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POSL: A Parallel-Oriented metaheuristic-based
Solver Language

Alejandro REYES AMARO, Eric MONFROY, and Florian RICHOUX

Abstract For a couple of years, all processors in modern machines are multi-core.
Massively parallel architectures, so far reserved for super-computers, become now
available to a broad public through hardware like the Xeon Phi or GPU cards. This
architecture strategy has been commonly adopted by processor manufacturers, al-
lowing them to stick with Moore’s law. However, this new architecture implies new
ways to design and implement algorithms to exploit its full potential. This is in
particular true for constraint-based solvers dealing with combinatorial optimiza-
tion problems. Here we propose a Parallel-Oriented Solver Language (POSL, pro-
nounced ”puzzle”), a new framework to build interconnected meta-heuristic based
solvers working in parallel. The novelty of this approach lies in looking at solver
as a set of components with specific goals, written in a parallel-oriented language
based on operators. A major feature in POSL is the possibility to share not only
information, but also behaviors, allowing solver modifications during runtime. Our
framework has been designed to easily build constraint-based solvers and reduce
the developing effort in the context of parallel architecture. POSL’s main advan-
tage is to allow solver designers to quickly test different heuristics and parallel com-
munication strategies to solve combinatorial optimization problems, usually time-
consuming and very complex technically, requiring a lot of engineering.
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LINA Inria–TASC, Université de Nantes, 2 rue de la Houssinière, Nantes e-mail:
eric.monfroy@univ-nantes.fr

Florian RICHOUX
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1 Introduction

Combinatorial Optimization has strong applications in several fields, including
machine learning, artificial intelligence, and software engineering. In some cases,
the main goal is only to find a solution, like for Constraint Satisfaction Problems
(CSP). A solution will be an assignment of variables satisfying the constraints set.
In other words: finding one feasible solution.

CSPs find a lot of applications in the industry, implying the development of many
methods to solve them. Meta–heuristics techniques have shown themselves to be
effective for solving CSPs, but in most industrial cases the search space is huge
enough to be intractable. However, recent advances in computer architecture are
leading us toward massively multi/many–core computers, opening a new way to
find solutions for these problems in a more feasible manner, reducing search time.
Adaptive Search [5] is an efficient methods showing very good performances scaling
to hundreds or even thousands of cores, using a multi-walk local search method. For
this algorithm, an implementation of a cooperative multi-walks strategy has been
published in [9]. These works have shown the efficiency of multi-walk strategy, that
is why we have oriented POSL towards this parallel scheme.

In the last years, a lot of efforts have been made in parallel constraint program-
ming. In this field, the inter-process communication for solver cooperation is one
of the most critical issues. [11] presents a paradigm that enables the user to prop-
erly separate strategies combining solver applications in order to find the desired
result, from the way the search space is explored. Meta–S is an implementation of
a theoretical framework proposed in [6], which allows to tackle problems, through
the cooperation of arbitrary domain–specific constraint solvers. POSL provides a
mechanism of creating solver–independent communication strategies, making easy
the study of solving processes and results. Creating solvers implementing differ-
ent solution strategies can be complex and tedious. In that sense POSL gives the
possibility of prototyping communicating solvers with few efforts.

In Constraint Programming, many researches focus on fitting and improving ex-
isting algorithms for specific problems. However, it requires a deep study to find
the right algorithm for the right problem. HYPERION [3] is a Java framework for
meta– and hyper–heuristics built with the principle of interoperability, generality by
providing generic templates for a variety of local search and evolutionary compu-
tation algorithms and efficiency, allowing rapid prototyping with the possibility of
reusing source code. POSL aims to offer the same advantages, but provides also a
mechanism to define communication protocols between solvers.

In this chapter we present POSL, a framework for easily building many and
different cooperating solvers based on coupling four fundamental and independent
components: operation modules, open channels, the computation strategy and com-
munication channels or subscriptions. Recently, the hybridization approach leads
to very good results in constraint satisfaction [14]. ParadisEO is a framework to
design parallel and distributed hybrid meta-heuristics showing very good results
[4]. It includes a broad range of reusable features to easily design evolutionary algo-
rithms and local search methods. Our framework POSL focuses only in local search
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methods, but is designed to execute in parallel sets of different solvers, with and/or
without communication, since the solver’s components can be combined by using
operators.

