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Introduction

Permanent human settlements gradually emerged here and there before the fourth millenium BC, which is the period urban origins have been traced in Mesopotamia. The spatial morphology of those systems was closely adjusted to the dictates of a local geography, in the sense that settlements were attracted by waterways, accessibility to fertile land, conveniently defensible locations, and the like. But if we set aside landscape variations and their impact on agglomeration, so that we can deal directly with the essential reasons for agglomeration free from the noise of local distortions, we are left with some fundamental questions about the nature of urban origins which still remain open to a signi…cant extent: what determines the transition from spatial dispersion to spatial agglomeration of people over a landscape? what is the emerging spatial pattern? how does the macro-morphology of a settlement pattern re ‡ect the micro-behaviour of agents in that economy?

Our aim here is to contribute in a small way toward the ongoing process of answering these questions. We …rst notice that the growing literature on agglomeration modelling is fragmented. As the volume of Fujita and Thisse [8, 2002] on agglomeration clearly indicates, the complexity of this subject does not allow working on a single, comprehensive model at present. However, inspite of its fragmentation, two themes run across the gallery of existing agglomeration models with few exceptions.

Firstly, the space on which these models produce agglomeration is typically nonhomogeneous in the sense that it contains features, such as boundaries, which implicitly order locations according to centrality or according to distance from something else. Here, by contrast, we work on the real line which is the simplest possible perfectly homogeneous space on which we expect to obtain a regular pattern of agglomerations. [START_REF] Beckmann | Spatial Equilibrium in the Dispersed City[END_REF] In our model, the emergence of a settlement pattern on that space is caused by a phase transition which, at a critical moment, forces a regular pattern of local instabilities on the globally stable equilibrium of a perfectly dispersed population. We shall focus our work to that moment of critical instability alone, which has set in motion the sequence of events that led to the onset of permanent human settlements. Any subsequent growth details will remain beyond our scope.

Secondly, the mechanisms used by existing models in order to produce agglomeration seem to come closer to modern conditions rather than to conditions at the time when the …rst cities arose. For example, models of the 'new economic geography' typically emphasise the role of market power, monopolistic competition, increasing returns in production and product variety on agglomeration. [START_REF] Behrens | Agglomeration Theory with Heterogeneous Agents[END_REF] Here, since our aim is to investigate the origin of permanent human settlements where, at the time, both non-market and primitive market institutions were equally important, we focus on second-nature causes rather than …rst-nature causes to agglomeration. In particular, we adopt a very simple behavioural mechanism borrowed from Papageorgiou and Smith (PS) [12, 1983] who maintained that spatial distributions of identical individuals around those early times were determined by their attitudes regarding spatial interaction and by the properties of spatial interaction itself. [START_REF] Christaller | Die Zentralen Orte in Süddeutschland[END_REF] Since the landscape in PS was a torus (two-dimensional analogue of a circle) their analysis was limited to the necessary and su¢ cient conditions for the critical instability in the case of identical individuals. Our scope is extended to include necessary and su¢ cient conditions for the emergence of regular settlement patterns and for the spatial characteristics of those patterns in single-agent and two-agent population types. [START_REF] Beckmann | Spatial Equilibrium in the Dispersed City[END_REF] An endogenous regular pattern of agglomerations cannot emerge using the 'racetrack' model introduced by Krugman [10, 1993]: although a circle is obviously homogeneous, it has a given length of circumference which is another implicit kind of a boundary condition that requires spacing to be a multiple of the circumference. Furthermore, since we investigate the dynamics of emergence, we must take into account that a regular settlement pattern cannot grow sequentially on a perfectly homogeneous space because, along the sequence, newer settlements are a¤ected by the existence of older ones and this implies spatial heterogeneity. Fujita and Mori [7, 1997] have developed this type of sequential growth model, which describes the evolution of an urban system on a line and the di¤usion of a settlement frontier. [START_REF] Behrens | Agglomeration Theory with Heterogeneous Agents[END_REF] For a review of agglomeration models that belong to the 'new economic geography'see Ottaviano and Puga [11, 1998]. For their theoretical justi…cation see Duranton and Puga [6, 2004]. For a more recent overview of agglomeration models see Behrens and Robert-Nicoud [2, 2015]. [START_REF] Christaller | Die Zentralen Orte in Süddeutschland[END_REF] An early model of agglomeration induced by spatially interdependent individuals has been proposed by Beckmann [1, 1976].

