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On the non-homogeneous boundary value problem for

Schrödinger equations

Corentin Audiard ∗†

Abstract

In this paper we study the initial boundary value problem for the Schrödinger equation with
non-homogeneous Dirichlet boundary conditions. Special care is devoted to the space where the
boundary data belong. When Ω is the complement of a non-trapping obstacle, well-posedness
for boundary data of optimal regularity is obtained by transposition arguments. If Ωc is convex,
a local smoothing property (similar to the one for the Cauchy problem) is proved, and used
to obtain Strichartz estimates. As an application local well-posedness for a class of subcritical
non-linear Schrödinger equations is derived.

Keywords : Schrödinger equations, non homogeneous boundary value problem, non-trapping and
convex obstacles, dispersive estimates.

Introduction

The purpose of this article is to study the initial boundary value problem (IBVP) i∂tu+ ∆Du = f, (x, t) ∈ Ω× [0, T ],
u|t=0 = u0, x ∈ Ω,
u|Σ = g, (x, t) ∈ Σ := ∂Ω× [0, T ],

(IBVP)

where f may be a forcing term or a nonlinearity depending on u (but not its gradient), typically
behaving like a power of u. We recall that an homogeneous boundary value problem (BVP) corre-
sponds to g = 0, while a pure boundary value problem would be u0 = 0.
The homogeneous BVP for the Schrödinger equation in non trivial geometrical settings has received
a lot of interest over the last years. The first results that were not consequences of semi-groups
arguments were obtained in dimension 2 for u0 ∈ H1

0 (see Brezis-Gallouët [5], Tsutsumi [29]) which
is precisely the level of regularity where the semi-groups arguments do not work anymore. They re-
ceived a number of significant extensions, until the work of Burq-Gerard-Tzvetkov [6] who obtained
the first results (to our knowledge) of global well-posedness for large dimensions and data when the
equation is posed on the complement of a compact “non trapping” obstacle. An important idea was
to separate the solution in two parts localized near and far from the obstacle, it had some similarity
with the method of Staffilani-Tataru in [25] who dealt with the Cauchy problem, but with a variable
coefficient Laplacian.
Since then, there has been important developments on the link between the geometry of Ω and
the existence of dispersive estimates (and of course relatd well-posedness results). Ivanovici [12]
proved that the full range of Strichartz estimates holds for the homogeneous BVP posed outside a
strictly convex set, and obtained with Planchon [13] the well-posedness of the energy critical quin-
tic Schrödinger equation on general non-trapping domains. Surprisingly, dispersive estimates were
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obtained even for bounded domains [2][3]. Morawetz and virial identities also proved to be powerful
tools even for boundary value problems (at least for simple geometries, e.g. if Ω is star shaped), see
for example [23].
Nevertheless, all the results cited above concern homogeneous BVP. For non-homogeneous boundary
data results are more scarce, since even the question of the natural regularity of Dirichlet data is
not absolutely clear yet. Bu and Strauss [26] proved a global existence result for defocusing nonlin-
ear Schrödinger equations with smooth boundary conditions. The boundary controllability of the
Schrödinger equation has also received a lot of interest, in linear settings [17][16][21][27], and more
recently for nonlinear problems [24][22], however works on controllability are done for Ω bounded,
and to our knowledge trace smoothness and dispersive estimates is still a largely open subject in
both bounded and unbounded domains.
It should be underlined that the local-well posedness of the nonlinear IBVP in the special case of
dimension one is quite well understood since the work of Holmer [10], in particular he clarified the
fact that for an initial data u0 ∈ Hs(R+), the boundary data should belong to H(s+1/2)/2(Rt). The
numerology of regularity indices may be understood as follows : local smoothing allows the trace of
the solution to gain 1/2 derivative in space, then from the scaling of the equation one expects the
solution to be twice less regular in time than in space. In larger dimension however, the situation
remains largely open.
The natural space for boundary data can be somehow circumvented by scaling arguments. We note
that in any dimension d, if u(x, t) is solution of the linear Schrödinger equation, u(λx, λ2t) is also a
solution, with initial data u0(λx). Now ‖u0(λ·)‖Hs = λs−d/2‖u0‖Hs , while

‖u(λ·, λ2·)‖L2(Rt, Hs+1/2(∂Ω)) = λs+1/2−(d−1)/2−2/2‖u‖L2Hs+1/2 = λs−d/2‖u‖L2Hs+1/2 ,

‖u(λ·, λ2·)‖H(s+1/2)/2(Rt, L2(∂Ω)) = λs−d/2‖u‖H(s+1/2)/2L2 .

From this little computation, it appears that the boundary data g should belong to some anisotropic
Sobolev space of the kind H(s+1/2)/2(Rt, L2(∂Ω)) ∩ L2(Rt, Hs+1/2(∂Ω)). Another argument in the
same direction is the following estimate (which originates at least to [15], see theorem 4.3 in [18] for
a simple proof),

sup
xj

∫∫ ∣∣ |Dxj |1/2eit∆u0

∣∣2dx1 · · · dxj−1dxj+1 · · · dxddt . ‖u0‖2L2 ,

this strengthens the idea that the boundary data should gain 1/2 derivative with respect to the
Cauchy data.
Actually, in the flat case Ω = Rd−1 ×R+, we proved in [4] that the IBVP for the linear Schrödinger

equation is well posed for u0 ∈ H1
0 , g ∈ L2([0, T ], H3/2(∂Ω))∩H3/4

0 ([0, T ], L2). The proof used direct
methods (Fourier-Laplace transform), but relied on a relatively complex construction of a Fourier
multiplier to derive a priori estimate, whose adaptation for general curved boundaries is certainly
not possible in general, since it is expected that the geometry of the domain plays a crucial role in
well-posedness issues (and in particular boundary regularity).
This article aims at giving similar (and more precise) results for less simple geometries, by relying
on very different tools. Our main result is Theorem 16, which states a local well-posedness result
for the nonlinear Schrödinger equation in dimension 2 and 3 with a nonlinearity satisfying |F (z)| .
|z|(1+ |z|)α, α < 2/(d−1) and some other standard assumptions. The main difficulties are of course

1. Low regularity of the initial data, namely u0 ∈ H1/2 (the corresponding critical power would
be α = 4/(d− 1)),

2. Consistant numerology of the boundary data g ∈ L2([0, T ], H1) ∩H1/2([0, T ], L2) (actually a
slight loss will be necessary for the nonlinear problem, but not for the linear one).
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We give in section 2 a well-posedness result (without dispersive estimates) for the linear IBVP that
is only obtained by classical duality/representation arguments and a local smoothing property for
the homogeneous BVP. Since local smoothing occurs as soon as Ω is non trapping (see [6]), we do
not need further geometric assumptions for this part. In section 3, we use a virial identity to derive
a local smoothing property for the nonhomogeneous BVP. Contrarily to section 2, we assume that
Ω is the complement of a convex set to have good multipliers so that the virial identity gives useful
estimates. With arguments very similar to [6], we then deduce Strichartz estimates with loss of 1/2
derivative for the nonhomogeneous BVP.
To summarize, the structure of the paper is as follows :

• Section 1 sets up some notations, defines the spaces used and their embedding or interpolation
relations.

• Section 2 prove the well-posedness of the initial boundary value problem with Dirichlet bound-
ary condition of optimal regularity, this is done by classical duality arguments in the spirit of
those used in control theory, but we need to carefully use the local smoothing properties of
the homogeneous BVP in order to include appropriately the boundary data and forcing term,

• In section 3 we use a virial identity to prove a local smoothing property, which then implies
(most likely non-optimal) Strichartz estimates,

• Section 4 makes use of these estimates to prove a local well-posedness result for a class of
subcritical nonlinear IBVPs in dimension 2 and 3, without smallness assumptions.

Some comments about directions of further investigation are included in the end.

1 Notations and a reminder on Sobolev spaces

Lp(Ω) denotes the usual Lebesgue spaces on the open set Ω. If X is a Banach space, we use the
compact notation

Lp([0, T ]; X) = LpTX.

If a, b depend on a number of parameter we mean by |a| . |b| that there exists some constant C > 0
independant of those parameters such that |a| ≤ C|b|. For two Banach spaces X,Y , the notation
X ↪→ Y means that X is continuously embedded in Y .
For m a positive integer, the space Wm,p(Ω) is defined as

{u ∈ Lp(Ω), ∀ |α| ≤ m, ∂αu ∈ Lp, ‖u‖Wm,p =
∑
|α|≤m

‖∂αu‖Lp},

We also use the quasi norm associated to the homogeneous spaces Ẇm,p

‖u‖Ẇm,p =
∑
|α|=m

‖∂αu‖Lp .

