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Abstract 

Data warehouse performance is usually achieved through physical data structures such as indexes or 

materialized views. In this context, cost models can help select a relevant set ofsuch performance 

optimization structures. Nevertheless, selection becomes more complex in the cloud. The criterion to 

optimize is indeed at least two-dimensional, with monetary cost balancing overall query response time. 

This paper introduces new cost models that fit into the pay-as-you-go paradigm of cloud computing. 

Based on these cost models, an optimization problem is defined to discover, among candidate views, 

those to be materialized to minimize both the overall cost of using and maintaining the database in a 

public cloud and the total response time ofa given query workload. We experimentally show that 

maintaining materialized views is always advantageous, both in terms of performance and cost. 

1. Introduction 

Recently, cloud computing, led by companies such as Google, Microsoft and Amazon, attracted 

special attention. This paradigm allows access to on-demand, configurable resources that can be quickly 

made available with minimal maintenance. According tothe pay-as-you-go pricing model, customers only 

pay for resources (storage and computing) they actually use. Performance in the cloud usually relies upon 

the use of a large number of instances, with parallel computing being transparent to the user.  
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Data warehouses and OLAP (On-Line Analytical Processing) are technologies for decision 

support enabling the online analysis of large data volumes. These technologies rely on optimization 

techniques such as indexes, caches or denormalized logical models that allow multidimensional analysis 

(aggregations on multiple axes of analysis) while ensuring good performance.With the broader and 

broaderavailabilityof clouds, organizations tend to deploy data analytics in the cloud to benefit from 

computing power and cheap storage, and to eliminate maintenance costs.  

In this article, we focus on issues related to materializingviews in the cloud and its impact on the 

pay-as-you-go pricing model. Materialized views are used to physically store the results of relevant and 

frequent queriesto reduce response time. A major challenge is to select the best views to materialize. 

Traditionally, the criteria used for view selection mainly include storage and maintenance costs(Aouiche 

& Darmont, 2009; Baril & Bellahsene, 2003). In the cloud, storage is virtually infinite, so storing all 

views could be envisaged. However, materialized viewsstill incur storage and maintenance costs. The 

performance optimization problem is then to find a trade-offbetween response time and costs, and 

depends on the needs and assets of a particular user. At one end of the spectrum, users under a hard 

budget constraint can accept long response times, while at the other end, users may disregard costs if they 

need very fast response.  

We address the multi-criteria optimization problem of selecting a set of views to materialize in 

order to optimize both the budgetary cost of storing and querying a data warehouse in the cloud, and the 

overall response time. To achieve this goal, our main contribution is the design of cost models for storing, 

maintaining and querying materialized views in the cloud. This article extends our previous 

proposal(Nguyen, Bimonte, d’Orazio, & Darmont, 2012) in three ways. First, we proposemore flexible 

cost models that can be applied to different vendors. Second, we introduce a new formulation that solves 

the optimization problem using a CPLEX solver. Finally, our solution is experimentally validated with 

the Star Schema Benchmark(O’Neil, O’Neil, Chen, & Revilak, 2009). 

The remainder of this paper is organized as follows. In Section 2, we provide the background 

information that is used throughout the paper. In Sections 3 and 4, we define cost models for cloud data 

management and materializing views, respectively. In Section 5, we describe the optimization process 

that is based on these cost models. In Section 6, we present an experimental evaluation and the first 

performance analyses of our models. In Section 7, we discuss the state of the art and compare it to our 

approach. Finally, in Section 8, we conclude this paper and hint at future research directions.  

2. Background 

We present in this section the background information related to view materialization in the 

cloud. We first introduce a simple fictitious use case that serves as a running example throughout this 

paper. Then, we describe different pricing models in the cloud. Finally, we briefly recall the principle of 

view materialization. 

2.1. Running example 

To illustrate our work, we rely on a simulated dataset storing the sales of an international supply 

chain. Business users need to analyze the total profit per day, month, and year; and per administrative 

department, region, and country. 