2. One Type of Agent 2.1. The Model. Our physical space is the real line X ( 1; 1) with locations x; y; z 2 X. A continuum of identical agents is distributed over X with local density at time t denoted by n [x; t] and a …xed, …nite average density

n = Z X n [x; t] dx Z X dx : (1) 
Following PS, we assume that spatial population interactions can be expressed through a spatial externality generated by one's potential to interact with others, which can cause either positive or negative externality e¤ects. The potential of an agent at x to interact with an agent at y is given by a non-increasing function of distance, g [x; y], which determines how the externality di¤uses over space. Since the interaction potential depends only on distance, and given space isotropy, its spatial pattern around any location remains invariant and obeys

g [x; y] = g [y; x] and Z X g [x; y] dy = G; (2) 
where G is …nite and re ‡ects the intensity of spatial interaction among agents. It is as if every agent, who stands at the centre of a spatial interaction …eld of size G, emits an externality which di¤uses its impact to others over X. At the same time, an agent at x receives a composite of externalities emitted by those at y equal to g [x; y] n [y; t]. The global composite of such externalities received by an agent at x is given by

E [x; t] = Z X g [x; y] n [y; t] dy (3) 
and represents a spatial externality, which provides the cornerstone to our model. At every location, the spatial externality is determined by the spatial distribution of agents relative to that location. Agents at x are sensitive to the current local density n [x; t], in the sense that they prefer more land, and to the current size of the spatial externality E [x; t] there. Thus their current utility level is given by

V [x; t] = v [n [x; t] ; E [x; t]] with @v @n < 0:
The corresponding average utility

V [t] = Z X n [z; t] V [z; t] dz Z X n [y; t] dy (4) 
is …nite. Agents costlessly adjust toward highest perceived utility because their information is imperfect. We also assume that their behaviour is myopic, in the sense that their migration decisions are not a¤ected by past events or future prospects. And since individual migration decisions depend on spatial population distributions alone, spatial adjustments of all agents depend only on the current state of the system. Hence the Markov assumption applies, so that the system's adjustment process is given by

@ @t n [x; t] = Z X n [y; t] P [y ! x; t] dy Z X n [x; t] P [x ! y; t] dy; (5) 
where P [x ! y; t] denotes the probability density that an agent will move from x to y at time t. [START_REF] Palma | Individual Decision-Making in Dynamic Collective Systems[END_REF] In other words, the expected population density change in any location at a particular time is determined by the di¤erence between the increase caused by the expected immigration of all those who come from elsewhere and the corresponding decrease from the expected emigration of local residents. We adopt a simple form of probability density that depends on the spatial distribution of both agents and welfare opportunities, namely,

P [x ! y; t] = n [y; t] V [y; t] Z X n [z; t] V [z; t] dz : (6) 
Introducing ( 4) and ( 6) to (5) gives

@ @t n [x; t] = V [x; t] V [t] 1 n [x; t] : (7) 
2.2. Spatial Equilibrium Perturbations. As the distributions of the spatial externality and the population continuously adjust to each other, they may drive the adjustment process (7) of the system toward a steady-state de…ned as

@ @t n [x; t] = 0 for all x 2 X: (8) 
A steady-state implies equal utility levels by (7). Furthermore, the spatially uniform population distribution n [x; t] = n for all x 2 X represents a steady-state solution of (7). Under such spatial uniformity, all agents enjoy the same utility level V = v n; E ; where E nG by (2) and (3). We name the spatially uniform steady-state a spatial equilibrium which, for us, corresponds to a time before the emergence of permanent human settlements. And since any spatial population distribution other than a perfectly ‡at one in a perfectly homogeneous region implies some kind of agglomeration, the conditions under which the spatial externality induces agglomeration become equivalent to those that render such a perfectly ‡at steady-state unstable. Following PS, we shall consider the case where a locally stable, perfectly ‡at steady-state becomes locally unstable.

Hold the total population of the system …xed at spatial equilibrium and apply a very small initial perturbation dn [x] over the entire X at time t = 0. Assume that the spatial evolution of the perturbed system for a very short time after the initial perturbation can be separated into the time-independent spatial equilibrium part n and a corresponding perturbed part n 1 , that is,

n [x; t] = n + n 1 [x; t] (9) 
for all x 2 X, where the perturbed part, during that very short period, remains very small relative to the equilibrium part. Linearisation of ( 7) at the stationary state leads to a linear equation which can be written as

@ @t n 1 [x; t] = n 1 [x; t] ; (10) 
where is a global parameter that determines local stability in the system. If < 0, perturbation parts will diminish in absolute terms everywhere in X during the very short period after the initial perturbation, so that the locally stable spatial equilibrium will be restored. And if > 0, perturbation parts will augment and the locally unstable spatial equilibrium may evolve toward a system of agglomerations which, for us, represents a system of early permanent human settlements.