If p = 2, we follow the usual notation Wm,2 = Hm. For Ω = Rd, Hm(Rd) is equivalently defined as∫
Rd

(1 + |ξ|2)m|û|2dξ <∞,

moreover this is also the definition used for Hs, s ∈ R. The C∞c (Rd) functions are a dense subset
of Hs(Rd), the C∞c (Ω) functions are a dense subset of Hs(Ω) under geometric assumptions that we
assume to be satisfied (for details, see Adams [1]).
For s ∈ R+ \ N, the W s,p(Rd) spaces are defined by complex interpolation between Lp(Rd) and
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Wm,p(Rd), m > s (this gives the family of Bessel potential spaces, sometimes noted Hs,p, as de-
scribed in [1] chapter 7 or [28]). If Ω is a smooth open set, s > 0, the functions of W s,p(Ω) are defined
as restriction on Ω of functions in W s,p(Rd). If ∂Ω is a smooth compact submanifold, Hs(∂Ω) is
defined by local maps. The spaces Ẇ s,p are defined in the same way.
Following Lions and Magenes [20], we will also use anisotropic Sobolev spaces. For M = Ω or ∂Ω,
we set

Hs,2(M× [0, T ]) := L2([0, T ]; Hs(M)) ∩Hs/2([0, T ]; L2(M)),

(for the reader familiar with Lions-Magenes notations, those are the Hs,s/2(Σ) spaces).
Given Xs a space of functions where s is the level of regularity, if s is an integer we define Xs

0 as the
closure of C∞c (U) in X, and for s ≥ 0 it is defined by interpolation. Negative order Sobolev spaces
are defined by duality : ∀ s ≥ 0, H−s := (Hs

0)′.

Note that this definition does not always coincide with the usual one where Xs
0 := C∞c (U)

Xs

.
For example the closure of C∞c in H1/2 is H1/2, while the interpolated space [L2, H1

0 ]1/2 is not H1/2

(it is the space usually called H
1/2
00 , see [19]), and as a direct consequence H−1/2 is not (H1/2)′. We

make this non conventional choice because it will allow us to give much more compact statements,
where we will not have to separate the case s ≡ 1/2[Z].
We will use the following results on traces and liftings of functions in Sobolev spaces.

Theorem 1. (Lions-Magenes [19] for usual Sobolev spaces, [20] for anisotropic)
Given Ω a smooth open set, for any s > 1/2, α multi-index such that |α| < s− 1/2, the application

trα : Hs(Ω) → Hs−|α|−1/2(∂Ω),

u → ∂αu|∂Ω ,

is a continuous linear operator. In the special case ∂Ω× [0, T ] or Ω× [0, T ], s > 1/2, the application

[0, T ] → Hs−1/2(∂Ω) or Hs−1/2(Ω),

t → u(·, t),

depends continuously of t. Conversely, for each of these operators there exists a lifting, namely a
right inverse (trα)−1 : Hs−|α|−1/2(∂Ω)→ Hs(Ω) such that trα ◦ (trα)−1 = Id.
Similarly, for any fixed t ∈ [0, T ] the trace

trt : Hs,2([0, T ]× Ω)→ Hs−1({t} × Ω)×Hs−1/2,2([0, T ]× ∂Ω),

is well defined, continuous and moreover its first component is continuous in t. The operator trt
is generally not a surjection (there are usually compatibility conditions), but the projections on the
first and second coordinate define surjections. For s > 1, the trace

Hs,2([0, T ]× ∂Ω)→ Hs−1,2({t} × ∂Ω),

is a continuous surjection for fixed t, and continuously depends on t.

We also give a list of interpolation and injection relations between Sobolev spaces.

Theorem 2. (Lions-Magenes [19][20], Triebel [28])
Let Ω be a smooth open set (or manifold) with compact boundary.

For 0 ≤ s < 1/2, Hs
0(Ω) = Hs(Ω), so that H−s = (Hs)′, and C∞c (Ω)

Hr

= Hr for 0 ≤ r ≤ 1/2.
For 0 ≤ θ ≤ 1, s1, s2 ≥ 0, the Sobolev spaces satisfy the following (complex) interpolation relations

[Hs1 , Hs2 ]θ = H(1−θ)s1+θs2 ,
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[Hs1 , (Hs2)′]θ =

{
H(1−θ)s1−θs2 if (1− θ)s1 − θs2 ≥ 0 ,

(H−(1−θ)s1+θs2)′ if (1− θ)s1 − θs2 < 0.

[Hs1
0 , Hs2

0 ]θ = H
(1−θ)s1+θs2
0 , [H−s1 , H−s2 ]θ = H−(1−θ)s1−θs2 , [Hs1,2

0 , Hs2,2
0 ]θ = H

θs2+(1−θ)s1,2
0 ,

[H−s1 , Hs2
0 ]θ =

{
H
θs2−(1−θ)s1
0 if θs2 − (1− θ)s1 ≥ 0,

Hθs2−(1−θ)s1 if θs2 − (1− θ)s1 < 0,

[H−s1 , Hs2 ]θ =

{
Hθs2−(1−θ)s1 if θs2 − (1− θ)s1 ≥ 0,
Hθs2−(1−θ)s1 if θs2 − (1− θ)s1 < 0,

Given any p ≥ 1, the following Sobolev embeddings hold :

• For s < d/p, W s,p ↪→ Lq, q = dp/(d− sp),

• For d/p+ 1 > s > d/p, W s,p ↪→ C0,α, α = s− d/p.

Proof. These results are mostly standard, yet some special parameters of the interpolation identities
do not seem to be covered in our references. We give a sketch of proof for the most significant case

[H−1/2, H
3/2
0 ]θ =

{
H

2θ−1/2
0 if θ ≥ 1/4,

H
2θ−1/2
0 if θ < 1/4.

According to [19] chapter 1 Theorem 12.3,

H−1/2 = [H−1, H2
0 ]1/6, H

3/2
0 = [H−1, H2

0 ]5/6,

thus, using the reiteration theorem (chapter 1, Theorem 6.1) and the interpolation theorem 12.4 in
[19]

[H−1/2, H
3/2
0 ]θ = [H−1, H2

0 ]1/6+2θ/3 =

{
H

2θ−1/2
0 if θ ≥ 1/4,

H2θ−1/2 if θ < 1/4.

The other cases are either classical or direct adaptations of this argument.

2 The linear boundary value problem

In this section we only assume that Ω is a non-trapping open set of compact complement, with
smooth boundary (meaning that we have local maps as differentiable as needed). Non trapping
means roughly that any ray reflecting on the boundary according to the laws of geometric optics
goes to infinity. The mathematical definition is actually more involved since a ray may touch the
boundary tangentially, and then “glide” on it, see [11] section 24.3 for a precise definition.
For 0 < T < ∞, we set Σ = [0, T ] × ∂Ω, ∆D is the Dirichlet Laplacian on Ω, of domain H2 ∩H1

0 .
It is a self adjoint operator, for which eit∆D is defined by the functional calculus.
We first recall a few results on the homogeneous boundary value problem.

Lemma 1. For 0 ≤ s ≤ 1, the solution of the boundary value problem i∂tu+ ∆Du = f ∈ L1([0, T ], Hs
0(Ω)),

u|t=0 = u0 ∈ Hs
0 ,

u|Σ = 0,
(2.1)

is u(t) = eit∆Du0 +
∫ t

0
ei(t−s)∆Df(s)ds, it satisfies the semigroup estimate

‖eit∆Du0‖L∞([0,T ], Hs0 ) = ‖u0‖Hs0 ,
∥∥∫ t

0

ei(t−s)∆Df(s)ds
∥∥
L∞([0,T ], Hs0 )

≤ ‖f‖L1([0,T ], Hs0 ), (2.2)
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and the local smoothing property

∀χ ∈ C∞c (Rd), ∀T > 0, ‖χ∇u‖L2([0,T ], L2
x) ≤ CT (‖u0‖H1/2

0
+ T‖f‖

L1([0,T ], H
1/2
0 )

). (2.3)

Proof. The local smoothing without forcing term is Prop 2.7 in [6]

‖χeit∆Du0‖L2
TH

1 ≤ CT ‖u0‖H1/2
0
,

the estimate with a forcing term f is then a direct consequence of Minkowski’s integral inequality

∥∥∫ t

0

χei(t−s)∆Df(s)ds
∥∥
L2
TH

1 ≤
∥∥∫ T

0

1s≤t‖χei(t−s)∆Df(s)
∥∥
H1ds‖L2

T

.
∫ T

0

‖1s≤t‖χei(t−s)∆Df(s)‖H1‖L2
T
ds ≤ TCT ‖f‖L1

TH
1/2
0
.

