Gabriel Synnaeve

Nantas Nardelli
email: nantas@robots.ox.ac.uk

Alex Auvolat

Soumith Chintala

Timothée Lacroix

Zeming Lin

Florian Richoux

Nicolas Usunier

TorchCraft: a Library for Machine Learning Research on Real-Time Strategy Games

come L'archive ouverte pluridisciplinaire

Introduction

Deep Learning techniques [START_REF] Lecun | Deep learning[END_REF] have recently enabled researchers to successfully tackle low-level perception problems in a supervised learning fashion. In the field of Reinforcement Learning this has transferred into the ability to develop agents able to learn to act in high-dimensional input spaces. In particular, deep neural networks have been used to help reinforcement learning scale to environments with visual inputs, allowing them to learn policies in testbeds that previously were completely intractable. For instance, algorithms such as Deep Q-Network (DQN) [START_REF] Mnih | Human-level control through deep reinforcement learning[END_REF] have been shown to reach human-level performances on most of the classic ATARI 2600 games by learning a controller directly from raw pixels, and without any additional supervision beside the score. Most of the work spawned in this new area has however tackled environments where the state is fully observable, the reward function has no or low delay, and the action set is relatively small. To solve the great majority of real life problems agents must instead be able to handle partial observability, structured and complex dynamics, and noisy and high-dimensional control interfaces.

To provide the community with useful research environments, work was done towards building platforms based on videogames such as Torcs [START_REF] Wymann | the open racing car simulator[END_REF], Mario AI [START_REF] Togelius | The 2009 mario ai competition[END_REF], Unreal's BotPrize [START_REF] Hingston | A turing test for computer game bots[END_REF], the Atari Learning Environment [START_REF] Bellemare | The arcade learning environment: An evaluation platform for general agents[END_REF], VizDoom [START_REF] Kempka | A doombased ai research platform for visual reinforcement learning[END_REF], and Minecraft [START_REF] Johnson | The malmo platform for artificial intelligence experimentation[END_REF], all of which have allowed researchers to train deep learning models with imitation learning, reinforcement learning and various decision making algorithms on increasingly difficult problems. Recently there have also been efforts to unite those and many other such environments in one platform to provide a standard interface for interacting with them [4]. We propose a bridge between StarCraft: Brood War, an RTS game with an active AI research community and annual AI competitions [START_REF] Ontanón | A survey of real-time strategy game ai research and competition in starcraft[END_REF][START_REF] Churchill | Starcraft ai competition[END_REF][START_REF] Bwapi | Brood war api, an api for interacting with starcraft[END_REF], and Lua, with examples in Torch [START_REF] Collobert | Torch7: A matlab-like environment for machine learning[END_REF] (a machine learning library). Real-time strategy (RTS) games have historically been a domain of interest of the planning and decision making research communities [START_REF] Buro | Rts games and real-time ai research[END_REF][START_REF] Aha | Learning to win: Case-based plan selection in a real-time strategy game[END_REF][START_REF] Churchill | Starcraft ai competition[END_REF][START_REF] Ontanón | A survey of real-time strategy game ai research and competition in starcraft[END_REF][START_REF] Robertson | A review of real-time strategy game ai[END_REF]. This type of games aims to simulate the control of multiple units in a military setting at different scales and level of complexity, usually in a fixed-size 2D map, in duel or in small teams. The goal of the player is to collect resources which can be used to expand their control on the map, create buildings and units to fight off enemy deployments, and ultimately destroy the opponents. These games exhibit durative moves (with complex game dynamics) with simultaneous actions (all players can give commands to any of their units at any time), and very often partial observability (a "fog of war": opponent units not in the vicinity of a player's units are not shown).

RTS gameplay: Components RTS game play are economy and battles ("macro" and "micro" respectively): players need to gather resources to build military units and defeat their opponents. To that end, they often have worker units (or extraction structures) that can gather resources needed to build workers, buildings, military units and research upgrades. Workers are often also builders (as in StarCraft), and are weak in fights compared to military units. Resources may be of varying degrees of abundance and importance. For instance, in StarCraft minerals are used for everything, whereas gas is only required for advanced buildings or military units, and technology upgrades. Buildings and research define technology trees (directed acyclic graphs) and each state of a "tech tree" allow for the production of different unit types and the training of new unit abilities. Each unit and building has a range of sight that provides the player with a view of the map. Parts of the map not in the sight range of the player's units are under fog of war and the player cannot observe what happens there. A considerable part of the strategy and the tactics lies in which armies to deploy and where.

Military units in RTS games have multiple properties which differ between unit types, such as: attack range (including melee), damage types, armor, speed, area of effects, invisibility, flight, and special abilities. Units can have attacks and defenses that counter each others in a rock-paper-scissors fashion, making planning armies a extremely challenging and strategically rich process. An "opening" denotes the same thing as in Chess: an early game plan for which the player has to make choices. That is the case in Chess because one can move only one piece at a time (each turn), and in RTS games because, during the development phase, one is economically limited and has to choose which tech paths to pursue. Available resources constrain the technology advancement and the number of units one can produce. As producing buildings and units also take time, the arbitrage between investing in the economy, in technological advancement, and in units production is the crux of the strategy during the whole game.

