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Let R be a root system in R d with Coxeter-Weyl group W and let k be a nonnegative multiplicity function on R. The generalized volume mean of a function

) is a compactly supported nonnegative explicit measurable function depending on R and k. In this paper, we prove that for almost every x ∈ R d , lim r→0 M r B (f )(x) = f (x).

Introduction and statement of the result

We consider the Euclidean space R d equipped with a reduced root system R i.e. R is a finite subset of R d \ {0} such that for any α ∈ R, R ∩ Rα = {±α} et σ α (R) = R, where σ α is the reflection with respect to the hyperplane H α orthogonal to α (see [START_REF] Humphreys | Reflection groups and Coxeter groups[END_REF] and [START_REF] Kane | Reflection Groups and Invariant Theory[END_REF]). Let us denote by W the Coxeter-Weyl group generated by the reflections σ α , α ∈ R and by k a multiplicity function defined on R (i.e. W -invariant) which will be supposed nonnegative throughout this paper. The Dunkl intertwining operator V k , associated to the paire (R, k), is the topological isomorphism of C ∞ (R d ) onto itself given by

V k (f )(x) := ∫ R d f (y)dµ k x (y), x ∈ R d , ( 1.1) 
where µ k x is a probability measure with compact support contained in the convex hull of W.x, the orbit of x under the W -action (see [START_REF] Dunkl | Hankel transforms associated to finite reflection groups[END_REF], [START_REF] Rösler | Positivity of Dunkl's intertwining operator[END_REF], [START_REF] Rösler | Dunkl Operators: Theory and Applications[END_REF] et [START_REF] Trimèche | The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual[END_REF]). This operator satisfies 1 the following intertwining relation ∆ k V k = V k ∆, where ∆ is the usual Laplacian and ∆ k is the Dunkl Laplacian acting on C 2 -functions as follows ∆ k f (x) := ∆f (x) + 2

∑ α∈R + k(α) ( ⟨∇f (x), α⟩ ⟨x, α⟩ - ∥α∥ 2 2 f (x) -f (σ α .x) ⟨x, α⟩ 2
) ,

with R + a fixed positive subsystem of R.

In order to build a potential theory associated to reflection groups, a type volume mean operator has been introduced in [START_REF] Gallardo | A new mean value property for harmonic functions relative to the Dunkl-Laplacian operator and applications[END_REF] (see also [START_REF] Gallardo | Propriétés de moyenne pour les fonctions harmoniques et polyharmoniques au sens de Dunkl[END_REF]) as a crucial tool. In particular, it allowed us to characterize the notion of ∆ k -harmonicity by the volume mean property (see [START_REF] Gallardo | A new mean value property for harmonic functions relative to the Dunkl-Laplacian operator and applications[END_REF] and [START_REF] Gallardo | Propriétés de moyenne pour les fonctions harmoniques et polyharmoniques au sens de Dunkl[END_REF] for more details). The volume mean operator of f ∈ C(R d ) has the following form

∀ x ∈ R d , ∀ r > 0, M r B (f )(x) := 1 m k [B(0, r)] ∫ R d f (y)h k (r, x, y)ω k (y)dy, (1.2)
where m k is the measure

dm k (x) := ω k (x)dx := ∏ α∈R + | ⟨α, x⟩ | 2k(α) dx (1.3)
and h k is the so-called harmonic kernel ( its properties will be recalled in section 2) defined by

∀ r > 0, ∀ x, y ∈ R d , h k (r, x, y) = ∫ R d 1 [0,r] ( √ ∥x∥ 2 + ∥y∥ 2 -2 ⟨x, z⟩ ) dµ k y (z). (1.4)
Note that if k is the zero function, the measure µ k x is equal to δ x the Dirac measure at x, the Dunkl Laplacian coincides with ∆ and as h k (r, x, y) = 1 [0,r] ( ∥x -y∥ ) = 1 B(x,r) (y), the generalized volume operator is none other than the classical one.