The local smoothing can be used to derive a (well-known) trace smoothing.

Proposition 3. Let u0 ∈ H1/2
0 (Ω), u ∈ CtH1/2 ∩ L2

TH
1
0, loc be the unique solution of the boundary

value problem (2.1). Its normal derivative on ∂Ω is well defined and satisfies the estimate

‖∂u/∂n‖L2([0,T ]×∂Ω) . ‖u0‖H1/2
0

+ ‖f‖
L1
TH

1/2
0
.

Proof. We follow the multiplier method from [21] combined with the local smoothing. (this is also
done with a slightly different method, comparably simple but without an f term, by Planchon-Vega
in [23]). By a density argument, we may assume that u is smooth enough so that all the computations
are rigorous. For q in C2

c (Rd), and denoting n the normal on ∂Ω, we have the identity

1

2

∫
Σ

q · n
∣∣∣∣∂u∂n

∣∣∣∣2dS =
1

2

[
Im

∫
Ω

uq∇udx
]T

0

+
1

2
Re

∫
[0,T ]×Ω

u(∇divq) · ∇udxdt

+Re

∫
[0,T ]×Ω

fq · ∇u dxdt+ Re

∫
[0,T ]×Ω

∇ut∇q∇u dxdt

+
1

2
Re

∫
fudivq dxdt .

We choose q such that q · n > 0 on ∂Ω, this gives

‖∂nu‖2L2 . ‖u‖2
L∞T H

1/2
0

+ ‖∇divq · ∇u‖2L2
x,T

+ ‖f‖
L1H

1/2
0
‖u‖

L∞H
1/2
0

+‖
√
|∇q| |∇u|‖2L2

x,T

. ‖u0‖2H1/2
0

+ ‖f‖2
L1
TH

1/2
0

.

As a consequence we prove by duality the well-posedness of the non-homogeneous boundary value
problem with a compactly supported forcing term.

Definition 1. Let χ ∈ C∞c (Rd), f ∈ L2
TH
−1(Ω). We say that u is a transposition solution of the

problem  i∂tu+ ∆u = χf ∈ L2
TH
−1,

u|t=0 = 0,
u|Σ = g ∈ L2([0, T ]× Ω),

(2.4)
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when u ∈ CTH−1/2, and for any f1 ∈ L1
TH

1/2
0 , if v is the solution of i∂tv + ∆v = f1 ∈ L1

TH
1/2
0 ,

v|t=T = 0,
v|Σ = 0,

(2.5)

we have the identity∫ T

0

〈u, f1〉H−1/2,H
1/2
0
dt =

∫ T

0

〈f, χv〉H−1,H1
0
dt+

∫ T

0

(g, ∂nv)L2(∂Ω)dt, (2.6)

(here 〈·, ·〉X,X′ denotes the usual duality product).

Remark 4. It is clear that any smooth solution (say C2) of (2.4) is a transposition solution. Indeed

by density of C∞c in L1
TH

1/2
0 it is sufficient to check the identity (2.6) for smooth v, which is simply

an integration by parts.

Remark 5. For technical reasons that are clarified hereafter, the construction of a CTH
3/2 solution

requires that the forcing term f satisfies f |∂Ω ∈ L2
TL

2(∂Ω), therefore it is preferable to chose f in
the dual smoothing space L2

TH
1 rather than the natural space L1

TH
3/2.

Proposition 6. For any (g, f) ∈ L2(Σ) × L2([0, T ], H−1(Ω)), the problem (2.4) has an unique
solution u ∈ CTH−1/2(Ω). If moreover g ∈ Hs,2

0 , χf ∈ L2
TH

s−1 for 0 < s ≤ 2, then u ∈ CTHs−1/2,
with the estimate

‖u‖CTHs−1/2 . ‖g‖Hs,2 + ‖f‖L2
TH

s−1 .

In particular, if (gn, fn) ∈ C∞c (Σ)×C∞c ([0, T ]×Ω) converges to (g, f), then u is the strong limit of
the corresponding sequence of solutions (un).

Proof. The uniqueness is clear since (L1
TH

1/2
0 )′ = L∞T H

−1/2 (actually duality gives uniqueness in

L∞T H
−1/2). For f1 ∈ L1

TH
1/2
0 (Ω), we denote by v the solution of (2.5). The linear form L is defined

as

L : L1
TH

1/2
0 → R

f1 →
∫ T

0

〈f, χv〉H−1, H1
0
dt+

∫ T

0

(g, ∂nv)dt.

Using Cauchy-Schwarz’s inequality, duality, and the local smoothing we get

|Lf1| ≤ ‖f‖L2
TH
−1‖χv‖L2

TH
1
0

+ ‖g‖L2(Σ)‖∂nv‖L2(Σ) . (‖g‖L2(Σ) + ‖f‖L2
TH
−1)‖f1‖L1

TH
1/2
0
,

so that L is continuous on L1
TH

1/2
0 . Thus it can be represented by some u ∈ L∞T H−1/2 satisfying

∀ f1 ∈ L1
TH

1/2
0 ,

∫ T

0

〈χf, v〉H−1,H1
0
dt+

∫ T

0

(g, ∂nv)dt =

∫ T

0

〈u, f1〉H−1/2, H
1/2
0
dt,

and the continuity of L reads as

‖u‖L∞T H−1/2 . ‖g‖L2(Σ) + ‖χf‖L2
TH
−1 . (2.7)

It remains to prove that u actually belongs to CTH
−1/2. We take two sequences of smooth approxi-

mations gn → g (L2(Σ)), fn → f (L2
TH
−1). The problem (2.4) with data (gn, fn) admits a smooth

solution un (this is a consequence of simple trace arguments and the theory for the homogeneous
problem, see for example [20]), which is also a transposition solution. In particular, un ∈ CTH−1/2
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and the estimate (2.7) implies that u is the limit of un in L∞T H
−1/2. Since CTH

−1/2 is closed in
L∞T H

−1/2 this implies u ∈ CTH−1/2.

For higher regularities, we first prove that if g ∈ H2,2
0 , f ∈ L2

TH
1 then u ∈ CTH

3/2. Up to as-
suming g, f smooth and doing again a density argument the function u can be assumed as smooth
as needed and we are only reduced to obtain a priori estimates (note that it is essential here that
g ∈ H2,2

0 , and not simply H2,2 else standard compatibility conditions at t = 0, x ∈ ∂Ω would not
be satisfied, preventing u from being smooth). Since χf ∈ L2

TH
1(Ω), we have χf |Σ ∈ L2

TL
2(∂Ω)

(actually L2
TH

1/2(∂Ω), but this is not needed here). The function ∆u is the transposition solution
of  i∂tu

′ + ∆u′ = ∆(χf),
u′|t=0 = ∆u0 = 0,
u′|Σ = f |Σ − i∂tg ∈ L2([0, T ]× ∂Ω) ,

(2.8)

in particular (2.7) gives

∆u ∈ CTH−1/2 with ‖∆u‖CTH−1/2 . ‖∂tg‖L2 + ‖f |∂Ω‖L2(Σ) + ‖∆(χf)‖L2
TH
−1

. ‖g‖H2,2 + ‖χf‖L2
TH

1 .

We can reformulate this as : u(·, t) is solution of the elliptic boundary value problem{
−∆u = ϕ,
u|∂Ω = g,

where ‖ϕ‖CTH−1/2 . ‖g‖H2,2+‖χf‖L2
TH

1 . According to Theorem 1, H2,2([0, T ]×∂Ω) ↪→ CTH
1(∂Ω),

so that by lifting (same theorem) there exists u1 ∈ CTH
3/2 such that u1|∂Ω = g, ‖u1‖CTH3/2 .

‖g‖H2,2 . The function w = u− u1 satisfies{
−∆w = ϕ+ ∆u1,
w|∂Ω = 0,

by elliptic regularity we have w ∈ CTH3/2, ‖w‖CTH3/2 . ‖g‖H2,2 + ‖χf‖L2
TH

1 then

‖u‖CTH3/2 ≤ ‖u1‖CTH3/2 + ‖w‖CTH3/2 . ‖g‖H2,2 + ‖χf‖L2
TH

1 ,

(see Gilbarg and Trudinger [8] Theorem 8.8 for regularity with a forcing term in L2, the H−1

case is an application of Lax Milgram theorem, finally the H−1/2 case follows from the relations
[H−1, L2]1/2 = H−1/2, and [H1

0 , H
2]1/2 ⊂ H3/2 in Theorem 2).

The result for 0 ≤ s ≤ 2 is obtained by interpolation.

A simple consequence is the well-posedness of the full initial boundary value problem.

