
HAL Id: hal-01436067
https://hal.science/hal-01436067

Submitted on 26 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

COSTOTest: a tool for building and running test
harness for service-based component models (demo)

Pascal Andre, Jean-Marie Mottu, Gerson Gerson Sunyé

To cite this version:
Pascal Andre, Jean-Marie Mottu, Gerson Gerson Sunyé. COSTOTest: a tool for building and running
test harness for service-based component models (demo). ISSTA 2016 Proceedings of the 25th Inter-
national Symposium on Software Testing and Analysis, Jul 2016, Saarbrücken, Germany. pp.437-440,
�10.1145/2931037.2948704�. �hal-01436067�

https://hal.science/hal-01436067
https://hal.archives-ouvertes.fr

Demo:

COSTOTest: A Tool for Building and Running

Test Harness for Service-based Component

Models

Pascal André1, Jean-Marie Mottu1,2, and Gerson Sunyé1,2

1 LINA - University of Nantes, France
2Inria, Mines Nantes

[pascal.andre,jean-marie.mottu,gerson.sunye]@univ-nantes.fr

April 26, 2017

Abstract

Early testing reduces the cost of detecting faults and improves the sys-
tem reliability. In particular, testing component or service based systems
during modeling frees the tests from implementation details, especially
those related to the middleware. COSTOTest is a tool that helps the
tester during the process of designing tests at the model level. It sug-
gests the possibilities and the lacks when (s)he builds test cases. Building
executable tests is achieved thanks to model transformations.

1 Introduction

Early testing reduces the cost of Verification and Validation (V&V) [1]. In
Model-Driven Development (MDD), models describe the system and can be
tested to validate its correctness [2]. Testing models reduces V&V complex-
ity [3]: it helps to focus on platform-independent faults, which are costly cor-
rected later (they can be spread in the code).

In [4], we considered early testing of Service-based Component (SBC) Mod-
els to detect platform-independent errors i.e. at the model level. Testing such
applications’ code is tricky due to the middleware information that implements
communications. Nevertheless, testing such applications’ model introduces some
problematics, that we considered in [4]. In particular, as mentioned by Vincenzi
et al. [5], encapsulation decreases testability (i.e. observability and controlla-
bility). Moreover, a tester should manage the dependencies between compo-
nents, fulfilled by their services. Our contribution is an integrated and assisted

1

approach to build and to execute test cases on these models. Our approach
provides assistance to explore the model elements still preserving encapsulation
and dependencies.

Usually, a tester uses a test harness to provide the test data to the component
under test, and to run the test cases. COSTOTest helps the tester in building
such test harnesses. Our postulate is to consider a test harness like a plain SBC
model: we therefore reuse the full SBC development tool kit (edition, validation,
code generation). We promote testing models by models. This is different than
following a model-based testing approach where models (e.g. UM models) are
used to compute test suites that are implemented with deployment code (e.g.
Java). This last approach has been considered by Rocha et al. [6]. Here the
model testing approach considers the test on the models themselves.

This paper presents the COSTOTest tool, a practical answer to the problem
of building and running test harnesses for Service-based Component Models.
The demonstration overviews the approach and shows its feasibility. The tool
provides facilities to bypass encapsulation in order to build executable test cases.
The tool is available online at http://costo.univ-nantes.fr/.

2 Testing Models by Models

COSTOTest aims to assist testers during SBC testing [5, 7], assuming service’s
contracts to improve the quality [8, 9].

We depict a motivating example at the top of Figure 1 : a platoon of vehi-
cles (illustrated with an extended SCA notation [10]). A component system (a
platoon) is an assembly of components (vehicles) which services are bound by
assembly links. A component encapsulates its state with internal variables (own
speed and position of a vehicle).

The interface of a component defines its provided and required services (each
vehicle provides its speed and position to its follower which requires them). The
interface of a service defines a contract to be satisfied when calling it. The service
may communicate, and the assembly links denote communication channels. The
set of all the services needed by a service is called its service dependency. The
required services can then be bound to provided services.