According to [START_REF] Gallardo | Support properties of the intertwining and the mean value operators in Dunkl's analysis[END_REF], for r and x fixed and under the condition k(α) > 0 for all α ∈ R, we have supp h k (r, x, .) = B W (x, r) := ∪ g∈W B(g.x, r), (1.5) where B(ξ, a) is the closed Euclidean ball centered at ξ and with radius a > 0.

When the function k vanishes, the support of the function h k (r, x, .) is contained in B W (x, r) (see [START_REF] Gallardo | A new mean value property for harmonic functions relative to the Dunkl-Laplacian operator and applications[END_REF]) and contains B(x, r) (see [START_REF] Gallardo | Support properties of the intertwining and the mean value operators in Dunkl's analysis[END_REF]).

Our aim here is to prove the following result:

Theorem: Let Ω be a W -invariant open subset of R d and let f ∈ L 1 loc (Ω, m k ).
Then for almost every x ∈ Ω, we have lim

r↓0 + M r B (f )(x) = f (x). (1.6)
Using (1.5), the volume mean of f ∈ L 1 loc (Ω, m k ) is well defined at (x, r) whenever B(x, r) ⊂ Ω. Furthermore, by the formulas (1.3), we see that negligible sets for the Lebesgue measure coincide with negligible sets for the measure m k . On other hand, an understood phenomena is that the relation (1.6) means that the function h k (r, x, .), x is fixed, concentrates only in the neighborhood of x when r → 0 and not on other point gx of the orbit W.x as we can could think from (1.5).

Some basics from Dunkl analysis

In this section we will recall some results from Dunkl theory which will be useful for the sequel. These concern in particular the Dunkl transform, the Dunkl translation and the harmonic kernel.

The Dunkl transform and Dunkl's translation operators

• The Dunkl transform of a function f ∈ L 1 (R d , m k ) is defined by F k (f )(λ) := ∫ R d f (x)E k (-iλ, x)ω k (x)dx, λ ∈ R d , ( 2.1) 
where E k (x, y) := V k (e ⟨x,.⟩ )(y), x, y ∈ R d , is the Dunkl kernel which is analytically extendable to C d × C d and satisfies the following properties (see [START_REF] Dunkl | Integral kernels with reflection group invariance[END_REF], [START_REF] Dunkl | Orthogonal Polynomials of Several variables[END_REF], [START_REF] De Jeu | The Dunkl transform[END_REF] and [START_REF] Rösler | Dunkl Operators: Theory and Applications[END_REF]): for all x, y ∈ R d , all λ ∈ C and all g ∈ W ,

E k (x, y) = E k (y, x), E k (x, λy) = E k (λx, y), E k (gx, gy) = E k (x, y). (2.2)
Moreover the following inequality holds

∀ x, y ∈ R d , |E k (-ix, y)| ≤ 1. (2.
3)

The Dunkl transform shares many properties with the usual Fourier transform (see [START_REF] De Jeu | The Dunkl transform[END_REF], [START_REF] Rösler | Dunkl Operators: Theory and Applications[END_REF]). In particular, it is an isomorphism of S(R d ) (the Schwartz space) onto itself and its inverse is given by

F -1 k (f )(x) = c -2 k F k (f )(-x) = c -2 k ∫ R d f (λ)E k (ix, λ)ω k (λ)dλ, x ∈ R d ,
where c k is the Macdonald-Mehta constant (see [START_REF] Opdam | Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group[END_REF]) given by

c k := ∫ R d e -∥x∥ 2 2 ω k (x)dx. (2.4)
Furthermore, the following Plancherel theorem holds: The transformation c -1 k F k extends uniquely to an isometric isomorphism of L 2 (R d , m k ) and we have the Plancherel formula:

∀ f ∈ L 2 (R d , m k ), ∥c -1 k F k (f )∥ L 2 (R d ,m k ) = ∥f ∥ L 2 (R d ,m k ) .
(2.5)

• The Dunkl translation operators τ x , x ∈ R d , are defined on C ∞ (R d
) by (see [START_REF] Trimèche | Paley-Wiener theorem for the Dunkl transform and Dunkl translation operators[END_REF])

∀ y ∈ R d , τ x f (y) = ∫ R d V k • T z • V -1 k (f )(y)dµ x (z), (2.6) 
where T x is the classical translation operator given by T x f (y) = f (x + y).