POSL provides, through a simple operator-based language, a way to create a
computation strategy, combining already defined components (operation modules
and open channels). A similar idea was proposed in [7] without communication,
introducing an evolutionary approach that uses a simple composition operator to
automatically discover new local search heuristics for SAT and to visualize them
as combinations of a set of building blocks. Another interesting idea is proposed
in TEMPLAR, a framework to generate algorithms changing predefined components
using hyper-heuristics methods [13]. In the last phase of the coding process with
POSL, solvers can be connected each others, depending on the structure of their
open channels, and this way, they can share not only information, but also their
behavior, by sharing their operation modules. This approach makes the solvers able
to evolve during the execution.

Before ending this chapter with a brief conclusion and future works, we present
some results obtained by using POSL to solve some instances of the Social Golfers
Problem.

2 POSL parallel solvers

POSL proposes a solver construction platform following different stages. First
of all, the solver algorithm is modeled by decomposing it into small pieces/modules
of computation. After that, they are implemented as separated functions. We name
them operation module. The next step is to decide what information is interesting to
receive from other solvers. This information is encapsulated into other objects called
open channels, allowing data transmission among solvers. In a third stage, a generic
strategy is coded through POSL, using the mentioned components in the previous
stages, allowing not only the information exchange, but also to execute the com-
ponents in parallel. This will be the solver’s backbone. Finally, solvers are defined
by instantiating and connecting the strategy, operation modules and open channels,
and by connecting them each others. The next subsections explain in details each of
these steps.

2.1 Operation module

An operation module is the most basic and abstract way to define a piece of
computation. It can be dynamically replaced by or combined with other operation
modules, since they can be sheared among solvers working in parallel. This way, the
solver can mutate its behavior during execution.

An operation module receives an input, executes an internal algorithm and gives
an output. They are joined through computation strategies.

Definition 1. (Operation Module) An operation module Om is a mapping defined
by:
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Om : D→ I (1)

D and I can be either a set of configurations, or set of sets of configurations, or a
set of values of some data type, etc.

Consider a local search meta-heuristic solver. One of its operation modules can
be the function returning the set of configurations composing the neighborhood of a
given configuration:

Omneighborhood : D1×D2×·· ·×Dn→ 2D1×D2×···×Dn

where Di represents the definition domains of each variable of the input configura-
tion.

2.2 Open channels

Open Channels are the solver’s components in charge of the information recep-
tion in the communication between solvers. They can interact with operation mod-
ules, depending on the computation strategy. Open Channels play the role of outlets,
allowing solvers to be connected and to share information.

An open channel can receive two types of information, always coming from an
external solver: data or operation modules. It is important to notice that when we
are talking about sending/receiving operation modules, we mean sending/receiving
only required information to identify it and being able to instantiate it.

In order to distinguish between the two different types of open channels, we
will call Data Open Channel the open channel responsible for the data reception,
and Object Open Channel the one responsible for the reception and instantiation of
operation modules.

Definition 2. (Data Open Channel) A Data Open Channel Ch is a component that
produces a mapping defined as follows:

Ch : U → I (2)

It returns the information I coming from an external solver, no matter what the input
U is.

Definition 3. (Object Open Channel) If we denote by M the space of all the op-
eration modules defined by Definition 1, then an Object Open Channel Ch is a
component that produces an operation module coming from an external solver as
follows:

Ch : M→M (3)

Due to the fact that open channels receive information coming from outside and
have no control on them, it is necessary to define the NULL information, to denote
the absence of any information. If a Data Open Channel receives a piece of infor-
mation, it is returned automatically. If a Object Open Channel receives an operation
module, the latter is instantiated and executed with the open channel’s input, and its
result is returned. In both cases, if no available information exists (no communica-
tions are performed), the open channel returns the NULL object.
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2.3 Computation strategy

The computation strategy is the solver’s backbone: it joins operation modules
and open channels in a coherent way, while remaining independent from them.
Through the computation strategy we can decide also what information to sent to
other solvers.