Our full dataset stores 10 years (2000-2010) of sale data. Its size is 500 GB. We run over this 

dataset a query workload Q that includes such queries as Q1= “sales per year and country”, whose 

processing time is 0.2 hour. The size of Q's result is 10 GB. A typical materialized view we may consider 

to optimize overall response time is V1 = “sales per month and country”, whose processing time is 0.1 

hour. The whole set of selected materialized views is denoted V. V's size is 50 GB. Finally, the times to 

process Q with and without exploiting V are 40 hours and 50 hours, respectively. 
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2.2. Cloud pricing policies 

Cloud Service Providers (CSPs) supply a pool of resources, such as hardware (CPU, storage, 

networks), development platforms, and services. There are many CSPs on the market, such as Amazon, 

Google, and Microsoft. Each CSP offers different services and pricing. This paper relies on limited, yet 

representative enough, models that include the main, commonly billed elements, i.e., CPU, storage, and 

bandwidth consumption
1
. These models are fully compliant with both relational (Amazon RDS, SQL 

Azure, Google Cloud SQL) and data intensive systems (MapReduce, Pig, SCOPE, Hive, Jaql), as for 

now, query response times are considered parameters of these models. 

In order for the reader to have an overview of the pricing policies taken into account in the 

proposed models, we present in this section an example for both Microsoft Azure and Amazon Web 

Service (AWS). Even if the performance (response times and storage volume) differs from a system to 

another, identical values will be used in the example for clarity reasons. The objective of this work is 

indeed not to compare the different providers. 

 

Instance configuration  Price per hour 

t1.micro $0.02 

m1.small $0.06 

m1.medium $0.12 

m1.large $0.24 

m1.xlarge $0.48 

Table 1. EC2 computing prices 

Instance configuration  Price per hour 

Extra small $0.02 

Small $0.09 

Medium $0.18 

Large $0.36 

Extra large $0.72 

Table 2. Azure computing prices 

Microsoft Azure(Microsoft, 2013) and Amazon Elastic Compute Cloud (EC2) (Amazon, 

2013)provide computing resources. Different instance configurations can be rented (micro, extra small, 

small, large, extra large, etc.) at various prices, as illustrated in Table 1 andTable 2. For example, the 

costs for a small instance (consisting in a 1.7 GB RAM, 1 EC2 Computing Unit, 160 GB of local storage 

under Linux for Amazon EC2; and a 1.75 GB RAM, 1 Computing Unit, 224 GB of local storage under 

Windows for Azure), are respectively $0.06 and $0.09 per hour for Amazon and Azure. 

 

 

 

                                                           
1
 Future works shall propose a generic framework to map to any CSP. 
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Data volume  Price per month 

Input data  

Any input data Free 

Output data  

First 5 GB Free 

Up to 10 TB $0.12 per GB 

Next 40 TB $0.09 per GB 

Next 100 TB $0.07 per GB 

Next 350 TB $0.05 per GB 

Table 3. Amazon and Microsoft bandwidth prices 

Bandwidth consumption is billed with respect to data volume (Table 3). Within Amazon and 

Azure models, input data transfers are free, whereas output data transfer cost varies with respect to data 

volume. Note that the same prices are applied by both providers. 

 

Price per month 

$0.10 per GB 

Table 4. Amazon EBS storage prices 

Data volume Price per month 

First 1 TB $0.095 per GB 

Next 49 TB $0.08 per GB 

Next 450 TB $0.07 per GB 

...  

Table 5. Amazon S3 storage prices 

Data volume  Price per month 

First 1 TB $0.053 per GB 

Next 49 TB $0.049 per GB 

Next 450 TB $0.045 per GB 

...  

Table 6. Microsoft Azure storage prices 

Finally, CSPs supply storage capabilities. Prices usually vary with respect to data volume. 