Any provided service can require data:

• internally to internal variables,

• internally to its own provided services (e.g. the service run requires the
computeSpeed service to update the speed of its component),

• externally to required services in the component’s interface which are sat-
isfied by other components (the service under test in the rest of the paper
computeSpeed calculates the new speed of a component based on its speed,
position, predecessor’s speed and position).

Build test harness as a model
A tester may test the service computeSpeed, which is associated to the com-

ponent named mid with the following safety property : the distance between two

2

http://costo.univ-nantes.fr/

speed

pos

compute

Speed

c

o

n

f

r
u

n

pos

speed

mid:

Simple

Vehicle

leader : Simple

Leader

PlatoonSystem

pilotspeed

pilotpos

speed

pos

speed

pos

compute

Speed

c

o

n

f

r
u

n

pos

speed

last:

Simple

Vehicle

pilotspeed

pilotpos

c

o

n

f

goal
 service

reference

 component

variables

Assembly link

Provided service

Required service

Service call

Component

State space

Read access

Write access

 component
 Composite

 component

Test Component

 component

Mock Component

mid:

Simple

Vehicle

im1 :

DoubleIntegerMock

vtd : Vehicle

TestDriver

compute

Speed

c

o

n

f

c

o

n

f

r
u

n

pilotspeed

pilotpos

intdata1

compute

Speed

speed

pos

testcase1

pos

speed

PlatoonSystem_TH1

configuration

intdata1

im2 :

DoubleIntegerMock

c

o

n

f

intdata2

intdata2

System Under Test

Test Harness
 Test Harness Building

Test Intention

 component

PlatoonTestIntention

Figure 1: A test harness built from the Platoon system according to a test
intention

neighbour vehicles is greater than a value safeDistance . The service behaviour
is dependent on (i) the recommended safe distance from the predecessor, (ii) the
position and speed of the vehicle itself and of its predecessor.

Testing the computeSpeed service of the component mid requires to affect
encapsulated variables: give a value to its safeDistance parameter, initialise
the values of the currentPos and currentSpeed variables, which are used by the
compute Speed service, and find providers for pilotspeed and pilotpos which are
required by computeSpeed.

The model of the test harness (bottom of Figure 1) is build from the System
Under Test (SUT) e.g. the PlatoonSystem composite (top of Figure 1) and a
test intention (middle of Figure 1). The test intention provides the list of which
variables will be part of each test data (such as the above mentioned variables:
position, speed, previous position, previous speed, and safe distance), and what
would be the oracle data (such as the new own speed which is expected to have
an expected value). It is provided by a TestIntention component.

3

COSTOTest helps the tester to (i) build the test harness (establish a consis-
tent and complete context for testing) as illustrated by the bottom of Figure 1,
and (ii) run the test cases with the test data values provided by the tester.

The advantages of testing models by models are those of early testing but
also the possibility of reusing the rich modelling tools panel, and of providing an
adequate framework for co-evolution between the System Under Test Model and
the Test Harness model.

3 COSTOTest: a Testing Assistant

COSTOTest assists the tester in managing the way the test data can be pro-
vided: some of them by the configuration service, other ones by mock compo-
nents, and the oracle by a test driver, as illustrated at the bottom of Figure 1.
To achieve this, the tool helps the tester:

• to select the services and components from the SUT model according to
a test intention;

• to check the test harness assembly correctness and completeness, satisfying
assembly constraints;

• to bind required services to mocks provided in COSTOTest libraries;

• to check the test harness consistency and completeness regarding its test
intention (that may be improved/completed during the test harness build-
ing);

• to generate a test component including the testcase services e.g. vtd in
Figure 1;

• to launch the test harness with several test data values sets and to collect
the verdicts.

Test Harness

Transformation
SUT Model

(PIM)

Test Intention

(TI)

Test

Execution

Verdict

Data source

Harness

+ SUT

(TSM)

Code
Mappings

Transformation

Operational Framework

(PDM)

Data

Figure 2: Testing process overview

Model transformation approach
The testing process is a sequence on model transformations which succes-

sively merge models, integrating features into them, as illustrated Figure 2. The
input the System Under Test is a PIM (Platform Independent Model) of the
SBC and a Test Intention is also a model described with a Domain Specific
Language (DSL) cf. Figure 3. The process is made of two successive model
transformations which return an executable code of the test harness.