The computation strategy is an operator–based language, that we define as a free-
context grammar as follows:

Definition 4. (POSL’s Grammar) GPOSL = (V,Σ ,S,R), where:

1. V = {CM,OP} is the set of variables,

2. Σ =
{

om,och,be, [, ],J,Kp ,(,),{,},L,Mm,Mo, 7−→,	, ρ , ∨ , M , m , �
}

is
the set of terminals,

3. S = {CM} is the set of start variables,
4. and the set of rules R =

CM→ om | och | LomMo | LomMm | [OP] | JOPKp

OP→CM 7−→CM

OP→CM 7−→ (be){CM;CM}
OP→CM 	 (be){CM}

OP→CM ρ CM | CM ∨ CM | CM M CM | CM m CM | CM � CM

We would like to explain some of the concepts presented in Definition 4:

• The variable CM, as well as OP are two entities very important in the language,
as can be seen in the grammar. We name them compound module and operator
respectively.

• The terminals om and och represent an operation module and an open channel
respectively,

• The terminal be is a boolean expression.
• The terminals [ ],J Kp are symbols for grouping and defining the way of how

the involved compound modules are executed. Depending on the nature of the
operator, they can be executed sequentially or in parallel:

1. [OP]: The involved operator is executed sequentially.
2. JOPKp: The involved operator is executed in parallel if and only if OP sup-

ports parallelism. Otherwise, an exception is threw.

• The terminals ( and ) are symbols for grouping the boolean expression in some
operators.

• The terminals { and } are symbols for grouping compound modules in some
operators.

• The terminals L.Mm,L.Mo, are operators to send information to other solvers (ex-
plained bellow).

• The rest of terminals are POSL operators.
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2.3.1 POSL operators

In this section we briefly present operators provided by POSL to code the com-
putation strategy. A formal presentation of POSL’s specification is available in [12].

Op. 1 : Operator Sequential Execution: the operation M1 7−→M2 represents a
compound module as result of the execution of M1 followed by M2. This op-
erator is an example of an operator that does not support the execution of its
involved compound modules in parallel, because the input of the second com-
pound module is the output of the first one.

Op. 2 : Operator Conditional Sequential Execution: the operation

M1 ?
<cond>M2 represents a compound module as result of the sequential exe-

cution of M1 if < cond > is true or M2 otherwise.
Op. 3 : Operator Cyclic Execution: the operation	 (< cond >){I1} represents

a compound module as result of the sequential execution of I1 repeated while
< cond > remains true.

Op. 4 : Operator Random Choice: the operation M1 ρ M2 represents a com-
pound module that executes and returns the output of M1 depending on the
probability ρ , or M2 following (1−ρ)

Op. 5 : Operator Not NULL Execution: the operation M1 ∨ M2 represents a
compound module that executes M1 if it is not NULL or M2 otherwise.

Op. 6 : Operator MAX: the operation M1 M M2 represents a compound mod-
ule that returns the maximum between the outputs of modules M1 and M2 (tack-
ing into account some order criteria).

Op. 7 : Operator MIN: the operation M1 m M2 represents a compound module
that returns the minimum between the outputs of modules M1 and M2 (tacking
into account some order criteria).

Op. 8 : Operator Speed: the operation M1 � M2 represents a compound module
that returns the output of the module ending first.

In Figure 1 we present a simple example of how to combine modules using POSL
operators introduced above. Algorithm 1 shows the corresponding code. In this ex-
ample we show four operation modules being part of a compound module represent-
ing a dummy local search method. In this example:

• M1: generates a random configuration.
• M2: computes a neighborhood of a given configuration by selecting a random

variable and changing its value.
• M3: computes a neighborhood of a given configuration by selecting K random

variables and changing theirs values.
• M4: selects, from a set of configurations, the one with the smallest cost, and

stores it.
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Here, the operation module M2 is executed with probability ρ , and M3 is ex-
ecuted with probability (1− ρ). This operation is repeated a number N of times
(< stop_cond >).