However, as mentioned previously, CSPs provide different services, the pricing model differing from one 

to another. Amazon EBS proposes a per instance model, whereas Amazon S3 and SQL Azure enable a 

global storage. Amazon EBS (Table 4) proposes a fixed price, whereas Amazon S3 (Table 5) and SQL 

Azure (Table 6) enable an earned rate when volume increases. 
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2.3. Materialized views 

In Database Management Systems, a view is a virtual table associated to a query answer. Views 

help indirectly save complex queries, format the same data in different forms, support logical 

independence, and reinforce security by masking some pieces of data from unauthorized users. 

Materializing a view, i.e., storing it physically into a table, further helps improve response time by 

avoiding recomputing the corresponding query each time the view itself is queried. However, 

materialized views must be refreshed when source data are updated, which induces some maintenance 

overhead.  

In this work, we assume that we have at our disposal a set of candidate views for materialization 

that have already been preselected by an existing view selection method (e.g., (Baril & Bellahsene, 

2003)). We aim at choosing the best candidates with respect to the cloud's pay-as-you-go model, taking 

pricing constraints into account before any view materialization. Research perspectives include extending 

existing view selection algorithms to consider pricing aspects in order to supply a uniform process. 

3. Cloud pricing models 

This section presents general cost models for data management in the cloud, i.e., without 

considering the use of materialized views. In cloud computing, customers rent resources to a CSP to run 

some applications. Figure 1 recalls the costs involved (Section 2.2), i.e., bandwidth consumption for input 

data transfers and query result retrieval, data storage, and application processing time.  

 

 

Figure 1. Costs involved in cloud data management. 

Let Cc  be the sum of computing costs, Cs  be the sum of storage costs, and Ct be the sum of data 

transfer costs. Then, the total cost C for cloud data management is:  

 

 𝐶 = 𝐶𝑐 + 𝐶𝑠 + 𝐶𝑡 . (1) 

Let us define the general parameters and functions that we use to express our cost models (Table 

7). Let Q = {Qi}i=1..nQ
 be the query workload and A = {Ai}i=1..nQ

 the answers to the queries. The whole 

dataset is denoted D. Function s(X) returns the size in GB of X, e.g., s(Ai) is the size of the answer Ai. 

Function t(X) returns the storage time of X, e.g., t(D) is the storage time of dataset D in the cloud.  
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Parameter Description 

𝑄 = {𝑄𝑖}𝑖=1..𝑛𝑄
 Query workload 

𝐴 = {𝐴𝑖}𝑖=1..𝑛𝑄  Query answers 

𝐷 = {𝐷𝑘}𝑘=1..𝑛𝐷  Dataset 

𝑃 Cloud service provider 

𝐼𝐶 = {𝐼𝐶𝑗 }𝑗=1..𝑛𝐼𝐶  Instance configuration 

𝑠(𝑋) Size in GB of 𝑋 

𝑡(𝑋) Storage time of 𝑋 

Table 7. General parameters. 

3.1. Piecewise linear functions 

Some costs (transfer and storage costs especially) are piecewise linear functions. In this paper, we 

define a piecewise linear cost function C(x) as a function decomposed into segments (Figure 2).  

 

Figure 2. Piecewise linear cost function. 

Each segment e represents C(x) in an interval of input values [xe ; xe+1[ and is characterized by a 

gradient ae  and an initial cost be = C(xe). Considering a segment e such thatx ∈ [xe ; xe+1[, the cost 

C(x) = ce(x) = ae × (x− xe) + be . The piecewise linear function C(x) is thus expressed as follows: 

 

 

𝐶(𝑥) = 𝑐𝑒(𝑥)

= 𝑎𝑒 × (𝑥 − 𝑥𝑒) + 𝑏𝑒

where 𝑒 is such that 𝑥𝑒 ≤ 𝑥 < 𝑥𝑒+1 .

