy, λ)ωk(λ)dλ, y ∈ Rd.

(2.7)
For x ∈ Rd, the operator τx can be extended to the space L2(Rd,mk) as follows: Fix
f ∈ L2(Rd,mk). Since |Ek(−ix, ξ)| ≤ 1, the function ξ 7→ Ek(ix, ξ)Fk(f)(ξ) belongs
to L2(Rd,mk). Hence, by Plancherel theorem, there exists a unique L2(Rd,mk)-function
denoted by τxf and called the x-Dunkl translate function of f such that

Fk(τxf)(ξ) = Ek(ix, ξ)Fk(f)(ξ). (2.8)

For more properties on Dunkl translation operators when they act on L2(Rd,mk) we can
see ([16]).

2.2 The harmonic kernel

In this section we recall some results of [7].

Let (r, x, y) 7→ hk(r, x, y) be the harmonic kernel defined by (1.4). It satisfies the
following properties (see [7]):

1. For all r > 0 and x, y ∈ Rd, 0 ≤ hk(r, x, y) ≤ 1.

2. For all fixed x, y ∈ Rd, the function r 7−→ hk(r, x, y) is right-continuous and non
decreasing on ]0,+∞[.

3. For all r > 0, x, y ∈ Rd and g ∈ W , we have

hk(r, x, y) = hk(r, y, x) and hk(r, gx, y) = hk(r, x, g
−1y). (2.9)

4. For all r > 0 and x ∈ Rd, we have

∥hk(r, x, .)∥k,1 :=
∫
Rd

hk(r, x, y)ωk(y)dy = mk(B(0, r)) =
dkr

d+2γ

d+ 2γ
, (2.10)

where dk is the constant

dk :=
∫
Sd−1 ωk(ξ)dσ(ξ) =

ck
2d/2+γ−1Γ(d/2+γ)

.

Here dσ(ξ) is the surface measure of the unit sphere Sd−1 of Rd and ck is the
Macdonald-Mehta constant (2.4).
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5. The harmonic kernel satisfies the following geometric inequality: if ∥a−b∥ ≤ 2r with
r > 0, then

∀ ξ ∈ Rd, hk(r, a, ξ) ≤ hk(4r, b, ξ)

(see [7], Lemma 4.1). In the classical case (i.e. k = 0), this inequality says that if
∥a− b∥ ≤ 2r, then B(a, r) ⊂ B(b, 4r).

6. Let r > 0 and x ∈ Rd. Then the function hk(r, x, .) is upper semi-continuous on Rd.

Note that to prove the upper semi-continuity of hk(r, x, .), with r > 0 and x ∈ Rd, the
authors of [7] have constructed a decreasing sequence (φε) ⊂ D(Rd) of radial functions
such that for every ε > 0, 0 ≤ φε ≤ 1, φε = 1 on B(0, r) and for all y ∈ R

lim
ε→0

φε(y) = 1B(0,r)(y), hk(r, x, y) = lim
ε→0

τ−xφε(y), (2.11)

where τx is the x-Dunkl translation operator.

In order to prove our result, we will need two lemmata. But, at first, we start by the
following remark:

Remark 2.1 Let r > 0. The function 1B(0,r) is in L2(Rd,mk). For x ∈ Rd, we can then

define τ−x(1B(0,r)) as being the L2(Rd,mk)-function whose Dunkl transform is equal to

Fk

(
τ−x(1B(0,r))

)
(ξ) = Ek(−ix, ξ)Fk

(
1B(0,r)

)
(ξ). (2.12)

(see (2.8)). This L2(Rd,mk)-function (which coincides also with 1B(x,r) when k = 0) has

been used formally in ([16] and [1]) for studying the Lp(Rd,mk)-boundedness of the Dunkl-
Hardy-Littlewood maximal operator. In the next result, we will show that this function
coincides almost everywhere with hk(r, x, .). But, in contrast to the harmonic kernel, the
L2-definition (2.12) of the function τ−x(1B(0,r)) does not give any precision neither on its
support nor on some geometric properties like the geometric inequality mentioned above.