The solution to (10) is

n 1 [x; t] = n 1 [x; 0] e t dn [x] e t : (11) 
This is a local solution which applies to the initial perturbation at the vicinity of the spatial equilibrium. Replacing n 1 [x; t] from ( 11) in ( 9) we obtain

n [x; t] = n + dn [x] e t (12) 
which can serve as a solution to (7) during a very short time after the induced set of very small initial perturbations. [START_REF] Diamond | Guns, Germs and Steel: The Fates of Human Societies[END_REF] . In what follows we omit the time notation. If we replace (4) and ( 12) into the adjustment process (7), expand utility about n; E and retain only linear terms, we arrive at

Linear Stability Analysis

n V @v @ n dn [x] = n V @v @ E Z X g [x; y] dn [y] dy: (13) 
This calculation is shown in appendix 5.2. Taking Fourier transforms on (13) and using its convolution property yields

n V @v @ n F ! [dn [x]] = n V @v @ E F ! [g [x; y]] F ! [dn [y]]: (14) 
where F ! [ ] denotes the Fourier transform of [ ] and ! is the Fourier variable. [START_REF] Duranton | Micro-Foundations of Urban Agglomeration Economies[END_REF] . Notice that

F ! [dn [x]] = F ! [dn [y]] because F ! [dn [x]] = Z X dn [x] e i!x dx = Z X dn [y] e i!y dy = F ! [dn [y]]:
Taking this into account, ( 14) can be written as

= n V @v @ n + @v @ E F ! [g [x; y]] : (15) 
We next need to specify the interaction potential. We assume that the impact of those in y to someone in x declines as the distance jx yj between those two increases, that is, g 0 < 0. We also assume that the e¤ect of a distance increment between those two is stronger for shorter distances because the relative distance increase from the same distance increment is smaller for longer distances, that is, g 00 > 0. These two assumptions are satis…ed by

g [x; y] = exp ( a jx yj) ; (16) 
where a > 0 is a spatial impedance parameter which determines how fast interaction declines with distance. Using ( 2) and ( 16), we obtain G = 2=a.

If we adopt (16) then

F ! [g [x; y]] = 2a a 2 + ! 2 : (17) 
Replacing ( 17) in (15), and taking into account that E = 2 n=a, we obtain

[!] = n V @v @ n + @v @ E d E d n a 2 a 2 + ! 2 : (18)
The spatial equilibrium is locally stable if and only if [!] < 0 for all ! 0. This and (18) imply that

@v @ n + @v @ E d E d n < 0 (19) 
is both necessary and su¢ cient for the local stability of our spatial equilibrium. The …rst term in (19) denotes the marginal cost of increased congestion on the utility of agents caused by an increased, uniform level of population density; and the second term denotes the corresponding marginal e¤ect of the spatial externality. [START_REF] Fujita | Structural Stability and Evolution of Urban Systems[END_REF] The latter may be either a cost or a bene…t, depending upon whether the spatial externality is negative or positive. Now imagine that the spatial externality term increases smoothly at a continuous rate and that it causes the LHS in (19) to also increase smoothly. As long as the marginal cost of increased congestion dominates over the growing marginal bene…t of the spatial externality, < 0 so that the spatial equilibrium remains locally stable and the population remains dispersed. But if this trend persists, there is a time t = t when these two marginal e¤ects balance each other and the condition (19) is replaced by

@v @ n + @v @ E d E d n = 0 (20) 
which implies = 0 at t = t and which marks the time of the critical instability. Using (18), this requires a solution ! to [!] such that

n V @v @ n + @v @ E d E d n a 2 a 2 + (! ) 2 = 0: (21) 
Since is increasing smoothly over time, we have > 0 at t = t + dt and any very small initial perturbation over X forces the emergence of local instabilities which follow a regular pattern on X determined by ! . Comparison of (20) and (21) yields ! = 0. Since according to (A1) in appendix 5.1 the regular spacing of locally unstable locations is inversely proportional to ! , the distance between such locations over X must be in…nite. And since (21) implies that [!] < 0 for all ! > 0, the entire X remains locally stable during a very short time after the critical instability, and the initial perturbation diminishes over X to restore the original perfectly homogeneous population distribution.