Definition 2. Let f ∈ L1
TH
−1/2 ∩ L2

TH
−1
loc , u0 ∈ H−1/2(Ω), g ∈ L2(Σ). We say that u is a

transposition solution of the problem  i∂tu+ ∆u = f,
u|t=0 = u0,
u|Σ = g,

(2.9)

when u ∈ CTH−1/2, and for any f1 ∈ L1
TH

1/2
0 , if v is the solution of i∂tv + ∆v = f1 ∈ L1H

1/2
0 ([0, T ]× Ω),

v|t=T = 0,
v|Σ = 0,
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we have the identity for some fixed χ ∈ C∞c (Rd), χ = 1 near ∂Ω∫ T

0

〈u, f1〉H−1/2,H1/2dt =

∫ T

0

〈f, χv〉H−1,H1
0

+ 〈f, (1− χ)v〉
H−1/2,H

1/2
0
dt

+

∫ T

0

(g, ∂nv)L2(∂Ω)dt+ i〈u0, v(0)〉
H−1/2,H

1/2
0
.

Theorem 7. For f ∈ L2
TH

s−1/2
loc ∩ L1

TH
s, g ∈ Hs+1/2,2(Σ), u0 ∈ Hs

0 , −1/2 ≤ s ≤ 3/2, the initial
boundary value problem (2.9) has an unique transposition solution. It satisfies

‖u‖CTHs . ‖f‖L2
TH

s−1/2
loc ∩L1

TH
s + ‖g‖Hs+1/2,2 + ‖u0‖Hs0 .

Moreover the assumption f ∈ L1
TH

s can be dropped if f is compactly supported.

Proof. The uniqueness is again a direct duality argument.
For the existence, by linearity we simply fix χ ∈ C∞c (Rd), χ = 1 on a neighbourhood of Ω, and split
(2.9) as two problems, one which is a pure BVP like (2.4) i∂tub + ∆ub = χf ∈ L2

TH
s−1/2(Ω),

ub|t=0 = 0,
ub|Σ = g ∈ Hs+1/2,2(Σ),

and an other homogeneous one like (2.1) i∂tuc + ∆uc = (1− χ)f ∈ L1
TH

s
0(Ω),

uc|t=0 = u0 ∈ Hs
0 ,

uc|Σ = 0 .

It is then sufficient to check that the solution uc given by Lemma 1 is also a transposition solution.
This is the consequence of an integration by parts if uc is smooth enough, and the general case is
obtained by a density argument.
If f is compactly supported it suffices to chose χ such that (1− χ)f = 0.

3 A smoothing estimate and application

This section is devoted to the proof of a local smoothing estimate by direct methods and its appli-
cation : Strichartz estimates with losses. We consider the solution u of the IBVP (2.9). As a first
step we recall the virial identity, which does not seem to be really standard for non zero boundary
data. If h is a nonnegative measurable function on Ω, we set

Mh(t) =

∫
Ω

h(x)|u(x, t)|2dx . (3.1)

For specific h, it is often possible to check that M ′′h is signed (usually with quantitative estimates
±M ′′h ≥ ‖u‖2X , with X some Banach space). This has been used in several applications, two notable
ones being the explosion of solutions in finite time (the sign of M ′′h implies an impossible change of
sign for some quantity) and dispersive estimates, obtained simply by using

‖u‖2L2([0,T ],X) .
∫ T

0

M ′′h (T ) = M ′h(T )−M ′h(0).

This is the second approach that we follow here, with the technical addition that Ω 6= Rd and the
boundary data are not 0.
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Proposition 8. Let h belong to C4(Ω) such that h|∂Ω = 0, ∇kh is bounded for 1 ≤ k ≤ 4.
If u is a smooth solution of (2.9) we have the identities

dMh

dt
= 2Im

∫
Ω

∇h · ∇uu+ hufdx, (3.2)

d2Mh

dt2
− 2Im

d

dt

∫
Ω

hufdx = 4Re

∫
Ω

Hess(h)(∇u,∇u)− 1

4
|u|2∆2h+∇h · ∇uf +

1

2
u∆hfdx

+Re

∫
∂Ω

2∂nh|∇τu|2 − 2∂nh|∂nu|2 − 2i∂nh∂tuudS

+Re

∫
∂Ω

−2u∆h∂nu+ |u|2∂n∆hdS, (3.3)

where we denoted ∇τ the gradient along the tangent plane to ∂Ω, or equivalently if n is the normal
derivative pointing outside Ω, ∇τ = ∇− n∂n.

Proof. A direct computation gives, using that h|∂Ω = 0 :

dMh

dt
=

∫
Ω

h(u∂tu+ u∂tu)dx =

∫
Ω

ih(∆uu−∆uu− hfu+ hfu)dx

= −2Im

∫
Ω

hu∆u− hufdx

= 2Im

∫
Ω

|∇u|2h+ hu∇u · ∇h+ ufdx = 2Im

∫
Ω

u∇u · ∇h+ hufdx.

Differentiating again in t we get

d2Mh

dt2
− 2Im

d

dt

∫
Ω

hufdx = 2Im

∫
Ω

∂tu∇u · ∇h+ u∇∂tu · ∇hdx

= 2Re

∫
Ω

u∇h · ∇∆u−∆u∇h · ∇u + f∇u · ∇h− u∇f · ∇hdx

= 2Re

(∫
−∇u · ∇h∆u−∇h · ∇u∆u− u∆h∆u

+

∫
Ω

2∇h · ∇uf + u∆hfdx+

∫
∂Ω

∂nh∆uu− uf∂nhdS
)

= 2Re

(∫
Ω

−2∇u · ∇h∆u dx− u∆h∆u+ 2∇h · ∇uf

+u∆hfdx+

∫
∂Ω

−i∂nh∂tuudS
)
.
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We focus on the integral terms on Ω where f does not appear :

Re

∫
Ω

−4∇u · ∇h∆u− 2u∆h∆udx = 4

∫
Ω

Hess(h)(∇u,∇u) +
1

2
∇h · ∇|∇u|2dx

+2Re

∫
Ω

∆h|∇u|2 + u∇∆h · ∇udx

−2Re

∫
∂Ω

2∇u · ∇h∂nu+ u∆h∂nu dS

= 4

∫
Ω

Hess(h)(∇u,∇u)− 1

2
∆h|∇u|2dx

+2Re

∫
Ω

∆h|∇u|2 +
1

2
∇∆h · ∇|u|2dx

−2Re

∫
∂Ω

2∇u · ∇h∂nu+ u∆h∂nu dS

+2

∫
∂Ω

∂nh|∇u|2dS

= 4

∫
Ω

Hess(h)(∇u,∇u)− 1

4
∆2h|u|2dx

−2Re

∫
∂Ω

2∇u · ∇h∂nu+ u∆h∂nu dS

+2

∫
∂Ω

∂nh|∇u|2 +
1

2
|u|2∂n∆hdS .

Finally, the boundary terms are treated by using the fact that h = 0 on ∂Ω, so that ∇h = (∂nh)n :

Re

∫
∂Ω

−4∇u · ∇h∂nu− 2u∆h∂nu+ 2∂nh|∇u|2 + |u|2∂n∆hdS

= Re

∫
∂Ω

−4|∂nu|2∂nh− 2u∆h∂nu+ 2∂nh(|∂nu|2 + |∇τu|2) + |u|2∂n∆hdS

= Re

∫
∂Ω

−2|∂nu|2∂nh− 2u∆h∂nu+ 2∂nh|∇τu|2 + |u|2∂n∆hdS .

We obtain as expected

d2Mh

dt2
= 4Re

∫
Ω

Hess(h)(∇u,∇u)− 1

4
∆2h|u|2dx+∇h · ∇uf +

1

2
u∆hfdx+ 2Im

d

dt

∫
Ω

hufdx

+Re

∫
∂Ω

−2i∂nh∂tuu− 2|∂nu|2∂nh− 2u∆h∂nu+ 2∂nh|∇τu|2 + |u|2∂n∆h dS .

A cautious look at identities (3.2) and (3.3) indicates that the equation

M ′h(T )−M ′h(0) =

∫ T

0

M ′′h (t)dt,

can be turned into useful estimates if there exists h such that

1. h|∂Ω = 0,

2. Hess(h)(x) ≥ α(x)Id > 0 (in the sense of quadratic forms), with possibly α(x)→x→∞ 0,
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3. ∂nh|∂Ω < 0 or equivalently if ni is the normal pointing inside Ω, ∂nih > 0.