 (2) 

3.2. Data transfer cost 

Data transfer cost Ct depends on the size of uploaded data, i.e., queries Qi and dataset D 

(including the initial dataset and additional inserted data if any), on the size of downloaded data, i.e., 

query answers Ai, and on the pricing model applied by the provider P. The cost can be decomposed into 

an upload transfer cost Ct
− and a download transfer cost Ct

+:  

 

 𝐶𝑡(𝐷,𝑄,𝐴,𝑃) = 𝐶𝑡
−(𝐷,𝑄,𝑃) + 𝐶𝑡

+(𝐴,𝑃). (3) 
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Note that most cloud providers, such as Amazon or Microsoft, do not charge for input data 

transfers, so input queries, initial and inserted data can be ignored for now. As a consequence, data 

transfer cost can be reduced to Ct
+(A, P) and thus depends only on A and P:  

 

 𝐶𝑡(𝐴,𝑃) = 𝐶𝑡
+(𝐴,𝑃). (4) 

The pricing of Azure and Amazon EC2 is variable. It is null for the first 5 GB. Then, it becomes 

$0.12 per GB up to 10 TB, $0.09 per GB up to 40 TB and so on (see Section 2.2). The cost function 𝐶𝑡  of 

such a pricing policy is a piecewise linear function (cf. Formula 2).  

Example 1.In our running example, with 10 GB of bandwidth consumption, 𝑥2
𝑃 ≤ 𝑠(𝐴) < 𝑥3

𝑃, 

so data transfer cost is: 𝐶𝑡(𝐴,𝑃) = 𝑐2
𝑃(𝑠(𝐴)) = 0.12 × (10− 5) + 0 = $0.60.  

3.3. Computing cost 

Computing cost Cc  depends on the workload Q, the instance configuration IC, i.e., the type 

(micro, small, medium, etc.) and the number of nodes to be used, and the pricing model applied by 

provider P: Cc(Q, IC, P).  

Both Amazon and Microsoft associate a price with a type of instance. Each instance may bear 

variable performances (with respect to its number of CPUs, its available RAM, etc.), and thus different 

costs. Providers then compute the price to be paid by instance as the product of usage time by instance 

price. Finally, they sum the results for all allocated instances.  

Let us set that queries are executed on an instance configuration IC composed of nIC  computing 

instances ICj: IC = {ICj}j=1..nIC
. The cost for renting instance ICj is denoted cc

P(ICj). Processing time of 

query Qi on instance ICj is denoted tP(Qi , ICj). Then, the processing cost of running the set of queries 

Q = {Qi}i=1..nQ
 can be expressed by the following function:  

 

 𝐶𝑐(𝑄, 𝐼𝐶,𝑃) =   𝑡𝑃

𝑛𝐼𝐶

𝑗=1

𝑛𝑄

𝑖=1

(𝑄𝑖 , 𝐼𝐶𝑗 ) × 𝑐𝑐
𝑃(𝐼𝐶𝑗 ). (5) 

Example 2.In our running example, let us consider that query workload 𝑄 = {𝑄1} is processed in 

50 hours on two small instances of Amazon EC2. Then, its processing cost is: 𝐶𝑐(𝑄, 𝐼𝐶,𝐸𝐶2) =
𝑡𝐸𝐶2(𝑄1, 𝐼𝐶1) × 𝑐𝑐

𝐸𝐶2(𝐼𝐶1) + 𝑡𝐸𝐶2(𝑄1, 𝐼𝐶2) × 𝑐𝑐
𝐸𝐶2(𝐼𝐶2) = 50 × 0.06 + 50 × 0.06 = $6. 

3.4. Storage cost 

Storage cost Cs  depends on the size and storage time of the whole dataset D, the instance 

configuration IC, and the pricing policy of provider P: Cs(D, IC, P).  

Storage time t(D) of dataset D can be divided into periods such that t(D) =  t
nD
k=1 (Dk), where 

Dk  represents the whole dataset for period k. In each period k, the size s(Dk) of the stored data is fixed. 