We have found that the same type of degeneracy applies to other speci…cations of the interaction potential, such as the window-type which assumes that agents are sensitive to the presence of others within a certain range. We conclude that, in our model, a gradually increasing spatial externality e¤ect which operates on a population of identical individuals cannot force a non-degenerate, regular settlement pattern at the critical instability. The reason can be traced in the early social development of humans. [START_REF] Fujita | Economics of Agglomeration: Cities, Industrial Location and Regional Growth[END_REF] Before the onset of permanent settlements, people remained dispersed in small hunter-gatherer bands both because land could not support their way of life in large numbers and because competition for subsistence meant that an encounter with strangers could be dangerous. These imply that in early times (19) was satis…ed with both LHS terms negative. With the passage of time, people gradually abandoned their nomadic life because food production generated higher returns per unit of land. Average population densities began to increase. Accumulated food surpluses freed some individuals from food production, created occupational specialties and accelerated social organisation away from the roughly egalitarian norm of hunter-gatherer groups toward more complex schemes. The growth of specialisation, in turn, implied a growing need to interact, which made proximity to others attractive. In our context, this describes the gradual increase of spatial externality terms related to distinct interacting populations. Therefore, from a historical point of view, it seems that the critical instability arose from a growing need for interaction among members of different population groups. We are thus led to introduce a second type of agent, and to expect that this will be su¢ cient for the emergence of a non-degenerate, regular settlement pattern over our perfectly homogeneous landscape.

Two Types of Agent

The Model.

There are two types of agent, namely, a continuum of farmers (type 1) and a continuum of artisans (type 2), which are distributed over X with densities n 1 [x; t] and n 2 [x; t] respectively. Both average densities n 1 and n 2 are …nite.

Farmers are sensitive to the local density of farmers in the sense that they prefer more land, and to the spatial distribution of artisans in the sense that they prefer better access to a larger number of artisans. Thus their current utility level is given by

V 1 [x; t] = v 1 [n 1 [x; t] ; E 1 [x; t]] with @v 1 @n 1 < 0 and @v 1 @E 1 > 0:
where

E 1 [x; t] = Z X g 1 [x; y] n 2 [y; t] dy:
Artisans are sensitive to the local density of artisans and to the spatial distribution of farmers. The local density of artisans can have either a negative e¤ect in the sense that higher density implies a lower proportion of farmers actually visiting a particular artisan, or a positive e¤ect in the sense that a larger agglomeration of artisans attracts more farmers. Furthermore, artisans prefer better access to a larger number of farmers, which implies that the trip dispersion behaviour of farmers generates a symmetrically complete state of spatial interdependence between those two distinct populations. We therefore write the current utility level of artisans, without restricting the e¤ect of local density, as

V 2 [x; t] = v 2 [n 2 [x; t] ; E 2 [x; t]] with @v 2 @E 2 > 0 where E 2 [x; t] = Z X g 2 [x; y] n 1 [y; t] dy:
Finally, we assume that average utilities and pro…ts

V j [t] = Z X n j [z; t] V j [z; t] dz Z X n j [y; t] dy for j = 1; 2
are …nite, while interaction potentials obey

g j [x; y] = g j [y; x] and Z X g j [x; y] dy = G j
where g j is non-increasing with distance and G j is …nite.

Using the same structure of probabilities as in Section 2.1 on the two Markov adjustment processes, we obtain

@ @t n j [x; t] = V j [x; t] V j [t] 1 n j [x; t] : (22) 
3.2. Spatial Equilibrium Perturbations. As in Section 2.2, the spatially uniform distributions n 1 [x; t] = n 1 and n 2 [x; t] = n 2 for all x 2 X represent steady-state solutions of the system (22). Under these conditions, all farmers and artisans enjoy the same utility and pro…t level V j = v j n j ; E j ; where E j n j G j for j = 1; 2. We name the combination of these two spatially uniform steady-states a spatial equilibrium. Adjusting the arguments of Section 2.2 for the case of two populations, we consider a solution

n j [x; t] = n j + dn j [x] e t ; (23) 
which solves the system (22) during a very short time. We next investigate the stability of (22) in the case of very small initial perturbations.

Linear Stability Analysis.

Following the procedure that led to (13) in Section 2.3, we arrive at

n 1 V 1 @v 1 @ n 1 dn 1 [x] = n 1 V 1 @v 1 @ E 1 Z X g 1 [x; y] dn 2 [y] dy n 2 V 2 @v 2 @ n 2 dn 2 [x] = n 2 V 2 @v 2 @ E 2 Z X g 2 [x; y] dn 1 [y] dy: (24) 
This calculation is shown in appendix 5.3. Taking Fourier transforms on (24) and using its convolution property implies

n 1 V 1 @v 1 @ n 1 F ! [dn 1 [x]] = n 1 V 1 @v 1 @ E 1 F ! [g 1 [x; y]] F ! [dn 2 [y]] n 2 V 2 @v 2 @ n 2 F ! [dn 2 [x]] = n 2 V 2 @v 2 @ E 2 F ! [g 2 [x; y]] F ! [dn 1 [y]] : (25) 
The anti-symmetric structure of these two equations re ‡ects the premise that location decisions of a farmer (of an artisan), depend on the spatial distribution of artisans (of farmers) through their respective spatial externalities. Upon multiplication of these two, we get