As was pointed out by the reviewer, there can be no such function if Ωc is not convex : indeed
by assumption 2 the set {h ≤ 0} must be convex and thus contains the convex hull of ∂Ω, while
assumption 3 implies that on a neighbourhood of ∂Ω, h > 0, so that conv(∂Ω) ⊂ Ωc, and the
converse inclusion is obvious (as Ωc is bounded).
Since conditions 2. and 3. only involve derivatives of h, we start by looking for a function which
is constant on ∂Ω. In the case where Ω = Kc, K convex, 0 ∈ int(K) (this last assumption can
obviously always be made, up to a translation), there is a natural candidate : the gauge of K -
sometimes called Minkowski’s functional-

j(x) = inf{λ > 0 : x/λ ∈ K}. (3.4)

Indeed, by definition j = 1 on ∂K and it is well known that j is convex if K is. We also point out
that j is homogeneous of degree 1 so that ∀x ∈ Ω, ∇j(x) 6= 0.
The next lemma quantifies how positive Hess(j) is depending on the geometry of ∂Ω. The basic
tools of geometry used may be found for example in [9], chapter 10 (where the presentation is limited
to dimension 3, but with clear extension to any dimension).

Lemma 2. Assume that ∂Ω is a C2 submanifold. It is defined by the implicit equation j(x) = 1.
For x0 ∈ ∂Ω we denote by Tx0

the hyperplane tangent to ∂Ω at x0, II(x0) the second fundamental
form at x0 (this is a quadratic form on (Tx0)2), and Hess(j)|Tx0 is understood as the quadratic form

defined by restriction of the bilinear application Hess(j) on (Tx0)2. Then there exists c(K) > 0 such
that

Hess(j)(x0)|Tx0 ≥ cII(x0).

In particular, Hess(j)|Tx0 is defined positive if and only if II(x0) is.

Proof. For conciseness and simplicity, we give a proof which is slightly formal, but that can be made
rigorous by using local maps. Since j = 1 on ∂Ω, the normal pointing outside K is n = ∇j/‖∇j‖.
Note that this defines a vector field n defined smoothly not only on ∂Ω, but on Rd \{0}. The second
fundamental form is usually defined as the gradient of n in local coordinates in ∂Ω, we will rather
use the fact that it also coincides with the restriction of ∇n(x0) (seen as a quadratic form, and
where ∇ is the “full” gradient on Rd) to (Tx0

)2. This rewrites

∇n = Hess(j)/‖∇j‖ − ∇j(∇‖∇j‖)t/‖∇j‖2,

so that for any tangential vector τ ∈ Tx0 , using τ · n = 0 :

II(τ, τ) = τ t
Hess(j)

‖∇j‖
τ − τ t∇j(∇‖∇j‖)

t

‖∇j‖2
τ = τ t

Hess(j)

‖∇j‖
τ,

using that ∂Ω is compact, we have infx∈∂Ω ‖∇j(x)‖ ≥ c > 0, this concludes the proof.

Remark 9. It is not true that Hess(j) > 0 as a quadratic form on Rd, actually since j is homogeneous
of order one we always have Hess(j)(x)(x, x) = 0. However the non negativity Hess(j) ≥ 0 is true
since j is convex.

In view of the lemma, and since identity (3.3) involves fourth order derivatives of h, we assume
from now on that ∂Ω is a C4 submanifold of positive principal curvatures, so that II(x) > 0
at any x ∈ ∂Ω, or equivalently Hess(j)(x)|Tx > 0.

Proposition 10. The function h(x) =
√

1 + j2 −
√

2 satisfies the three required assumptions.
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Proof. The identity h|∂Ω = 0 is obvious.

The positivity of ∂nih is obtained as follows : let x0 ∈ ∂K, by homogeneity we have

(
∂j

∂x0

)
(x0) =

j(x0) = 1 > 0. On the other hand j is constant on ∂Ω, thus ∇j(x0) =
(
∂j/∂n(x0)

)
n(x0),(

∂j

∂x0

)
(x0) = ∇j(x0) · x0 = (∂j/∂n(x0))(x0 · n(x0)).

Since K is star shaped with respect to 0, x0 ·n(x0) > 0, thus

(
∂j

∂n(x0)

)
(x0) ≥ 1/(x0 ·n) ≥ 1/‖x‖ ≥

1/diam(K). The positivity of ∂nh then directly follows from the identity

∂nh = j∂nj/
√

1 + j2 = ∂nj/
√

2 ≥ 1/(
√

2diam(K)).

By homogeneity, it is sufficient to prove the positivity of Hess(h) for x ∈ ∂K. By direct computations

∇h =
j∇j√
1 + j2

, Hess(h) =
∇j∇jt√

1 + j2
+
jHess(j)√

1 + j2
− j2∇j∇jt√

1 + j2
3

=
∇j∇jt√
1 + j2

3 +
jHess(j)√

1 + j2
.

For x0 ∈ ∂Ω, X ∈ Rd, we split X = Xτ +Xn where Xτ belongs to Tx0
and Xn is parallel to n(x0).

Using Xτ · ∇j = 0 we get

XtHess(j)(x)X =
|∇j ·Xn|2√

1 + j2
3 +

jXtHess(j)X√
1 + j2

.

If Xn 6= 0, the fact that Hess(j) ≥ 0 gives

XtHess(j)(x)X ≥ |∇j ·Xn|2√
1 + j2

3 > 0,

while if X ⊥ n, X = Xτ , Lemma 2 implies

XtHess(j)(x)X =
jXt

τHess(j)Xτ√
1 + j2

=
j√

1 + j2
Hess(j)|Tx(Xτ , Xτ ) > 0.

In either case we have Hess(h)(x0)(X,X) > 0, by compactness of ∂Ω and homogeneity we can
conclude

∃ c > 0 : ∀x ∈ Ω, Hess(h)(x) ≥ c

‖x‖
Id.

We may now state the local smoothing property :

Proposition 11. Let u be the transposition solution of (2.9). If f is compactly supported, for any
ε > 0, ∫∫

[0,T ]×Ω

|∇u|2√
1 + |x|2

dxdt+

∫∫
[0,T ]×∂Ω

|∂nu|2dSdt ≤ Cε,T

(
‖g‖2

H1+ε,2
0

+ ‖u0‖2H1/2
0

+‖f‖2L2
TL

2

)
.
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The proof requires a preliminary lemma due to the special structure of H1/2.

Lemma 3. For any ε > 0, let u ∈ CTH1/2 be the solution of the Schrödinger equation (2.9) with

g ∈ H1+ε,2
0 , f ∈ L2

TL
2 with compact support in space, u0 ∈ H1/2

0 . Then ∇u ∈ CT (H1/2)′ and

‖∇u‖CT (H1/2)′ . ‖g‖H1+ε,2
0

+ ‖u0‖H1/2
0

+ ‖f‖L2
TL

2 .

Proof. If (u0, f, g) ∈ H
1/2+ε
0 × L2

TH
ε × H1+ε,2

0 , u ∈ CTH
1/2+ε, so that ∇u ∈ CTH

−1/2+ε =
CT (H1/2−ε)′ with obvious norm control.
If (u0, f, g) ∈ L2×L2

TH
−1/2×H1+ε,2

0 , the embedding H1+ε,2
0 ↪→ CTH

ε gives the following (formal)
identity

∀ v ∈ H1, j = 1 · · · d, t ∈ [0, T ],

∫
Ω

∂ju(t)v = −
∫

Ω

u(t)∂jvdx+

∫
∂Ω

g(t)njv|∂ΩdS,

which implies for smooth solutions

‖∇u‖CT (H1)′ . ‖u‖CTL2 + ‖g‖CTL2 . ‖g‖H1+ε,2
0

+ ‖f‖L2
TH
−1 + ‖u0‖H−1/2 ,

the gradient is then extended as a continuous operator L2 × L2
TH
−1/2 ×H1+ε,2

0 → CT (H1)′.
We obtain the lemma by interpolation with interpolation parameter θ = 1/(1 + ε).

Proof of Proposition 11. By density, it is sufficient to establish the estimate for smooth solutions.
We start with (3.2), according to lemma 3

|M ′h(t)− 2Im

∫
Ω

hufdx| = |2Im

∫
Ω

∇h · ∇uudx|

. ‖u0‖2H1/2
0 (Ω)

+ ‖g‖2H1+ε,2 + ‖f‖2L2
x,T
.