Lemma 2.1 Let r > 0 and x ∈ Rd. Then, for almost every y ∈ Rd, we have

hk(r, x, y) = τ−x(1B(0,r))(y). (2.13)

Proof: We consider the sequence (φε) as in (2.11). By the monotone convergence theorem,
we can see that τ−xφε −→ hk(r, x, .) in L2(Rd,mk).
On the other hand, since 1B(0,r) ∈ L2

k(Rd), we have∥∥τ−xφε − τ−x(1B(0,r))
∥∥
L2
k(Rd)

= c−1
k

∥∥Fk [τ−xφε]−Fk

[
τ−x(1B(0,r))

]∥∥
L2
k(Rd)

= c−1
k

∥∥Ek(−ix, .)Fk [φε]− Ek(−ix, .)Fk

[
1B(0,r)

]∥∥
L2
k(Rd)

≤ c−1
k

∥∥Fk [φε]−Fk

[
1B(0,r)

]∥∥
L2
k(Rd)

=
∥∥φε − 1B(0,r)

∥∥
L2
k(Rd)

−→ 0 as ε → 0,
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where we have used Plancherel formula (2.5) for Dunkl’s transform in the first and the
last lines, the relations (2.7) and (2.12) in the second line, the inequality |Ek(−ix, ξ)| ≤ 1
in the third line and the monotone convergence theorem in the last line.
Thus, we get (τ−xφε) converges also to τ−x(1B(0,r)) in L2(Rd,mk). This proves the desired
equality. �

Our second lemma, proved in [7], says that

Lemma 2.2 Let x ∈ Rd. Then the family of probability measures

dηkx,r(y) =
1

mk[B(0, r)]
hk(r, x, y)ωk(y)dy

is an approximation of the Dirac measure δx as r −→ 0. More precisely

1. For all α > 0, limr→0

∫
∥x−y∥>α dη

k
x,r(y) = 0.

2. Let Ω ⊂ Rd be a W -invariant open set, f a locally bounded measurable function defined
on Ω and x ∈ Ω. If f is continuous at x, then

lim
r→0

∫
Rd

f(y)dηkx,r = lim
r→0

M r
B(f)(x) = f(x). (2.14)

3 Proof of the result

Firstly, we will show the result when the W -invariant open set Ω is the whole space Rd.

Theorem 3.1 Let f ∈ L1
loc(Rd,mk). Then, for almost every x ∈ Rd, the relation (1.6)

holds.

To prove this theorem, we will use the weak-L1(Rd,mk) estimates of the Dunkl-Hardy-
Littlewood maximal function (see [1] and [16]). This idea has been taken from the classical
case (see [15]).

Proof: Step 1: Suppose that f is a continuous function on Rd. In this case, the result
follows immediately from the relation (2.14).
Step 2: We will prove the result when f ∈ L1(Rd,mk). To do this, it suffices to show
that

f∗(x) := lim sup
r→0

M r
B(|f − f(x)|)(x) = 0

for almost every x ∈ Rd.
• At first, we claim that there exists a constant C > 0 such that

∀ t > 0, mk{f∗ > t} := mk{x ∈ Rd, f∗(x) > t} ≤ C

t
∥f∥L1

k(Rd). (3.1)

Indeed, we have

f∗(x) ≤ sup
r>0

M r
B(|f − f(x)|)(x) ≤ Mk(|f |)(x) + |f(x)|, (3.2)
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where Mk(g) is the maximal function of g ∈ L1(Rd,mk) defined by

Mk(g)(x) := sup
r>0

1

mk (B(0, r))

∣∣∣∣∫
Rd

g(y)τ−x

(
1B(0,r)

)
(y)ωk(y)dy

∣∣∣∣ .
(see [16] and [1]). We notice that from (2.13) and (1.2), we have

Mk(|f |)(x) = sup
r>0

M r
B(|f |)(x),

which justifies (3.2). Consequently,

{f∗ > t} ⊂ {Mk(|f |) + |f | > t} ⊂ {Mk(|f |) > t/2} ∪ {|f | > t/2}.

This implies that

mk{f∗ > t} ≤ mk{Mk(|f |) > t/2}+mk{|f | > t/2}. (3.3)

From ([16] or [1]), there exists a constant C1 > 0 such that

mk{Mk(|f |) > t/2} ≤ 2C1

t
∥f∥L1(Rd,mk)

(3.4)

and from Markov’s inequality, we have

mk{|f | > t/2} ≤ 2

t
∥f∥L1(Rd,mk)

, (3.5)

Then we deduce (3.1) from (3.3), (3.4) and (3.5) with C = 2C1 + 2.
• Let ε > 0 and let g ∈ D(Rd) such that ∥f − g∥L1(Rd,mk)

≤ ε. For every x ∈ Rd, step
1 applied to the function y 7−→ |g(y) − g(x)| shows that g∗(x) = 0. This implies that
(f − g)∗ ≤ f∗ + g∗ = f∗. Since f∗ = (f − g + g)∗ ≤ (f − g)∗ + g∗ = (f − g)∗, we get
f∗ = (f − g)∗. Consequently, by (3.1) we obtain

mk{f∗ > t} = mk{(f − g)∗ > t} ≤ C

t
∥f − g∥L1(Rd,mk)

=
C

t
ε.