C 11 C 12 = C 21 1 G 1 F ! [g 1 [x; y]] C 22 1 G 2 F ! [g 2 [x; y]] ; (26) 
where

C 1j n j V j @v j @n j ; C 21 n 1 V 1 @v 1 @ E 1 d E 1 dn 2 and C 22 n 2 V 2 @v 2 @ E 2 d E 2 dn 1 : (27) 
We next impose the structure of interaction potentials for the two types of agent. For farmers, we continue to use the speci…cation (16). For artisans, we assume that they model their expected pro…ts associated with a particular location x based on the total number of farmers within a certain range from that location:

g 2 [x; y] = 8 < : 1 for jx yj a 2 0 for jx yj > a 2 with G 2 = 2a 2 and F ! [g 2 [x; y]] = 2 sin [a 2 !] =!.
This re ‡ects in a simple manner the range of a good as it is treated in Christaller's [3, 1933] central-place theory.

Replacing the two Fourier transforms into (26), taking into account the structure of G 1 and G 2 , and solving for yields

[!] = 1 2 C 11 + C 12 C 11 C 12 2 + 4C 21 a 2 1 a 2 1 + ! 2 C 22 sin [a 2 !] a 2 ! 1=2 ! : (28) Figure 1
Graphs of as a function of a 2 ! are shown in Figure 1 where, for di¤erent parameter values, the function attains a unique maximum between and 3 =2. [START_REF] Harris | Handbook of Mathematical and Computational Science[END_REF] We know that the regular pattern of initial agglomerations will appear only if is negative for all ! 0 except at ! with 0 < ! < 1; where [! ] = 0. When C 11 + C 12 < 0 (28) implies that < 0 for ! 0, that is, C 11 + C 12 < 0 is su¢ cient for the local stability of the spatial equilibrium. From this observation and (27), we conclude that

n 1 V 1 @v 1 @n 1 + n 2 V 2 @v 2 @n 2 > 0 (29) 
is necessary for local instability. Therefore increasing returns to scale in the agglomeration of artisans (caused by an increased level of their spatially uniform density) is a necessary condition for the local instability of the spatial equilibrium. Moreover, increasing returns must be su¢ ciently strong in the sense that C 11 + C 12 > 0. Using (28), for C 11 + C 12 > 0 , the spatial equilibrium will be locally stable if and only if

@v 1 @n 1 @v 2 @n 2 < @v 1 @ E 1 d E 1 dn 2 a 2 1 a 2 1 + ! 2 @v 2 @ E 2 d E 2 dn 1 sin [a 2 !] a 2 ! : (30) 
It follows that a stronger marginal disutility of congestion and stronger increasing returns to scale in the agglomeration of artisans increase the likelihood of local stability. However, (29) implies that su¢ ciently strong increasing returns to scale in the agglomeration of …rms is necessary for local instability. Thus, although increasing returns must be strong enough to overcome the corresponding marginal disutility of congestion for the emergence of agglomerations over R, they must not exceed the size that will validate (30): both upper and lower limits on increasing returns are necessary if a regular pattern of initial agglomerations is to appear. On the other hand, from (30) once again, we see that stronger spatial externality e¤ects on utility and pro…t functions increase the likelihood of instability because the restriction < a 2 ! < 3 =2 in Figure 1 implies sin (a 2 !) < 0.

Using (??) in appendix 5.1 and < a 2 ! < 3 =2, we obtain upper and lower bounds on the spacing L of initial agglomerations:

4 3 a 2 < L < 2a 2 :
Once L has been calculated, the emerging regular pattern can only be determined up to an arbitrary origin because X is perfectly homogeneous and the initial perturbation is random. We know that this pattern includes the only places on our linear landscape where agglomeration can actually begin. We also know that the upper bound on spacing corresponds to Christaller's [3, 1933] requirement that market areas of central places must not overlap and must not leave empty spaces between them, so that the distance between adjacent central places must equal twice the range of the good a 2 .

Our results di¤er in the sense that the potential market areas of artisans located inside any two consecutive initial agglomerations on X will necessarily overlap.