4

The first model transformation is a model-to-model transformation. It builds
the test harness as an assembly of selected part of the SUT with test compo-
nents (mocks, test driver), and returns a Test Specific Model (TSM). It is semi-
automatic: the test intention is provided by the tester and COSTOTest asks
her/him to make choices, that are selected based on static analysis of the PIM.
During this first step, the aim for the tester is to build a harness such as the
one illustrated in the bottom of Figure 1 : PlatoonSystem TH1.

Figure 3: Test Intention

The second transformation is a model-to-code transformation, COSTOTest
generates the code to simulate the behaviour of the harness. It merges the
harness with a Platform Description Model (PDM) to get code (Java code in this
case). It can be executed, because the model of the components describes the
behaviour of the services, in the form of Communicating Finite State Machines.
The test data and test oracle providers are designed in the PDM, thanks to the
input “Data”. A “data source” is generated, it is an XML file, with a structure
corresponding to the test intention, and that the tester should fulfil with concrete
values.
Implementation

In the current version of COSTOTool, the models (PIM and TSM) are de-
scribed with the Kmelia modelling language [9], and the PDM framework is writ-
ten in Java with an ad hoc communication layer for services and components.
We can develop other PDM dedicated to different implementation languages,
and to support different modelling languages.

The PIM may include primitive types and functions (numbers, strings, I/O...)
that must also be mapped to the code level. These mappings are predefined in
standard libraries or defined by the user. High-level TSM primitives are auto-

5

matically connected to low level (PDM, code) functions, as illustrated in Fig-
ure 4. If the mapping is complete and consistent, then the model is executable.

Figure 4: Test harness Concrete data and Function Mapping

COSTOTest exploits API features (1) to detect missing mappings between
the TSM and the PDM, (2) to generate standard primitive fragments (e.g. idle
functions, random functions). The mappings are stored in libraries in order to
be reused later and the entries can be duplicated to several PDM.

Build such a test harness at the model level induces an additional effort
(the models are not considered only to develop the service-based component’s
implementation), but the errors detected are less expensive to solve than those
of components and services once deployed on specific platforms. Moreover, if
the component model is implemented several times targeting several different
PDM, the tests would be reused and part of the behaviour would have been
checked before runtime.

Finally, the test execution consists in setting the test data and then “run” the
test harness component. COSTOTest proposes interactive screen to enter all the
data values into the XML file generated by the second model transformation.
She/He can also provide the test data values in a CSV file which is transformed
into the XML file.

We perform experiments to study the effectiveness of our tool in testing ser-
vices into components assembly. We consider the test of computeSpeed service,
covering its control flow graph to generate test data. We create 45 test cases
and run them getting the verdicts. The data source XML file will also store the
verdicts (cf. Figure 5).

4 Related Work

There are several research efforts interested in generating tests for testing com-
ponents.

6

Figure 5: Test harness assignments: verdict stored in the XML file

In [11], Mariani et al. propose an approach for implementing self-testing
components. They move testing of component from development to deployment
time. In [12], Heineman applies Test Driven Development to component-based
software engineering. The component dependencies are managed with mocks,
and tests are run once components can be deployed. In contrary, in our pro-
posal the components and services are tested at the modelling phase, before
implementation.

In [13], Edwards outlines a strategy for automated black-box testing of
software components. Components are considered in terms of object-oriented
classes, whereas we consider components as entities providing and requiring
services.

In [14], Zhang introduces test-driven modelling to apply the XP test-driven
paradigm to an MDD process. Their approach designs test before modelling
when we design test after modelling. In [15], the authors target robustness
testing of components using rCOS. Their CUT approach involves functional
contracts and a dynamic contract. However, these approaches apply the tests
on the target platform when we design them at the model level even if their are
executed at the code level.