As ε > 0 is arbitrary, this proves that

∀ t > 0, mk{f∗ > t} = 0.

Finally, since
{f∗ > 0} = ∪n≥1{f∗ > 1/n},

we deduce that mk{f∗ > 0} = 0. That is f∗ = 0 a.e. as desired.
Step 3: Let f ∈ L1

loc(Rd,mk). For every n ∈ N \ {0}, the function fn = f1B(0,n) is in

L1(Rd,mk). By Step 2, we have fn
∗(x) = 0 for all x ∈ Rd\En, where En is a measurable

set such that mk(En) = 0.
We will prove that {f∗ > 0} ⊂ ∪n≥1En which will imply the desired result.
Let x ∈ Rd such that f∗(x) > 0. There is an integer n = nx ∈ N \ {0} such that
supp hk(r, x, .) ⊂ B(0, n) for every r ≤ 1. This implies that f∗(x) = fn

∗(x) > 0. That is
x ∈ En. This completes the proof. �

Now, we will prove our result that we recall below
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Corollary 3.1 Let Ω ⊂ Rd be a W -invariant open set. If f ∈ L1
loc(Ω,mk), then (1.6)

holds for almost every x ∈ Ω.

Proof: Let n ∈ N large enough such that

Ω 1
n
:= {x ∈ Ω, dist(x, ∂Ω) > 1/n} = {x ∈ Ω, B(x, 1/n) ⊂ Ω}

is a nonempty set. For such n, we consider On := Bo(0, n) ∩ Ω 1
n
and Kn = On, where

Bo(a, r) is the open ball centered at a ∈ Rd and with radius r > 0.
As Ω 1

n
is W -invariant, we can see that On (resp. Kn) is a W -invariant open (resp. W -

invariant compact) subset of Ω. Moreover, we have for every n large enough

Kn ⊂ On+1 ⊂ Kn+1 and Ω = ∪nKn = ∪nOn.

Now, let fn be the function given by fn(x) = f(x) if x ∈ Kn and fn(x) = 0 if x ∈ Rd\Kn.
Clearly fn belongs to L1

loc(Rd,mk) and by Theorem 3.1 we have fn(x) = limr→0M
r
B(fn)(x)

for almost every x ∈ Rd.
Let

En :=
{
x ∈ Rd, fn(x) ̸= lim

r→0
M r

B(fn)(x)
}

and E :=
{
x ∈ Ω, f(x) ̸= lim

r→0
M r

B(f)(x)
}
.

Since fn is continuous on the open set Rd\Kn, by (2.14) we deduce that En ⊂ Kn ⊂ Ω. Let
us now take x ∈ E. There exist R > 0 and N ∈ N such that B(x,R) ⊂ ON ⊂ KN+1 ⊂ Ω.
We will show that x ∈ EN+1. As ON and KN+1 are invariant under the action of the
Coxeter-Weyl group W and thanks to the support property of the function hk(r, x, .) we
have

∀ r ∈]0, R], supp hk(r, x, .) ⊂ ON ⊂ KN+1.

But f = fN+1 on ON . Therefore, if x /∈ EN+1 i.e. fN+1(x) = limr→0M
r
B(fN+1)(x), then

f(x) = limr→0M
r
B(f)(x) and x /∈ E, a contradiction.

Thus x ∈ EN+1. This proves that E ⊂ ∪nEn and E is a negligible set as desired. �
By taking f the characteristic function of a measurable set E ⊂ Rd, we obtain

Corollary 3.2 Let E ⊂ Rd be a measurable set and x ∈ Rd. Then for almost every x ∈ E
we have

∥hk(r, x, .)∥L1(E,mk)

∥hk(r, x, .)∥L1(Rd,mk)

−→ 1 as r → 0.

When k = 0, the previous result takes the following form: for almost every x ∈ E we have

m0(E ∩B(x, r))

m0(B(x, r))
−→ 1 as r → 0.

where m0 is the Lebesgue measure on Rd. In this case, the point x is called of Lebesgue
density of E (see [15]).
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