3.4. Spatial Interaction E¤ects. Our …nal task is to investigate the impact of the spatial interaction parameters a j on the formation and morphology of our simple, regular settlement pattern. It is convenient to begin with the e¤ect of these parameters on spacing. Taking into account (30), we de…ne

' ! [a 1 ; a 2 ] a 2 1 a 2 1 + ! 2 sin [a 2 !] a 2 ! : (31) 
The value ! of the Fourier variable that maximises [!] is given by the solution to

d d! ' ! [a 1 ; a 2 ] = 0 for < a 2 ! < 3 2 ;
which implies

1 2 3 + a 2 1 (! ) 2 1 = tan [a 2 ! ] a 2 ! : (32)

Figure2

The LHS of (32) is decreasing over ! while the RHS is increasing over a 2 !. The intersection between the graphs of those two determines ! . Consider Figure 2. Notice that, as a 1 increases with ! held constant, the LHS of (32) increases. Then, holding a 2 …xed in (32), ! increases when a 1 increases. And since the value ! which corresponds to the moment of the critical instability must satisfy (32), using (??) in appendix 5.1, we conclude that the spacing L between initial agglomerations is shorter for a higher cost of spatial interaction for farmers.

Figure 3

In Figure 3, as a 2 increases with ! held constant, the RHS of (32) increases for

< a 2 ! < 3 =2 because @ @a 2 tan [a 2 !] a 2 ! = a 2 ! sin [a 2 !] cos [a 2 !] > 0: (33) 
Then, holding a 1 …xed, ! decreases. It follows that the spacing between initial agglomerations is larger for larger potential market areas of artisans. We conclude our analysis by evaluating the impact of the parameters a j on local stability. Solving for a [START_REF] Behrens | Agglomeration Theory with Heterogeneous Agents[END_REF] 1 in (32) and replacing this value in (31), we obtain

' ! [a 1 ; a 2 ] = 1 2 cos [a 2 ! ] 3 tan [a 2 ! ] a 2 ! 1 :
It follows that

@' ! @ (a 2 ! ) = 1 2 3 a 2 ! cos [a 2 ! ] + sin [a 2 ! ] 1 3 (a 2 ! ) 2 < 0 (34) 
because < a 2 ! < 3 =2. We already know that, as a 1 increases with a 2 held constant, ! increases. Then, using (34) we conclude that @' ! =@a 1 < 0. Notice from (30), that the impact of a decreasing ' ! on its right-hand side is the same as the impact of an increasing spatial externality e¤ect. This implies that a higher cost of spatial interaction for farmers increases the likelihood of instability.

In order to evaluate the impact of a 2 on local stability, we re-write (31) as

[A] A 2 A 2 + 2 sin [ ] ;
where A a 1 a 2 and a 2 !. With a 1 increasing and a 2 held constant, we know from (34) that @ =@A < 0. But A also increases with a 2 increasing and a 1 held constant. Once again, upon comparison with (30), we conclude that a larger potential market area of artisans increases the likelihood of instability.

Questions and Some Anwers

The space for our models is provided by the real line. Interacting population continua exist on that space, with their initial spatial distributions perfectly ‡at. We begin with locally stable spatial distributions and aim to trace their transition from local stability to local instability, which is perhaps leading toward a regular pattern of initial agglomerations on the real line. We imagine that, with the passage of time, densities are steadily rising and agents adapt their attitudes about spatial interaction. These are meant to re ‡ect the gradual transition from a nomadic life to agriculture, from the roughly egalitarian norm of primitive groups to strati…ed social structures, to increasing specialisation of skills and, …nally, to the onset of permanent human settlements.

In the single-type model, rising local congestion is a cost while globally rising density, which increases the spatial externality e¤ects over X, can be either a cost or a bene…t. In the two-types model, for farmers, rising own-type local congestion is a cost while globally rising artisans'density is a bene…t because it reduces expected search costs. On the other hand, artisans may like or dislike rising own-type local congestion depending on whether this augments or reduces the number of their potential contacts with customers; and they like globally rising customers'density because it increases potential interaction with them.

What determines the transition from spatial dispersion to spatial agglomeration of people over a landscape?

In the single-type model, this transition occurs when the marginal cost of an increased congestion on utility is exactly balanced by the corresponding marginal bene…t of an increased spatial externality e¤ect. Both these marginal e¤ects are caused by a rising average population density, which is consistent with the observation that the force behind the approaching local instability of dispersion in early societies is the gradual accumulation of food surpluses which supported the ongoing specialisation growth. Immediately after that time of perfect balance, any further very small increase in the positive e¤ect of the spatial externality, which tilts the balance from a marginal cost to a marginal bene…t, causes the emergence of a regular pattern of unstable locations if it coincides with a small perturbation over the entire space which, by itself, does not a¤ect the average population density.