Fig. 1

Algorithm 1: POSL code for Fig-
ure 1

M1 7−→[	 (loops < N) {[
M2 ρ M3

]
7−→M4

}]

In Algorithm 1, loops represent the number of iterations performed by the oper-
ator.

Op.−9 : Operator Sending: allows us to send two types of information to other
solvers:

1. The operation LMMo represents a compound module that executes the com-
pound module M and sends its output

2. The operation LMMm represents a compound module that executes the com-
pound module M and sends M itself

Fig. 2

Algorithm 2: POSL code for
Figure 2 case (1.)

M1 7−→ LMMo 7−→M2

Algorithm 3: POSL code for
Figure 2 case (2.)

M1 7−→ LMMm 7−→M2

Algorithms 2 and 3 show POSL’s code corresponding to Figure 2 for both cases:
a) sending the result of the execution of the operation module M, or b) sending the
operation module M itself.

This operation is very useful in terms of sharing behaviors between solvers. Fig-
ure 3 shows another example, where we can combine an open channel with the
operation module M2 through the operator ∨ . In this case, the operation module
M2 will be executed as long as the open channel remains NULL, i.e. there is no
operation module coming from outside. This behavior is represented in Figure 3a
by red lines. If some operation module has been received by the open channel, it
is executed instead of the operation module M2, represented in Figure 3b by blue
lines.

In this stage, and using these operators, we can create the algorithm managing
different components to find the solution of a given problem. These algorithms are
fixed, but generic w.r.t. their components (operation modules and open channels). It
means that we can build different solvers using the same strategy, but instantiating
it with different components, as long as they have the right input/output signature.

To define a computation strategy we use the environment presented in Algo-
rithm 4, where Mi and Chi represent the types of the operation modules and the
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(a) The solver executes his own operation
module if no information is received through
the open channel

(b) The solver executes the operation module
coming from an external solver

Fig. 3: Two different behaviors in the same solver

types of the open channels used by the computation strategy St. Between brackets,
the field < ...computation strategy... > corresponds to POSL code
based on operators combining already declared modules.

Algorithm 4: Computation strategy
definition

St← strategy
oModule M1,M2, . . . ,Mn ;
oChannel Ch1,Ch2, . . . ,Chm ;
{
< ...computation strategy... >
}

Algorithm 5: Solver definition

solverk← solver
{

cStrategy St;
oModule m1,m2, . . . ,mn ;
oChannel ch1,ch2, . . . ,chm;
}

2.4 Solver definition

With operation modules, open channels and computation strategy defined, we
can create solvers by instantiating the declared components. POSL provides an en-
vironment to this end, presented in Algorithm 5, where mi and chi represent the
instances of the operation modules and the instances of the open channels to be
passed by parameters to the computation strategy St.

2.5 Communication definition

Once we have defined our solver strategy, the next step is to declare communica-
tion channels, i.e. connecting the solvers each others. Up to here, solvers are discon-
nected, but they have everything to establish the communication. In this last stage,
POSL provides to the user a platform to easily define cooperative meta–strategies
that solvers must follow.

The communication is established by following the next rules guideline:
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1. Each time a solver sends any kind of information by using the operator L.Mo or
L.Mm, it creates a communication jack

2. Each time a solver uses an open channel into its definition, it creates a commu-
nication outlet

3. Solvers can be connected each others by creating subscriptions, connecting
communication jacks with communication outlet (see Figure 4).

With the operator (·) we have access to operation modules sending information
and to the open channel’s names in a solver. For example: Solver1 ·M1 provides
access to the operation module M1 in Solver1 if and only if it is affected by the
operator L.Mo (or L.Mm), and Solver2 ·Ch2 provides access to the open channel Ch2 in
Solver2. Tacking this into account, we can define the subscriptions.

Definition 5. Let two different solvers Solver1 and Solver2 be. Then, we can con-
nect them through the following operation:

Solver1 ·M1 Solver2 ·Ch2

The connection can be defined if and only if:

1. Solver1 has an operation module called M1 encapsulated into an operator L.Mo

or L.Mm.
2. Solver2 has an open channel called Ch2 receiving the same type of information

sent by M1.