7

5 Conclusion

Testing SBC applications following MDD brings the advantages of early test-
ing. We propose a demonstration of the COSTOTest tool which is a proof of
concept of our previously published method for testing component models, from
building the test harness to its execution. The test designer works on the test
data and oracle, and the component interface, while the tool helps, checks, and
builds the executable tests. This method applies when the modelling language
includes detailed behaviour expression and is supported by a full IDE with code
generation e.g. Sofa, rCOS, UML/AS...

The current tool, developed as an Eclipse plug-in, shows the feasibility of the
approach and improvements are in prog-ress. First, we are developing mutation
analysis facilities in COSTOTest. Second, we are experimenting the improve-
ment of the approach compared with classical testing when models evolve.

References

[1] G. Shanks, E. Tansley, and R. Weber, “Using ontology to validate con-
ceptual models,” Communications of the ACM, vol. 46, no. 10, pp. 85–89,
2003.

[2] M. Gogolla, J. Bohling, and M. Richters, “Validating uml and ocl models
in use by automatic snapshot generation,” Software & Systems Modeling,
vol. 4, no. 4, pp. 386–398, 2005.

[3] M. Born, I. Schieferdecker, H.-G. Gross, and P. Santos, “Model-driven de-
velopment and testing-a case study,” in 1st European Workshop on MDA-
IA, in CTIT Technical Report Nr TR-CTIT-04-12, Citeseer. Springer,
2004, pp. 97–104.

[4] P. André, J.-M. Mottu, and G. Ardourel, “Building test harness from
service-based component models,” in proceedings of the Workshop MoD-
eVVa (Models2013), Miami, USA, Oct. 2013, pp. 11–20.

[5] A. M. R. Vincenzi, J. C. Maldonado, M. E. Delamaro, E. S. Spoto, and
W. E. Wong, “Component-based software: An overview of testing,” in
Component-Based Software Quality - Methods and Techniques, vol. 2693.
Springer, 2003, pp. 99–127.

[6] C. R. Rocha and E. Martins, “A method for model based test harness
generation for component testing,” J. Braz. Comp. Soc., vol. 14, no. 1, pp.
7–23, 2008.

[7] S. H. Edwards, “A framework for practical, automated black-box testing of
component-based software,” Software Testing, Verification and Reliability,
vol. 11, p. 2001, 2001.

8

[8] M. Messabihi, P. André, and C. Attiogbé, “Multilevel contracts for trusted
components,” in WCSI, ser. EPTCS, J. Cámara, C. Canal, and G. Salaün,
Eds., vol. 37, 2010, pp. 71–85.

[9] P. André, G. Ardourel, C. Attiogbé, and A. Lanoix, “Using assertions to en-
hance the correctness of kmelia components and their assemblies,” ENTCS,
vol. 263, pp. 5 – 30, 2010, proceedings of FACS 2009.

[10] OSOA, “Service component architecture (sca): Sca assembly model v1.00
specifications,” Open SOA Collaboration, Specification Version 1.0, March
2007.

[11] L. Mariani, M. Pezzè, and D. Willmor, “Generation of integration tests
for self-testing components,” in FORTE Workshops, ser. LNCS, vol. 3236.
Springer, 2004, pp. 337–350.

[12] G. Heineman, “Unit testing of software components with inter-component
dependencies,” in Component-Based Software Engineering, ser. LNCS.
Springer Berlin / Heidelberg, 2009, vol. 5582, pp. 262–273.

[13] S. H. Edwards, “A framework for practical, automated black-box testing of
component-based software,” Softw. Test., Verif. Reliab., vol. 11, no. 2, pp.
97–111, 2001.

[14] Y. Zhang, “Test-driven modeling for model-driven development,” IEEE
Software, vol. 21, no. 5, pp. 80–86, 2004.

[15] B. Lei, Z. Liu, C. Morisset, and X. Li, “State based robustness testing for
components,” Electr. Notes Theor. Comput. Sci., vol. 260, pp. 173–188,
2010.

9

	Introduction
	Testing Models by Models
	COSTOTest: a Testing Assistant
	Related Work
	Conclusion