In the two-types model, increasing returns to scale in the agglomeration of artisans (caused by an increased level of their spatially uniform density), which are su¢ ciently strong to overcome the corresponding marginal cost of increased congestion on the utility of farmers, is a necessary condition for the local instability of the spatial equilibrium. However, we know that stronger increasing returns to scale in the agglomeration of artisans and stronger marginal disutility of congestion can also increase the likelihood of local stability. Thus, even though increasing returns must be strong enough to overcome the corresponding marginal disutility of congestion for the emergence of agglomerations over the land, they must not exceed a particular level that will revert the spatial equilibrium to local stability: both upper and lower limits on increasing returns are necessary if a regular pattern of initial agglomerations is to appear. We also know that stronger spatial externality e¤ects on pro…t and utility functions increase the likelihood of local instability. We conclude that the emergence of a regular settlement pattern over our perfectly homogeneous landscape is encouraged by stronger global externality e¤ects on pro…t and utility, and discouraged by corresponding local e¤ects-provided increasing returns are outside of the range they are necessary for local instability. Finally, with regard to the spatial interaction parameters in our system, we have established that a higher cost of spatial interaction for farmers and a larger potential market area of artisans increase the likelihood of local instability.

What is the emerging spatial pattern?

In the single-type model, the system remains locally stable during a very short time after the critical instability, so that the initial perturbation diminishes over the entire space to restore the original, evenly dispersed population distribution.

In the two-types model, a regular pattern of locally unstable locations emerges as an immediate reaction to the time of critical instability while, everywhere else, local stability persists. This is how we obtain a regular pattern of locations, which can be speci…ed up to an arbitrary origin, and which includes the only places on our linear landscape where agglomeration can actually begin. The spacing between two adjacent initial agglomerations must be longer than 4/3 of the range of the good provided by the artisans and shorter than twice that range. This upper bound on spacing actually corresponds to the central-place theory requirement that market areas must touch without overlapping, that is, the distance between any two adjacent central places must equal twice the range of the good they provide. Since, in our case, twice the range is only an upper bound, the potential market areas of artisans located inside neighbouring initial agglomerations will necessarily overlap.

How does the macro-morphology of a settlement pattern re ‡ect the micro-behaviour of agents in that economy?

In the two-types model, the spacing between initial agglomerations is larger for larger potential market areas of artisans and smaller for higher cost of spatial interaction for farmers. Stated otherwise, more extended domains of spatial interaction for the two types imply a wider spacing of initial agglomerations. These two conclusions provide examples of what Fujita and Thisse [8, 2002] call the fundamental trade-o¤ of spatial economics.

5. Appendices 5.1. The Fourier Integral. At the moment when the spatial equilibrium becomes locally unstable, we seek to determine the spatial pattern of local instabilities which, for us, represent possible locations for an emerging settlement pattern. In order to solve this problem we use the concept of a Fourier integral. Any initial perturbation over X can be expressed in terms of this integral expansion as

dn [x] = Z 1 1 F ! [dn [x]] e i!x d!;
where F is the Fourier transform, i is the imaginary unit and ! is the Fourier variable. [START_REF] Krugman | On the Number and Location of Cities[END_REF] For every x 2 X, the Fourier integral decomposes the arbitrary, nonperiodic initial perturbation dn [x] into a continuum of elementary periodic functions F ! [dn [x]] e i!x with period L determined by its Fourier variable as

L = 2 ! : (A1)
Suppose we can express the stability parameter in terms of the Fourier variable, and we …nd that [!] < 0 for all !. In that case the spatial equilibrium will be locally stable. If however there is a solution ! to [!] = 0 such that [!] < [! ] for all ! 6 = ! then the spatial equilibrium is on the verge of becoming locally unstable. To …x ideas, consider …gure 4. The graph of [!] in that …gure is negative for all ! at t = t 1 : Imagine now that for some reason this graph shifts upwards over time. Then, eventually, its maximum can become equal to zero. This determines the moment t = t of the critical instability, when a single elementary periodic function F ! [dn j [x]] e i!x j ! emerges with ! determined by the unique solution to [!] = 0. If a further, in…nitessimal upward shift of the graph in …gure 4, coincides with the timing of the initial perturbation then a regular pattern of neighbourhoods on X will emerge where and only where > 0. The distance between these locations, where the spatial equilibrium …rst becomes locally unstable, is given by the period L of that perturbation, which is determined by (A1). It is as if the crest of each regular wave of the elementary periodic function F ! [dn j [x]] e i!x j ! marks the perturbed spatial equilibrium at points on X which are L units apart from each other. At these regularly-spaced points shown in …gure 5, where = 0, the spatial equilibrium over X will become locally unstable while everywhere else, where < 0, perturbations will diminish in absolute terms toward the spatial equilibrium distribution. (13). Replace ( 4) and ( 12) in (7) V n which can be written as (13).

Derivation of (24).