Related work: Classical AI approaches normally involving planning and search [START_REF] Aha | Learning to win: Case-based plan selection in a real-time strategy game[END_REF][START_REF] Ontañón | Case-based planning and execution for real-time strategy games[END_REF][START_REF] Weber | Reactive planning for micromanagement in rts games[END_REF][START_REF] Churchill | Heuristic Search Techniques for Real-Time Strategy Games[END_REF] are extremely challenged by the combinatorial action space and the complex dynamics of RTS games, making simulation (and thus Monte Carlo tree search) difficult [START_REF] Churchill | Fast heuristic search for rts game combat scenarios[END_REF][START_REF] Uriarte | Game-tree search over high-level game states in rts games[END_REF]. Other characteristics such as partial observability, the non-obvious quantification of the value of the state, and the problem of featurizing a dynamic and structured state contribute to making them an interesting problem, which altogether ultimately also make them an excellent benchmark for AI. As the scope of this paper is not to give a review of RTS AI research, we refer the reader to these surveys about existing research on RTS and StarCraft AI [START_REF] Ontanón | A survey of real-time strategy game ai research and competition in starcraft[END_REF][START_REF] Robertson | A review of real-time strategy game ai[END_REF].

It is currently tedious to do machine learning research in this domain. Most previous reinforcement learning research involve simple models or limited experimental settings [START_REF] Wender | Applying reinforcement learning to small scale combat in the real-time strategy game starcraft: broodwar[END_REF][START_REF] Usunier | Episodic exploration for deep deterministic policies: An application to starcraft micromanagement tasks[END_REF]. Other models are trained on offline datasets of highly skilled players [START_REF] Weber | A data mining approach to strategy prediction[END_REF][START_REF] Synnaeve | Bayesian programming and learning for multi-player video games: application to RTS AI[END_REF][START_REF] Synnaeve | A dataset for starcraft ai & an example of armies clustering[END_REF][START_REF] Uriarte | Starcraft brood war data mining[END_REF]. Contrary to most Atari games [START_REF] Bellemare | The arcade learning environment: An evaluation platform for general agents[END_REF], RTS games have much higher action spaces and much more structured states. Thus, we advocate here to have not only the pixels as input and keyboard/mouse for commands, as in [START_REF] Bellemare | The arcade learning environment: An evaluation platform for general agents[END_REF]4,[START_REF] Kempka | A doombased ai research platform for visual reinforcement learning[END_REF], but also a structured representation of the game state, as in --main game engine loop: while true do game.receive_player_actions() game.compute_dynamics() --our injected code: torchcraft.send_state() torchcraft.receive_actions() end featurize, model = init() tc = require 'torchcraft' tc:connect(port) while not tc.state.game_ended do tc:receive() features = featurize(tc.state) actions = model:forward(features) tc:send(tc:tocommand(actions)) end Figure 1: Simplified client/server code that runs in the game engine (server, on the left) and the library for the machine learning library or framework (client, on the right). [START_REF] Johnson | The malmo platform for artificial intelligence experimentation[END_REF]. This makes it easier to try a broad variety of models, and may be useful in shaping loss functions for pixel-based models.

Finally, StarCraft: Brood War is a highly popular game (more than 9.5 million copies sold) with professional players, which provides interesting datasets, human feedback, and a good benchmark of what is possible to achieve within the game. There also exists an active academic community that organizes AI competitions.

Design

The simplistic design of TorchCraft is applicable to any video game and any machine learning library or framework. Our current implementation connects Torch to a low level interface [START_REF] Bwapi | Brood war api, an api for interacting with starcraft[END_REF] to StarCraft: Brood War. TorchCraft's approach is to dynamically inject a piece of code in the game engine that will be a server. This server sends the state of the game to a client (our machine learning code), and receives commands to send to the game. This is illustrated in Figure 1. The two modules are entirely synchronous, but the we provide two modalities of execution based on how we interact with the game:

Game-controlled -we inject a DLL that provides the game interface to the bots, and one that includes all the instructions to communicate with the machine learning client, interpreted by the game as a player (or bot AI). In this mode, the server starts at the beginning of the match and shuts down when that ends. In-between matches it is therefore necessary to re-establish the connection with the client, however this allows for the setting of multiple learning instances extremely easily.

Game-attached -we inject a DLL that provides the game interface to the bots, and we interact with it by attaching to the game process and communicating via pipes. In this mode there is no need to re-establish the connection with the game every time, and the control of the game is completely automatized out of the box, however it's currently impossible to create multiple learning instances on the same guest OS.

Whatever mode one chooses to use, TorchCraft is seen by the AI programmer as a library that provides: connect(), receive() (to get the state), send(commands), and some helper functions about specifics of StarCraft's rules and state representation. TorchCraft also provides an efficient way to store game frames data from past (played or observed) games so that existing state ("replays", "traces") can be re-examined.

Conclusion

We presented several work that established RTS games as a source of interesting and relevant problems for the AI research community to work on. We believe that an efficient bridge between low level existing APIs and machine learning frameworks/libraries would enable and foster research on such games. We presented TorchCraft: a library that enables state-of-the-art machine learning research on real game data by interfacing Torch with StarCraft: BroodWar. TorchCraft has already been used in reinforcement learning experiments on StarCraft, which led to the results in [START_REF] Usunier | Episodic exploration for deep deterministic policies: An application to starcraft micromanagement tasks[END_REF] (soon to be open-sourced too and included within TorchCraft).

A Frame data

In addition to the visual data, the TorchCraft server extracts certain information for the game state and sends it over to the connected clients in a structured "frame". The frame is formatted in a table in roughly the following structure:

1

 arXiv:1611.00625v2 [cs.LG] 3 Nov 2016 2 Real-Time Strategy for Games AI

Acknowledgements

We would like to thank Yann LeCun, Léon Bottou, Pushmeet Kohli, Subramanian Ramamoorthy, and Phil Torr for the continuous feedback and help with various aspects of this work. Many thanks to David Churchill for proofreading early versions of this paper.