On the other hand, the identity (3.3) combined with Prop 10 gives

d2Mh

dt2
− 2Im

d

dt

∫
Ω

hufdx = 4

∫
Ω

Hess(h)(∇u,∇u)− |u|2∆2h+∇h · ∇uf +
1

2
u∆hfdx

+Re

∫
∂Ω

2∂nh|∇τu|2 − 2∂nh|∂nu|2 + 2i∂nh∂tuudS

+Re

∫
∂Ω

−2u∆h∂nu+ |u|2∂n∆hdS

≥ c

(∫
Ω

|∇u|2/
√

1 + |x|2dx+

∫
∂Ω

|∂nu|2dS
)

−C
(
‖u‖2L2(Ω) + ‖∇τu|∂Ω‖2L2 + δ‖∂nu|∂Ω‖2L2 + C(δ)‖u|∂Ω‖2L2

+‖∇u‖L2(B(0,R))‖f‖L2(B(0,R))

)
+ Re

∫
∂Ω

2i∂nh∂tuudS

≥ c

(∫
Ω

|∇u|2/
√

1 + |x|2dx+

∫
∂Ω

|∂nu|2

2
dS

)
−C ′

(
‖u‖2L2(Ω) + ‖u|∂Ω‖H1,2

0
+

γ

2C ′
‖∇u‖2L2(BR) +

C ′

2γ
‖f‖2L2(BR)

)
+Re

∫
∂Ω

2i∂nh∂tuudS,
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by choosing δ ≤ c/2C, R such that supp(f) ⊂ B(0, R).
Use next

|Re

∫ T

0

∫
∂Ω

2i∂nh∂tuudS| . ‖∂tg|∂Ω‖H−1,2‖g‖H1,2
0

. ‖g|∂Ω‖2H1,2
0
,

and fix γ ≤ c/(
√

1 +R2), the identity M ′h(T )−M ′h(0) =
∫ T

0
M ′′h (t)dt gives as expected

c

(∫ T

0

∫
Ω

|∇u|2/
√

1 + |x|2dx +

∫ T

0

∫
∂Ω

|∂nu|2

2
dS

)
≤ C

(
T‖u‖2L∞T L2(Ω) + ‖g‖2

H1+ε,2
0

+ ‖f‖2L2
TL

2(Ω)

)
+

c

2
√

1 +R2
‖∇u‖2L2(BR) + C(δ)‖u‖2L∞T L2

+C‖u0‖2H1/2
0

,

⇒ c

2

(∫ T

0

∫
Ω

|∇u|2/
√

1 + |x|2dx +

∫ T

0

∫
∂Ω

|∂nu|2dS
)

≤ CT
(
‖u0‖2H1/2

0

+ ‖g‖2
H1+ε,2

0

+ ‖f‖2L2
TL

2(Ω)

)
.

Remark 12. As can be seen in the proof above, the constant Cε,T blows up as T → ∞ because of
the term −|u|2∆2h, as the sign of ∆2h is unknown. It can be positive, even in very simple cases :
if Ωc = B(0, 1) in dimension 2, h(x) =

√
1 + x2

1 + x2
2, ∆2h = 1/h3 + 6/h5 − 15/h7 > 0 for large x.

Corollary 1. We say that (p, q), p > 2 is a weakly admissible pair when

1

p
+
d

q
=
d

2
, (3.5)

Let u be a transposition solution of (2.9). Assume that f ∈ L2
TL

2(Ω) and for some χ compactly
supported, such that χ = 1 near ∂Ω, we have χf = f . Then

‖u‖LpTW 1/2,q . ‖u0‖H1/2
0

+ ‖f‖L2
TL

2 + ‖g‖H1+ε,2
0

.

Remark 13. The usual Strichartz admissible pairs are couple (p, q) such that (p/2, q) is weakly
admissible. Scaling wise, they correspond to a gain of one derivative, while the weak pairs correspond
to a gain of 1/2 derivative.
The constant hidden in the . of Corollary 1 is unbounded as T → ∞, however it is not a concern
in this article since we only deal with local well-posedness.

Proof. The proof follows closely the method from [6], which also points to ideas of [25]. It consists
in splitting u = χu+ (1−χ)u in one part supported near the obstacle, and the other one away from
the obstacle. Near the obstacle local smoothing is used in combination with Sobolev embeddings
while the other part satisfies a Schrödinger equation on Rd for which better Strichartz estimates are
available.
We fix χ ∈ C∞C (Rd) as in the statement of the corollary. Prop 11 implies

‖∇χu‖L2
TL

2(Ω) . ‖u‖L∞T L2 + ‖u/
√

1 + |x|2‖L2
TL

2 . . ‖u0‖H1/2
0

+ ‖g‖H1+ε,2
0

+ ‖f‖L2
TL

2 .

As a consequence, χu ∈ L2
TH

1∩L∞T H1/2 ↪→ LpTH
1/2+1/p for any p ≥ 2 (the injection is a consequence

of a Gagliardo-Nirenberg’s inequality on the Sobolev part and Hölder’s inequality on the Lp part).
The Sobolev embedding implies χu ∈ LpTW

1/2,2dp/(dp−2), and indeed the pair (p, 2dp/(dp − 2))
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satisfies (3.5).
We now turn to the estimate of (1−χ)u : since (1−χ)u = 0 near ∂Ω we may extend it by 0 on Ωc,
and the extension (abusively still denoted (1−χ)u )is the solution of the following Cauchy problem{

i∂t(1− χ)u+ ∆(1− χ)u = (1− χ)f + [∆, 1− χ]u, (x, t) ∈ Rd × [0, T ],
(1− χ)u(t = 0) = (1− χ)u0, x ∈ Rd.

We now use that (1− χ)f = 0, according to the Duhamel formula

(1− χ)u(t) = eit∆(1− χ)u0 +

∫ t

0

ei(t−s)∆[∆, 1− χ]uds,

where ∆ is the laplacian on Rd. Standard Strichartz estimates (e.g. corollary 2.3.9 in [7]) imply

‖eit∆
(
(1− χ)u0‖L2p

T W
1/2,q . ‖(1− χ)u0‖H1/2

0
,

and according to (the proof of) Prop 2.10 in [6],

‖
∫ t

0

ei(t−s)∆[∆, (1− χ)]u(s)ds‖L2p
T W

1/2,q . ‖[∆, 1− χ]u‖L2
TL

2 . ‖u0‖H1/2
0

+ ‖f‖L2
TL

2 + ‖g‖H1,2
0
.

The embedding L2p
T W

1/2,q ↪→ LpTW
1/2,q ends the estimate for (1− χ)u, and thus the proof.

Remark 14. All estimates in this section are done for compactly supported f ∈ L2
TL

2. We did not
include any results for the more classical forcing f ∈ L1

TH
1/2 since it did not prove to be useful for

section 4. However it is worth noting that up to a few more computations, the estimate in Prop
11 may be brought to include f ∈ L1

TH
1/2 such that for some χ compactly supported, χf ∈ L2

TL
2

(the only thing to do would be to split f = χf + (1−χ)f in the proof of Prop 11 and use again the
duality inequality |

∫
∇h∇u(1− χ)fdx| . ‖u‖L∞T H1/2‖f‖L1

TH
1/2 ).

4 Local Well-posedness of non-linear boundary value prob-
lems

In this section we consider the non-linear boundary value problem
i∂tu+ ∆u = F (u), (x, t) ∈ Ω× [0, T ],

u|t=0 = u0 ∈ H1/2
0 (Ω),

u|Σ = g ∈ H1+ε,2
0 (Σ).

(4.1)

We will use the same technical assumptions sufficient for local well-posedness in [6], namely

∃α > 0, |F (z)| . |z|(1 + |z|α), (4.2)

|F (z1)− F (z2)| . |z1 − z2|(1 + |z1|α + |z2|α) (4.3)

|∇z,zF (z1)−∇z,zF (z2)| . |z1 − z2|(1 + |z1|max(0,α−1) + |z2|max(0,α−1)). (4.4)

Since there is no trace operator on H1/2(Ω), we should clarify what we call a solution of the nonlinear
boundary value problem.

Definition 3. We say that u is a solution of (4.1) if given g̃ ∈ H3/2+ε,2(Ω) a lifting of g, and if we
denote by v ∈ CTH1/2 the transposition solution of

i∂tv + ∆v = F (g̃), (x, t) ∈ Ω× [0, T ],
v|t=0 = 0 ∈ H1/2(Ω),

v|Σ = g ∈ H1,2
0 (Σ),
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then F (u)− F (g̃) ∈ L1
TH

1/2
0 and the following equality holds in CTH

1/2
0 :

u(t)− v(t) = eit∆Du0 +

∫ t

0

ei(t−s)∆D
(
F (u)− F (g̃)

)
ds.

Let us first recall some Strichartz estimates for the homogeneous boundary value problem.

Proposition 15. (Strichartz estimates, Prop. 2.14 in [6])
If (p, q) is a weakly admissible pair (see (3.5) ), the operator eit∆D satifies the following dispersive
estimates :

∀ 0 ≤ s ≤ 1, ∀u0 ∈ Hs
0 , ‖eit∆Du0‖LpTW s,q . ‖u0‖Hs0 , (4.5)

∀ f ∈ L1
TH

s
0 ,
∥∥∫ t

0

ei(t−r)∆Df(r)dr
∥∥
LpTW

s,q . ‖f‖L1
TH

s
0
. (4.6)

In order to use these estimates for the nonlinear problem we recall a number of “rules” on
fractional derivatives.