The Dunkl translation operators have the following properties:

τ 0 f = f, τ x f (y) = τ y f (x), τ x (∆ k f ) = ∆ k (τ x f ), τ x E k (., z)(y) = E k (x, z)E k (y, z). Note that if f ∈ S(R d ), the function τ x f ∈ S(R d
) and it can be defined by means of the Dunkl transform as follows (see [START_REF] Trimèche | Paley-Wiener theorem for the Dunkl transform and Dunkl translation operators[END_REF]):

τ x f (y) = F -1 k [E k (ix, .)F k (f )](y) = c -2 k ∫ R d F k (f )(λ)E k (ix, λ)E k (iy, λ)ω k (λ)dλ, y ∈ R d .
(2.7) For x ∈ R d , the operator τ x can be extended to the space

L 2 (R d , m k ) as follows: Fix f ∈ L 2 (R d , m k ). Since |E k (-ix, ξ)| ≤ 1, the function ξ → E k (ix, ξ)F k (f )(ξ) belongs to L 2 (R d , m k ).
Hence, by Plancherel theorem, there exists a unique L 2 (R d , m k )-function denoted by τ x f and called the x-Dunkl translate function of f such that

F k (τ x f )(ξ) = E k (ix, ξ)F k (f )(ξ).
(2.8)

For more properties on Dunkl translation operators when they act on L 2 (R d , m k ) we can see ([16]).

The harmonic kernel

In this section we recall some results of [START_REF] Gallardo | A new mean value property for harmonic functions relative to the Dunkl-Laplacian operator and applications[END_REF].

Let (r, x, y) → h k (r, x, y) be the harmonic kernel defined by (1.4). It satisfies the following properties (see [START_REF] Gallardo | A new mean value property for harmonic functions relative to the Dunkl-Laplacian operator and applications[END_REF]):

1. For all r > 0 and x, y ∈ R d , 0 ≤ h k (r, x, y) ≤ 1.

2. For all fixed x, y ∈ R d , the function r -→ h k (r, x, y) is right-continuous and non decreasing on ]0, +∞[.

3

. For all r > 0, x, y ∈ R d and g ∈ W , we have

h k (r, x, y) = h k (r, y, x) and h k (r, gx, y) = h k (r, x, g -1 y).
(2.9)

4. For all r > 0 and x ∈ R d , we have

∥h k (r, x, .)∥ k,1 := ∫ R d h k (r, x, y)ω k (y)dy = m k (B(0, r)) = d k r d+2γ d + 2γ , ( 2.10) 
where d k is the constant

d k := ∫ S d-1 ω k (ξ)dσ(ξ) = c k 2 d/2+γ-1 Γ(d/2+γ) .
Here dσ(ξ) is the surface measure of the unit sphere S d-1 of R d and c k is the Macdonald-Mehta constant (2.4).

5. The harmonic kernel satisfies the following geometric inequality: if ∥a -b∥ ≤ 2r with r > 0, then

∀ ξ ∈ R d , h k (r, a, ξ) ≤ h k (4r, b, ξ)
(see [START_REF] Gallardo | A new mean value property for harmonic functions relative to the Dunkl-Laplacian operator and applications[END_REF], Lemma 4.1). In the classical case (i.e. k = 0), this inequality says that if ∥a -b∥ ≤ 2r, then B(a, r) ⊂ B(b, 4r).