Definition 5 only gives the possibility to define static communication strategies.
However, our goal is to develop this subject until obtaining operators more expres-
sive in terms of communication between solvers, to allow dynamic modifications of
communication strategies, that is, having such strategies adapting themselves during
runtime.

3 A POSL solver

In this section we explain the structure of a POSL solver created by using the
operators-based language provided, to solve some instances of the Social Golfers
Problem (SGP). It consists to schedule n = g× p golfers into g groups of p players
every week for w weeks, such that two players play in the same group at most once.
An instance of this problem can be represented by the triple g− p−w.

We choose one of the more classic solution methods for combinatorial problems:
local search meta-heuristics algorithms. These algorithms have a common structure:
they start by initializing some data structures (e.g. a tabu list for Tabu Search [8], a
temperature for Simulated Annealing [10], etc.). Then, an initial configuration s is
generated (either randomly or by using heuristic). After that, a new configuration s∗

is selected from the neighborhood V (s). If s∗ is a solution for the problem P, then
the process stops, and s∗ is returned. If not, the data structures are updated, and s∗ is
accepted or not for the next iteration, depending on some criterion (e.g. penalizing
features of local optimums, like in Guided Local Search [2]).
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Restarts are classic mechanisms to avoid becoming trapped in local minimum.
They are trigged if no improvements are done or by a timeout.

Operation Modules composing each solver of the POSL-solver are described
bellow:

1. Generate a configuration s.
2. Define the neighborhood V (s)
3. Select s∗ ∈ V (s). In every case for this experiment the selection criteria is to

choose the first configuration improving the cost.
4. Evaluate an acceptance criteria for s∗. In every case for this experiment the

acceptance criteria is to choose always the configuration with less cost.

For this particular experiment we have created three different solvers (see Fig-
ure 4):

1. Solver 1: A solver sending the best configuration every K iterations (sender
solver). It sends the found configuration to the solver it is connected with. Al-
gorithm 6 shows its computation strategy.

2. Solver 2: A solver receiving the configuration coming from a sender solver
(Solver 1). It takes the received configuration, if its current configuration’s cost
is not better than the received configuration’s cost, and takes a decision. This
solver receives the configuration through an open channel joined to the oper-
ation module M3 with the operator m . Algorithm 7 shows its computation
strategy.

3. Solver 3: A simple solver without communication at all. This solver does not
communicate with any other solver, i.e. it searches the solution into an indepen-
dent walk though the search space. Algorithm 8 shows its computation strategy.

Fig. 4: Three solvers composing the POSL-solver

3.1 Connecting solvers

After the instantiation of each operation module, the next step is to connect
the solvers (sender with receiver), by using the proper operator. If one solver Σ1
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(sender) sends some information and some other solver Σ1 (receiver) is able to re-
ceive it though an open channel, then they can be connected as the Algorithm 9
shows.

Algorithm 6: POSL code for solver 1 in Figure 4
St1← strategy // ITR → number of iterations

oModule : M1,M2,M2,M4 ;
{

[	 (ITR%30){ M1 7−→ [	 (ITR%300) {M2 7−→M3 7−→ LM4Mo}]}]
}

Algorithm 7: POSL code for solver 2 in Figure 4
St2← strategy // ITR → number of iterations

oModule : M1,M2,M2,M4 ;
oChannel : Ch1 ;
{

[	 (ITR%30){ M1 7−→ [	 (ITR%300)
{M2 7−→

[
Ch1 m M3

]
7−→M4}]}]

}

Algorithm 8: POSL code for solver 3 in Figure 4
St3← strategy ; // ITR → number of iterations

oModule : M1,M2,M2,M4 ;
{

[	 (ITR%30){ M1 7−→ [	 (ITR%300) {M2 7−→M3 7−→M4}]}];
}

Algorithm 9: Inter–solvers communication definition
Σ1 ·M4 Σ2 ·Ch1

4 Results

We ran experiments to study the behavior of POSL’s solvers in different scenar-
ios solving instances of the Social Golfers Problem. For that reason we classified
runs taking into account the composition of POSL1 solvers:

• Without communication: we use a set of solvers 3 without communication.
• Some communicating solvers: some of the solvers are solvers 3 without com-

munication, the others are couples of connected solvers (solver 1 and solver 2)
• All communicating solvers: we use a set of couples of connected solvers

(solver 1 and solver 2)

1 POSL source code is available in https://github.com/alejandro-reyesamaro/POSL
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Our first experiment uses our desktop computer (Intel R© CoreTM i7 (2.20GHz)
with 16 Gb RAM), for solving instances of SGP with 1 (sequential), 4 and 8 cores.
Results can be found in Table 1. In this table, as well as in Table 2, C are the
numbers of used cores, T indicates the runtime in milliseconds, and It. the number
of iterations. Values are the mean of 25 runs for each setup.

The other set of runs were performed on the server of our laboratory (Intel R©

XeonTM E5-2680 v2 (10×4 cores, 2.80GHz)). Table 2 shows obtained results.

Inst C No Comm. 50% Comm. All Comm.
T It. T It. T It.

6-6-3
1 6,089 159 - - - -
4 1,500 109 1,354 97 3,512 181
8 1,980 83 2,049 78 5,323 113

7-7-3
1 17,243 831 - - - -
4 6,082 208 5,850 170 13,094 270
8 6,125 136 5,975 124 13,864 219

8-8-3
1 32,042 428 - - - -
4 23,358 270 22,512 222 56,740 340
8 19,309 126 19,925 121 28,036 144

9-9-3
1 198,450 1,516 - - - -
4 94,867 662 91,556 517 102,974 596
8 102,629 394 98,060 335 126,799 466

Table 1: Intel Core i7

Inst C No Comm. 15% Comm. 25% Comm. 30% Comm. 50% Comm. 75% Comm. All Comm.
T It. T It. T It. T It. T It. T It. T It.

6-6-3
1 2,684 229 - - - - - - - - - - -
10 1,810 131 1,636 107 1,479 99 1,634 107 1,406 79 1,532 91 3,410 182
20 1,199 82 1,094 75 964 70 1,096 76 1,124 78 1,299 87 1,769 101
30 1,214 75 1,092 64 1,010 68 1,101 68 766 52 1,366 85 1,984 73
40 1,043 50 1,063 49 1,104 54 1,299 58 1,186 49 1,462 63 1,824 69

7-7-3
1 11,070 533 - - - - - - - - - - -
10 6,636 245 5,992 189 5,139 179 5,456 177 6,055 205 6,398 197 8,450 221
20 2,734 104 2,880 102 2,517 90 3,028 111 2,970 111 3,465 124 4,153 143
30 3,141 100 2,864 91 1,972 69 2,312 79 2,907 97 3,028 82 3,236 89
40 2,615 68 2,810 70 2,111 55 2,984 71 2,981 74 3,636 79 3,934 86

8-8-3
1 24,829 315 - - - - - - - - - - -
10 17,652 193 17,067 168 16,008 163 16,167 161 16,624 147 21,244 185 27,248 226
20 8,430 102 8,218 92 6,197 77 7,950 93 7,962 92 8,550 91 12,958 125
30 7,424 81 6,439 66 6,268 71 7,413 80 7,407 75 9,806 89 10,420 90
40 9,700 75 10,068 76 9,377 72 8,983 68 9,360 72 11,805 84 12,859 91

9-9-3
1 190,965 1,315 - - - - - - - - - - -
10 47,300 331 45,946 293 43,682 276 45,433 286 47,820 327 67,113 439 79,938 506
20 28,193 200 25,370 178 24,936 161 24,786 169 28,369 194 30,147 203 33,610 232
30 22,035 123 21,792 127 19,518 125 23,426 133 25,989 163 31,904 172 32,982 203
40 27,669 125 26,030 116 24,196 112 28,284 125 26,405 118 32,464 149 34,316 140