Lemma 4. (Kato [14], lemma A2 and A4)
Let F ∈ C1(C,C) such that F (0) = 0, F ′(z) . |z|k−1, k ≥ 1. Then for 0 ≤ s ≤ 1, 1/r =
1/p+ (k − 1)/q,

‖F (u)‖Ẇ s,r(Rd) . ‖u‖
k−1
Lq(Rd)

‖u‖Ẇ s,p(Rd).

For s ≥ 0, 1/r = 1/p1 + 1/p2,

‖u1u2‖Ẇ s,r . ‖u1‖Ẇ s,p1‖u2‖Lp2 + ‖u1‖Lp1‖u2‖Ẇ s,p2 .

Theorem 16. For d = 2, 3, 0 < α < 2/(d− 1), ε > 0 and any (u0, g) ∈ H1/2
0 ×H1+ε,2

0 , there exists
T (‖(u0, g)‖

H
1/2
0 ×H1+ε,2

0
) such that the problem (4.1) has an unique solution

u ∈ C([0, T ], H1/2) ∩ L(d+1)/(d−1)
T W 1/2,q, q =

2d(d+ 1)

d2 − d+ 2
.

The flow map is locally Lipschitz continuous if d = 2, meaning that given any (g, u0), up to decreasing
T there exists a neighbourhood of this point on which the solution map is Lipschitz continuous

H1+ε,2
0 ×H1/2

0 → CTH
1/2.

Proof. For d = 2, 3, set XT = CTH
1/2(Ω) ∩ L(d+1)/(d−1)

T W 1/2,q(Ω), q = 3 (so that ( d+1
d−1 , 3) is a

weakly admissible pair). Let g̃ ∈ H3/2,2(Ω× [0, T ]) be a compactly supported lifting of g. We define
ug as the solution of 

i∂tug + ∆ug = F (g̃), (x, t) ∈ Ω× [0, T ]
ug|t=0 = 0,

ug|Σ = g ∈ H1,2
0 (Σ),

as a first step we check that ug ∈ XT . According to Prop. 6 and Corollary 1 it is sufficient to

prove that F (g̃) ∈ L2
TL

2. We use H3/2,2 ↪→ H
3/(4+2d)
T H3d/(2(2+d)) ↪→ L2(d+2)/(d−1)([0, T ] × Ω),

and of course H3/2,2 ↪→ L2([0, T ] × Ω). Since 2 < 2(α + 1) < 2(d + 2)/(d − 1), the assumption
|F (u)| . |u|+ |u|α+1 and Hölder’s inequality imply

‖F (g̃)‖L2([0,T ]×Ω) . ‖g̃‖L2 + ‖g̃‖α+1
L2(α+1) . ‖g‖H1,2(‖g‖αH1,2 + 1).

Setting w = u− ug, u ∈ XT iff w ∈ XT , and we are reduced to finding a solution w ∈ XT to i∂tw + ∆w = F (w + ug)− F (g̃), (x, t) ∈ Ω× [0, T ],
w|t=0 = u0,
w|Σ = 0,

(4.7)
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which is now a homogeneous boundary value problem. To our knowledge no proof of local well-
posedness of this problem was provided yet (the results of [6] are done at L2 and H1 regularity),
however this can be tackled by methods quite similar to the classical ones for the initial value problem

in fractional Sobolev spaces (as done for example by Kato [14]). We set X0,T = CTH
1/2
0 (Ω) ∩

L
(d+1)/(d−1)
T W

1/2,q
0 (Ω), and define S : X0,T → X0,T which associates to w ∈ X0,T the solution of i∂tv + ∆v = F (w + ug)− F (g̃), (x, t) ∈ Ω× [0, T ],

v|t=0 = u0,
v|Σ = 0,

(4.8)

the well-posedness of (4.7) will be a consequence of the fact that S sends BX0,T
(0, R) to BX0,T

(0, R)
for R large enough, T small enough, and is a contraction - only in a weaker space if d = 3. We recall
that if ∆D is the Dirichlet laplacian, S(w) writes as

S(w)(t) = eit∆Du0 +

∫ t

0

ei(t−s)∆D (F (w + g̃)− F (g̃))ds.

Estimate (4.5) implies
‖eit∆Du0‖X0,T

. ‖u0‖H1/2
0
, (4.9)

while (4.6) gives

‖
∫ t

0

ei(t−s)∆D (F (w + ug)− F (g̃))ds‖X0,T
. ‖F (w + ug)− F (g̃)‖

L1H
1/2
0
,

and we are left to estimate ‖F (w + ug)− F (g̃)‖
L1H

1/2
0

.

Special care is required since the Sobolev norm H
1/2
0 is not equivalent to the H1/2 norm, but it

can be split as ‖v‖H1/2 + ‖v/d1/2‖L2 where d(x) is the distance of x to Ωc ([19] chapter 1 section
11). This supplementary term is handled by using that ug − g̃ ∈ X0,T (g̃ ∈ XT by basic Sobolev
embeddings) and the assumption w ∈ X0,T : we fix β such that min(2/(d+ 1), α) < β < 2/(d− 1),

‖(F (w + ug)− F (g̃))/d1/2‖L1
TL

2 . ‖(w + ug − g̃)(1 + |ug|β + |g̃|β + |w|β)/d1/2‖L1
TL

2

≤ ‖(w + ug − g̃)/d1/2‖
L
d+1
d−1
T L3

‖(ug, g̃, w)‖β
L
β(d+1)

2
T L6β

+‖w + ug − g̃‖L1
TH

1/2
0

. T θ‖w + ug − g̃‖
L
d+1
d−1
T W

1/2,3
0

‖‖(ug, g̃, w)‖β
L
d+1
d−1
T L2∩L12/(d−1)

+T‖w + ug − g̃‖X0,T
,

where θ = (2 − β(d − 1))/(d + 1) > 0. The estimate above is closed by noting that in dimension 2
and 3, W 1/2,3 ↪→ L6d/(2d−3) = L12/(d−1), finally

‖(F (w + ug)− F (g̃))/d1/2‖L1
TL

2 . (T θ + T )(1 + ‖(ug − g̃, w, ug, g̃)‖β+1
(X0,T )2×(XT )2) (4.10)

To handle the H1/2 part of the norm, we take some ψ ∈ C∞c (R+), ψ = 1 near 0, and split
F (x) = ψ(|x|)F (x) + (1− ψ)(|x|))F (x) = F1 + F2. Since F1 is clearly a Lipschitz function, we have
‖F1(w)‖H1/2 . ‖w‖H1/2 , thus

‖F1(w)‖L∞T H1/2 . T‖w‖XT , (4.11)

(and similarly for g̃, ug).
For F2, we choose we, g̃eug,e continuous extensions of w, g̃ on the whole space, and we will only
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estimate the Ḣ1/2 part of the H1/2 norm, the L2 part being easier. Since |F2(x)| = O(|x|α+1) near
0, the rules of fractional differentiation imply

‖F2(w + ug)− F2(g̃)‖L1
T Ḣ

1/2 . ‖F2(we + ug,e)− F2(g̃e)‖L1
T Ḣ

1/2

. ‖(we, ge, ug,e)‖αL(d+1)/(d−1)Lr‖(we, ge, ug,e)‖
L

d+1
d+1−α(d−1) Ẇ 1/2,r1

. ‖(w, g, ug)‖αL(d+1)/(d−1)Lr‖(w, g, ug)‖
L

d+1
d+1−α(d−1) Ẇ 1/2,r1

where
α

r
+

1

r1
=

1

2
. We choose r to be the exponent of the critical Sobolev embedding W 1/2,q ↪→ Lr

(namely r = 2d(d+1)/(d−1)2), so that r1 = 2d(d+1)/
(
d(d+1)−α(d−1)2

)
. Since α < 2/(d−1), we

have 2 < r1 < q, and we use the inequality ‖ϕ‖W 1/2,r1 . ‖ϕ‖θ
H1/2‖ϕ‖1−θW 1/2,q , with θ/2 + (1− θ)/q =

1/r1 (this last inequality is a direct combination of the expression of fractional Sobolev norms and
Hölder’s inequality).
Set p1 = (d+ 1)(d+ 1− α(d− 1)), using Hölder’s inequality in time, we get