6. Let r > 0 and x ∈ R d . Then the function h k (r, x, .) is upper semi-continuous on R d .

Note that to prove the upper semi-continuity of h k (r, x, .), with r > 0 and x ∈ R d , the authors of [START_REF] Gallardo | A new mean value property for harmonic functions relative to the Dunkl-Laplacian operator and applications[END_REF] have constructed a decreasing sequence (φ ε ) ⊂ D(R d ) of radial functions such that for every ε > 0, 0

≤ φ ε ≤ 1, φ ε = 1 on B(0, r) and for all y ∈ R lim ε→0 φ ε (y) = 1 B(0,r) (y), h k (r, x, y) = lim ε→0 τ -x φ ε (y), (2.11) 
where τ x is the x-Dunkl translation operator.

In order to prove our result, we will need two lemmata. But, at first, we start by the following remark:

Remark 2.1 Let r > 0. The function 1 B(0,r) is in L 2 (R d , m k ). For x ∈ R d , we can then define τ -x (1 B(0,r) ) as being the L 2 (R d , m k )-function whose Dunkl transform is equal to F k ( τ -x (1 B(0,r) ) ) (ξ) = E k (-ix, ξ)F k ( 1 B(0,r) ) (ξ). 
(2.12)

(see (2.8)). This L 2 (R d , m k )-function (which coincides also with 1 B(x,r) when k = 0) has been used formally in ( [START_REF] Thangavelu | Convolution operator and maximal function for Dunkl transform[END_REF] and [START_REF] Rejeb | Two results on the Dunkl maximal function[END_REF]) for studying the L p (R d , m k )-boundedness of the Dunkl-Hardy-Littlewood maximal operator. In the next result, we will show that this function coincides almost everywhere with h k (r, x, .). But, in contrast to the harmonic kernel, the L 2 -definition (2.12) of the function τ -x (1 B(0,r) ) does not give any precision neither on its support nor on some geometric properties like the geometric inequality mentioned above.

Lemma 2.1 Let r > 0 and x ∈ R d . Then, for almost every y ∈ R d , we have

h k (r, x, y) = τ -x (1 B(0,r) )(y). ( 2 

.13)

Proof: We consider the sequence (φ ε ) as in (2.11). By the monotone convergence theorem, we can see that

τ -x φ ε -→ h k (r, x, .) in L 2 (R d , m k ).
On the other hand, since

1 B(0,r) ∈ L 2 k (R d ), we have τ -x φ ε -τ -x (1 B(0,r) ) L 2 k (R d ) = c -1 k F k [τ -x φ ε ] -F k [ τ -x (1 B(0,r) ) ] L 2 k (R d ) = c -1 k E k (-ix, .)F k [φ ε ] -E k (-ix, .)F k [ 1 B(0,r) ] L 2 k (R d ) ≤ c -1 k F k [φ ε ] -F k [ 1 B(0,r) ] L 2 k (R d ) = φ ε -1 B(0,r) L 2 k (R d ) -→ 0 as ε → 0,
where we have used Plancherel formula (2.5) for Dunkl's transform in the first and the last lines, the relations (2.7) and (2.12) in the second line, the inequality |E k (-ix, ξ)| ≤ 1 in the third line and the monotone convergence theorem in the last line. Thus, we get (τ -x φ ε ) converges also to τ -x (1 B(0,r) ) in L 2 (R d , m k ). This proves the desired equality.

Our second lemma, proved in [START_REF] Gallardo | A new mean value property for harmonic functions relative to the Dunkl-Laplacian operator and applications[END_REF], says that Lemma 2.2 Let x ∈ R d . Then the family of probability measures

dη k x,r (y) = 1 m k [B(0, r)] h k (r, x, y)ω k (y)dy
is an approximation of the Dirac measure δ x as r -→ 0. More precisely

1. For all α > 0, lim r→0 ∫ ∥x-y∥>α dη k x,r (y) = 0. 2. Let Ω ⊂ R d be a W -invariant open set, f a locally bounded measurable function defined on Ω and x ∈ Ω. If f is continuous at x, then lim r→0 ∫ R d f (y)dη k x,r = lim r→0 M r B (f )(x) = f (x).
(2.14)

Proof of the result

Firstly, we will show the result when the W -invariant open set Ω is the whole space R d .