Table 2: Intel Xeon

Results show how the parallel multi–walk strategy increases the probability of
finding the solution within a reasonable time, when compared to the sequential
scheme. Thanks to POSL it was possible to test different solution strategies eas-
ily and quickly. With the Intel Xeon server we were able to test seven strategies,
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and with the desktop machine only 3, due to the limitation in the number of cores.
Results suggest that strategies where there exist a lot of communication between
solvers (sending or receiving information) are not good (sometimes is even worse
than sequential). That is not only because their runtimes are higher, but also due to
the fact that only a low percentage of the receivers solvers were able to find the solu-
tion before the others did. This result is not surprising, because inter–process com-
munications imply overheads in the computation process, even with asynchronous
communications. This phenomenon can be seen in Figure 5a, where it is analyzed
the percentage mentioned above versus the numbers of running solvers.
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When we face the problem of building a parallel strategy, it is necessary to find
an equilibrium between the numbers of communicating solvers and the number of
independent solvers. Indeed the communication cost is not negligible: it implies data
reception, information interpretation, making decisions, etc.

Slightly better results were obtained with the strategy 25% Comm when com-
pared to those obtained with the rest, suggesting that the solvers cooperation can
be a good strategy. In general, the results obtained using any of the afore mentioned
strategies were significantly better than when using the All Comm strategy. Figure 5b
shows for each instance, the runtime means using different numbers of cores.

The fact we send the best configuration found to other solvers has an impact
on communication evaluations. If the percentage of communicating solvers is high
and the communication manage to be effective, i.e. the receiver solver accepts the
configuration for the next iteration, then we are losing a bit the independent multi-
walk effect in our solver, that is, most of the solvers are looking for a solution in
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the same search space area. However, this is not a problem: if a solver is trapped, a
restart is performed. Determining what information to share and to not share among
solvers has been few investigated and deserves a deep study.

In many cases, using all cores available did not improves the results. This phe-
nomenon can be observed clearly in runs with communication, and one explanation
can be the resulting overhead, which is way bigger. Another reason why we ob-
tain these results can be the characteristic of the architecture, that is, in many cases,
not uniform in terms of reachability between cores [1]. We can observe that, even
if runtimes are not following a strict decreasing pattern when the number of cores
increases, iterations do, suggesting once again that the parallel approach is effective.

With communications, the larger the problem, the more likely effective coopera-
tions between processors are, although sometimes a decreasing pattern occurs while
approaching the maximum number of cores, due to communication overheads and
architecture limitations.

Before we perform these experiments, we compared runtimes between two
solvers: one using an operation module to select a configuration from a computed
neighborhood that selects the first configuration improving the current configura-
tion’s cost, and other selecting the best configuration among all configurations in the
neighborhood. Smallest runtimes were obtained by the one selecting the first best
configuration, and that is way we used this operation module in our experiments. It
explains the fact that some solvers need more time to perform less iterations.

5 Conclusions

In this chapter we have presented POSL, a framework for building cooperat-
ing solvers. It provides an effective way to build solvers which exchange any kind
of information, including other solver’s behavior, sharing their operation modules.
Using POSL, many different solvers can be created and ran in parallel, using only
one generic strategy, but instantiating different operation modules and open chan-
nels for each of them.

It is possible to implement different communication strategies, since POSL pro-
vides a layer to define communication channels connecting solvers dynamically us-
ing subscriptions.

At this point, the implementation of POSL remains in progress, in which our
principal task is creating a design as general as possible, allowing to add new fea-
tures. Our goal is obtaining a rich library of operation modules and open channels to
be used by the user, based on a deep study of the classical meta-heuristics algorithms
for solving combinatorial problems, in order to cover them as much as possible. In
such a way, building new algorithms by using POSL will be easier.

At the same time we pretend to develop new operators, depending on the new
needs and requirements. It is necessary, for example, to improve the solver defini-
tion language, allowing the process to build sets of many new solvers to be faster
and easier. Furthermore, we are aiming to expand the communication definition
language, in order to create versatile and more complex communication strategies,
useful to study the solvers behavior.
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As a medium term future work, we plan to include machine learning techniques,
to allow solvers to change automatically, depending for instance on results of their
neighbor solvers.
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