‖F (w + ug)− F (g̃)‖L1
T Ḣ

1/2 . ‖(w, g, ug)‖αXT ‖(w, g, ug)‖
θ
Lp1H1/2‖(w, g, ug)‖1−θLp1W 1/2,q

≤ T θ/p1+(1−θ)(1/p1−1/p)‖(w, g, ug)‖α+1
XT

= T 1−α(d−1)/2‖(w, g, ug)‖α+1
XT

. (4.12)

Gluing (4.9, 4.10, 4.11, 4.12), we get for some γ > 0, α ≤ β < 2/(d− 1),

‖S(w)‖X0,T
≤ C

(
‖u0‖H1/2

0
+ T γ(1 + ‖(w, g̃, ug)‖β+1

XT

)
,

and it is clear that for R large enough, T small enough, S maps BX0,T
(0, R) to BX0,T

(0, R).
In the special case d = 2, we now prove that it is a contraction, so that the standard Picard-
Banach fixed point theory directly implies existence, uniqueness and smoothness of the solution
map. Following the same argument as previously, contractivity reduces to checking that there exists
θ > 0 such that

∃0 ≤ α < 1 : ‖F (ug + w1)− F (ug + w2)‖
L1
TH

1/2
0
≤ T θC(‖(w1, w2, ug)‖XT )‖w1 − w2‖X0,T

. (4.13)

For the L1
TL

2 part of the estimate we fix some β satisfying max(1, α) ≤ β < 2,

‖F (ug + w1)− F (ug + w2)‖L1
TL

2 . ‖(1 + |ug|+ |w1|+ |w2|)β |w1 − w2|‖L1
TL

2

≤ ‖(ug, w1, w2)‖β
L

3β/2
T L4β

‖w1 − w2‖L3
TL

4

+T‖w1 − w2‖L∞T L2

≤ (T + T (2−β)/3)(1 + ‖(ug, w1, w2)‖XT )β‖w1 − w2‖XT .(4.14)

The term ‖
(
F (ug + w1) − F (ug + w2)

)
/d1/2‖L1

TL
2 can be estimated similarly, and we now turn to

the L1
T Ḣ

1/2 part. Let us write

F (ug + w1)− F (ug + w2) =

∫ 1

0

∇F (ug + w2 + t(w1 − w2)).(w1 − w2)dt,
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and apply Minkowski’s integral inequality,

‖
∫ 1

0

∇F (ug + w2 + t(w1 − w2)).(w1 − w2)dt‖L1H1/2

.
∫ 1

0

‖∇F (ug + w2 + t(w1 − w2)).(w1 − w2)‖L1
TH

1/2dt

≤
∫ 1

0

‖(ψ∇F )(ug + w2 + t(w1 − w2)).(w1 − w2)‖L1
TH

1/2dt

+

∫ 1

0

‖
(
(1− ψ)∇F

)
(ug + w2 + t(w1 − w2)).(w1 − w2)‖L1

TH
1/2dt

We only detail the estimate of the first term (the second is simpler). Set G(x) =
(
(1−ψ)∇F

)
(ug +

w2 + t(w1 − w2))(x), y(x) = (ug + w2 + t(w1 − w2))(x). Up to using extensions on the whole space
as previously, we may use the rules of fractional derivatives (see lemma 4) to get :

‖G(x) · (w1 − w2)‖Ḣ1/2 . ‖G‖L6‖(w1 − w2)‖Ẇ 1/2,3 + ‖G‖Ẇ 1/2,12/5‖w1 − w2‖L12

We recall that G ≡ 0 on a neighbourhood of 0, thus |G(y)| . |y|β for any β ≥ α, in particular if we
choose max(7/6, α) < β < 2, we get

‖G.(w1 − w2)‖Ḣ1/2 . ‖y‖β
L6β‖w1 − w2‖Ẇ 1/2,3 + ‖y‖β−1

L12(β−1)‖y‖W 1/2,3‖w1 − w2‖L12 . (4.15)

As W 1/2,3 ↪→ L12, 2 ≤ 12(β − 1), 6β ≤ 12, Hölder’s inequalities imply

‖y‖L12(β−1) . ‖y‖θ1L2‖y‖1−θ1W 1/2,3 , ‖y‖L6β ≤ ‖y‖θ2L2‖y‖1−θ2W 1/2,3 .

The integration in time of (4.15) and similar basic Hölder inequalities finally give

∃ θ > 0 : ‖G.(w1 − w2)‖L1
T Ḣ

1/2 . T θ‖y‖βXT ‖w1 − w2‖XT , (4.16)

so that (4.14, 4.16) gives (4.13), this ends the proof for d = 2.
In dimension 3, this argument can not be applied, essentially because we may not choose some
β strictly between 1 and 2/(d − 1) = 1. Instead we prove that the map S : BX0,T

(0, R) →
BX0,T

(0, R) is a contraction for the weaker topology associated to YT = L∞T L
2 ∩ L2

TL
3. Fix β such

that max(1/3, α) ≤ β < 1, the inequality (4.6) with s = 0 implies

‖S(w1)− S(w2)‖YT . ‖F (w1)− F (w2)‖L1
TL

2 . ‖
(
1 + (|w1|+ |w2|)β

)
|w1 − w2|‖L1

TL
2

≤ T‖w1 − w2‖L∞T L2

+‖w1 − w2‖β
L2β
T L6β

‖w1 − w2‖L2
TL

3

≤ T (1−β)/2(1 + ‖(w1, w2)‖XT )β‖w1 − w2‖YT .

Up to decreasing T , S is thus a contraction, whose fixed point is in XT since S maps XT to XT .
The uniqueness in dimension 3 is an obvious repetition of the argument above. The case of dimension
2 is similar : let u1, u2 be two solutions, then by definition

for j = 1, 2, uj(t)− vj(t) = eit∆Du0 +

∫ t

0

ei(t−s)∆D
(
F (uj)− F (g̃j)

)
ds,

but since v1 − v2 =
∫ t

0
ei(t−s)∆D

(
F (g̃1)− F (g̃2)

)
ds, we get

u1 − u2 =

∫ t

0

ei(t−s)∆D
(
F (u1)− F (u2)

)
ds,
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In other words, w = u1 − u2 satisfies i∂tw + ∆w = F (u1)− F (u2), (x, t) ∈ Ω× [0, T ],
w|t=0 = 0,
w|Σ = 0,

independently of the choice of the liftings g̃1, g̃2. We note that (3, 3) is a weakly admissible pair in
dimension 2 and set YT = L∞T L

2 ∩ L3
TL

3,. For any β ≥ α, the Strichartz estimate (4.6) implies

‖w‖YT . ‖F (u1)− F (u2)‖L1
TL

2

. ‖
(
1 + (|u1|+ |u2|)βw‖L1

TL
2

≤ T‖w‖L∞T L2 + ‖(u1, u2)‖L6βL6β‖w‖L3L3

Choosing now max(1/2, α) < β < 2 so that 3 ≤ 6β < 12 and using the embedding W 1/2,3 ↪→ L12

we finally obtain

‖w‖YT . T‖w‖YT + T (2−β)/12‖(u1, u2)‖βXT ‖w‖YT ,

this implies w|[0,T ] = 0 for T small enough, and then w ≡ 0 on the interval of existence by connect-
edness.

Some further questions

• We did not derive smoothing estimates at other levels of regularity than H1/2, though it would
be particularly interesting to extend our results for the energy space H1. By differentiating
the equations and interpolation arguments, one should obtain local smoothing at any level Hs,
s ≥ 1/2, leading to well-posedness results similar to Theorem 16.

• Similar results at the H1 regularity level would open naturally the question of existence of
global solutions. Indeed contrarily to the homogeneous IBVP there is no conserved energy,
but for defocusing non-linearities F = ∂V/∂z, V ≥ 0 we still have the formal identity

d

dt

∫
Ω

|∇u|2dx+ V (u)dx = Re

∫
∂Ω

∂nu∂tudS,

which may lead - with appropriate control of ∂nu- to global existence results. The expected
trace estimate

‖∂nu‖Hs−1/2,2 . ‖u0‖Hs + ‖g‖Hs+1/2,2 ,

is however not a clear consequence of local smoothing for s > 1/2. In the absence of such an
estimate, one may not expect to obtain better than local existence results, independently of
wether the nonlinearity is focusing or defocusing.

• Since for the homogeneous boundary value problem well-posedness was established up to α =
4/(d − 1) in [12] for d = 3, there is still a gap (at least for low regularity boundary data) for
2/(d− 1) ≤ α < 4/(d− 1) when Ω is the complement of a convex set.

• More generally, it would be interesting to obtain dispersive estimates for the IBVP when
the obstacle is not convex by direct (non duality based) methods. The case where Ω is the
complement of a star shaped obstacle should be the most natural further step.
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