Theorem 3.1 Let f ∈ L 1 loc (R d , m k ).
Then, for almost every x ∈ R d , the relation (1.6) holds.

To prove this theorem, we will use the weak-L 1 (R d , m k ) estimates of the Dunkl-Hardy-Littlewood maximal function (see [START_REF] Rejeb | Two results on the Dunkl maximal function[END_REF] and [START_REF] Thangavelu | Convolution operator and maximal function for Dunkl transform[END_REF]). This idea has been taken from the classical case (see [START_REF] Stein | Real Analysis: Measure Theory, Integration and Hilbert Spaces[END_REF]).

Proof:

Step 1: Suppose that f is a continuous function on R d . In this case, the result follows immediately from the relation (2.14).

Step 2: We will prove the result when f ∈ L 1 (R d , m k ). To do this, it suffices to show that

f * (x) := lim sup r→0 M r B (|f -f (x)|)(x) = 0 for almost every x ∈ R d .
• At first, we claim that there exists a constant C > 0 such that

∀ t > 0, m k {f * > t} := m k {x ∈ R d , f * (x) > t} ≤ C t ∥f ∥ L 1 k (R d ) . ( 3.1) 
Indeed, we have

f * (x) ≤ sup r>0 M r B (|f -f (x)|)(x) ≤ M k (|f |)(x) + |f (x)|, (3.2) 
where M k (g) is the maximal function of g ∈ L 1 (R d , m k ) defined by

M k (g)(x) := sup r>0 1 m k (B(0, r)) ∫ R d g(y)τ -x ( 1 B(0,r) ) (y)ω k (y)dy .
(see [START_REF] Thangavelu | Convolution operator and maximal function for Dunkl transform[END_REF] and [START_REF] Rejeb | Two results on the Dunkl maximal function[END_REF]). We notice that from (2.13) and (1.2), we have

M k (|f |)(x) = sup r>0 M r B (|f |)(x),
which justifies (3.2). Consequently,

{f * > t} ⊂ {M k (|f |) + |f | > t} ⊂ {M k (|f |) > t/2} ∪ {|f | > t/2}.
This implies that

m k {f * > t} ≤ m k {M k (|f |) > t/2} + m k {|f | > t/2}. (3.3)
From ( [START_REF] Thangavelu | Convolution operator and maximal function for Dunkl transform[END_REF] or [START_REF] Rejeb | Two results on the Dunkl maximal function[END_REF]), there exists a constant C 1 > 0 such that

m k {M k (|f |) > t/2} ≤ 2C 1 t ∥f ∥ L 1 (R d ,m k ) (3.4)
and from Markov's inequality, we have 

m k {|f | > t/2} ≤ 2 t ∥f ∥ L 1 (R d ,m k ) , (3.5) 
m k {f * > t} = m k {(f -g) * > t} ≤ C t ∥f -g∥ L 1 (R d ,m k ) = C t ε.
As ε > 0 is arbitrary, this proves that

∀ t > 0, m k {f * > t} = 0. Finally, since {f * > 0} = ∪ n≥1 {f * > 1/n},
we deduce that m k {f * > 0} = 0. That is f * = 0 a.e. as desired.