Here we adjust step-by-step the arguments used in appendix 5.2 to derive the analog on the …rst line of (13) for individuals in the twotypes model. If we replace V 1 in (22) with its explicit value and use (23), we obtain while, retaining only linear terms in the utility function, implies

e t dn 1 [x] = 0 B B @ V 1 [x; t] Z X n 1 [y; t] dy Z X n 1 [z; t] V 1 [z; t] dz 1 1 C C A n 1 [x; t] = 0 B B @ v 1 [n 1 [x; t] ; E 1 [x; t]] Z X n 1 [y; t] dy Z X ( n 1 + e t dn 1 [z]) v 1 [n 1 [z; t] ; E 1 [z; t]] dz
v 1 [n 1 [x; t]; E 1 [x; t]] = V 1 + @v 1 @ n 1 e t d n 1 [x] + @v 1 @ E 1 e t dE 1 [x] :
Furthermore, we can simplify the denominator of (A5) to obtain

Z X n 1 + e t dn 1 [z] v 1 [n 1 [z; t] ; E 1 [z; t]] dz = n 1 V 1 Z X dz:
Therefore (A5) can be re-written as

e t dn 1 [x] = @v 1 @ n 1 e t dn 1 [x] + @v 1 @ E 1 e t dE 1 [x] V 1 n 1 + e t dn 1 [x]
which, keeping only linear terms, simplifying by e t and taking into account 
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  + e t dn [z]) v [n [z; t] ; E [z; t]] dzUpon replacement of this expression in (A2), we get Finally, keeping only linear terms and simplifying by e t , gives

									to obtain
		0	0		Z		Z		1	1
	e t dn [x] = e t dn [x] = B B @	B B @ v [n [x; t] ; E [x; t]] V [x; t] X n [y; t] dy Z n [z; t] V [z; t] dz X nV Z	1 C C A n [x; t] n + e t dn [y] dy dz	1 C C A n + e t dn [x] :
				X			X	
	= Using (A4) on the last expression, together with the de…nition of average population 0 B B @ v [n [x; t] ; E [x; t]] Z X 1 n [y; t] dy Z 1 C C density (1), yields A n + e t dn [x] : (A2) e t dn [x] = v [n [x; t] ; E [x; t]] V 1 n + e t dn [x]
	Recall that	E = =	Z X 0 g [x; y] ndy and dE[x] = B @ V + @v @ n e t dn [x] + @v @ E e t dE [x] Z X g [x; y] dn [y] dy: 1 V 1 C A n + e t dn [x]	(A3)
	Then from (3),						
			=	@v @ n	e t dn [x] + e dn [x] = @v @ E @v @ n dn [x] +	@v @ E	dE [x]
						= V +	@v @ n	e t dn [x] +	@ E @v	e t dE [x] :	(A4)
	Using (A4), we can simplify the denominator on the RHS of (A2) as
	Z X	n + e t dn [z] V +	@v @ n	e t dn [z] +	@v @ E	e t dE [x] dz =
	Z X	n + e t dn [z] V +	@v @ n	e t dn [z] +	@v @ E	e t	Z X	g [x; y] dn [y] dy dz;
	which, after dropping second-order terms, yields Z

X

( n

E [x; t] = Z X g [x; y] n + e t dn [y] dy = Z X g [x; y] ndy + Z X g [x; y] e t dn [y] dy = E + e t dE[x]:

Now retain only linear terms in the utility function:

v[n[x; t]; E[x; t]] = v n + e t dn [x] ; E + e t dE [x] X n[z; t]V [z; t] = nV Z X dz: t dE [x]

V n + e t dn [x] :

For a derivation see de Palma and Lefèvre[START_REF] Palma | Individual Decision-Making in Dynamic Collective Systems[END_REF] 1983].

This section requires familiarity with the information provided in appendix 5.1 about the Fourier approach as it applies to our context.

For the convolution of two functions and the convolution theorem of Fourier transforms see, Harris and Stoker[START_REF] Harris | Handbook of Mathematical and Computational Science[END_REF] 1998] section 19.2.6, pp.

710, 711. 

This is precisely the original condition derived by PS.

See Parsons[START_REF] Parsons | The Evolution of Societies[END_REF] 1977]. For a concise account of early social evolution, see Diamond[START_REF] Diamond | Guns, Germs and Steel: The Fates of Human Societies[END_REF] 1999], chapter 4.

By contrast, the corresponding extreme for + [!] is a minimum.

For the Fourier integral and the Fourier variable see Harris and Stoker[START_REF] Harris | Handbook of Mathematical and Computational Science[END_REF] 1998], sections 19.2.4, p. 708 and 19.1.4, p. 695, respectively.