Step 3:

Let f ∈ L 1 loc (R d , m k ). For every n ∈ N \ {0}, the function f n = f 1 B(0,n) is in L 1 (R d , m k ). By Step 2, we have f n * (x) = 0 for all x ∈ R d \E n
, where E n is a measurable set such that m k (E n ) = 0. We will prove that {f * > 0} ⊂ ∪ n≥1 E n which will imply the desired result. Let x ∈ R d such that f * (x) > 0. There is an integer n = n x ∈ N \ {0} such that supp h k (r, x, .) ⊂ B(0, n) for every r ≤ 1. This implies that f * (x) = f n * (x) > 0. That is x ∈ E n . This completes the proof. Now, we will prove our result that we recall below

Corollary 3.1 Let Ω ⊂ R d be a W -invariant open set. If f ∈ L 1 loc (Ω, m k ), then (1.6) holds for almost every x ∈ Ω. Proof: Let n ∈ N large enough such that Ω 1 n := {x ∈ Ω, dist(x, ∂Ω) > 1/n} = {x ∈ Ω, B(x, 1/n) ⊂ Ω} is a nonempty set. For such n, we consider O n := B o (0, n) ∩ Ω 1 n and K n = O n , where B o (a, r) is the open ball centered at a ∈ R d and with radius r > 0. As Ω 1 n is W -invariant, we can see that O n (resp. K n ) is a W -invariant open (resp. W - invariant compact
) subset of Ω. Moreover, we have for every n large enough

K n ⊂ O n+1 ⊂ K n+1 and Ω = ∪ n K n = ∪ n O n . Now, let f n be the function given by f n (x) = f (x) if x ∈ K n and f n (x) = 0 if x ∈ R d \K n . Clearly f n belongs to L 1 loc (R d , m k ) and by Theorem 3.1 we have f n (x) = lim r→0 M r B (f n )(x) for almost every x ∈ R d . Let E n := { x ∈ R d , f n (x) ̸ = lim r→0 M r B (f n )(x)
} and E := where m 0 is the Lebesgue measure on R d . In this case, the point x is called of Lebesgue density of E (see [START_REF] Stein | Real Analysis: Measure Theory, Integration and Hilbert Spaces[END_REF]).

{ x ∈ Ω, f (x) ̸ = lim

Then we deduce ( 3 . 1 )

 31 from (3.3),(3.4) and(3.5) with C = 2C 1 + 2. • Let ε > 0 and let g ∈ D(R d ) such that ∥f -g∥ L 1 (R d ,m k ) ≤ ε. For every x ∈ R d , step 1 applied to the function y -→ |g(y) -g(x)| shows that g * (x) = 0. This implies that (f -g) * ≤ f * + g * = f * . Since f * = (f -g + g) * ≤ (f -g) * + g * = (f -g) * , we get f * = (f -g) * .Consequently, by (3.1) we obtain

  Since f n is continuous on the open set R d \K n , by(2.14) we deduce thatE n ⊂ K n ⊂ Ω. Let us now take x ∈ E. There exist R > 0 and N ∈ N such that B(x, R) ⊂ O N ⊂ K N +1 ⊂ Ω.We will show that x ∈ E N +1 . As O N and K N +1 are invariant under the action of the Coxeter-Weyl group W and thanks to the support property of the function h k (r, x, .) we have∀ r ∈]0, R], supp h k (r, x, .) ⊂ O N ⊂ K N +1 . But f = f N +1 on O N . Therefore, if x / ∈ E N +1 i.e. f N +1 (x) = lim r→0 M r B (f N +1 )(x), then f (x) = lim r→0 M r B (f )(x)and x / ∈ E, a contradiction. Thus x ∈ E N +1 . This proves that E ⊂ ∪ n E n and E is a negligible set as desired. By taking f the characteristic function of a measurable set E ⊂ R d , we obtain Corollary 3.2 Let E ⊂ R d be a measurable set and x ∈ R d . Then for almost every x ∈ E we have ∥h k(r, x, .)∥ L 1 (E,m k ) ∥h k (r, x, .)∥ L 1 (R d ,m k ) -→ 1 as r → 0.When k = 0, the previous result takes the following form: for almost every x ∈ E we have m 0 (E ∩ B(x, r)) m 0 (B(x, r)) -→ 1 as r → 0.