Total storage cost is thus the sum of the price to be paid for each period:  

 

 𝐶𝑠(𝐷, 𝐼𝐶,𝑃) =  𝐶𝑠

𝑛𝐷

𝑘=1

(𝐷𝑘 , 𝐼𝐶,𝑃). (6) 
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Within Amazon EBS, total storage cost is the product of data size by storage time, fixed price 

cs
EBS  per GB, and the number of computing instances nIC . Indeed, as mentioned previously, each EC2 

instance depends on a different EBS volume. Then storage cost can be expressed by:  

 

 𝐶𝑠(𝐷, 𝐼𝐶,𝐸𝐵𝑆) =  𝑐𝑠
𝐸𝐵𝑆

𝑛𝐷

𝑘=1

× 𝑠(𝐷𝑘) × 𝑡(𝐷𝑘) × 𝑛𝐼𝐶 . (7) 

Example 3.We use Amazon EBS for storage pricing (Table 4), two small EC2 instances and we 

consider that 0.5 TB (512 GB) data have been stored for 12 months. At the beginning of the 8
th
 month, we 

insert 2 TB (2048 GB) of new data in the cloud. Thus we have two periods. The storage cost is: 

𝐶𝑠(𝐷, 𝐼𝐶,𝐸𝐵𝑆) = 𝑐𝑠
𝐸𝐵𝑆 × 𝑠(𝐷1) × 𝑛𝑏𝐼𝐶 × 𝑡(𝐷1) + 𝑐𝑠

𝐸𝐵𝑆 × 𝑠(𝐷2) × 𝑛𝑏𝐼𝐶 × 𝑡(𝐷2) = 0.10 × 512 × 2 ×
7 + 0.10 × (512 + 2048) × 2 × (12− 7) = $3276.8.  

The pricing of Amazon S3 is variable. It is $0.095 per GB for the first TB. Then, it becomes 

$0.08 per GB up to 450 TB and so on (Section 2.2). Unlike EBS, S3’s price is independent from the 

number of EC2 instances. This pricing cs
S3 is a piecewise linear function (cf. Formula 2), and the storage 

cost can be expressed as follows:  

 𝐶𝑠 𝐷, 𝐼𝐶, 𝑆3 =  𝑐𝑠
𝑆3

𝑛𝐷

𝑘=1

 𝑠 𝐷𝑘  × 𝑡 𝐷𝑘 . (8) 

Example 4. We use Amazon S3 for storage pricing (Table 5) and consider the same scenario as 

in Example 3. Thus we have two periods, and due to their data volume, segment 1 of the cost function is 

considered for period 1, and segment 2 for period 2. The whole storage cost is: 𝐶𝑠(𝐷, 𝐼𝐶, 𝑆3) =

𝑐1
𝑆3(𝑠(𝐷1)) × 𝑡(𝐷1) + 𝑐2

𝑆3(𝑠(𝐷2)) × 𝑡(𝐷2) = (𝑎1
𝑆3 × (𝑠(𝐷1)− 𝑥1

𝑆3) + 𝑏1
𝑆3) × 𝑡(𝐷1) + (𝑎2

𝑆3 ×

(𝑠(𝐷2)− 𝑥2
𝑆3) + 𝑏2

𝑆3) × 𝑡(𝐷2) = (0.095 × (512− 0) + 0) × 7 + (0.08 × ((512 + 2048)− 1024) +
1024 × 0.095) × 5 = $1441.28. 

4. Cost models for materializing views in the cloud 

This section presents cost models for materializing views in the cloud, relying on the cost models 

developed in Section 3. We assume here that queries are executed on a constant number nIC  of identical 

instances IC0 (ICj = IC0 ,  ∀j = 1. . nIC ). In future work, we shall consider the evaluation process on 

multiple, variable instances.  

Let Vcand = {Vk}k=1..nV
 be a set of candidate views for materialization provided by an existing 

view selection technique (cf. Section 2.3). In this section, we assume that views to be materialized have 

been selected from the client’s side, outputting a final set of views V ⊂ Vcand  that are materialized in the 

cloud. The problem of choosing the best set of views V from Vcand  based on the cost models presented 

here is addressed in the next section.  

4.1. Data transfer cost 

Materializing views helps save bandwidth and benefits from the computing performance of the 

cloud. With materialized views created in the cloud, transfer costs due to materialization are null. As a 

consequence, total transfer cost Ct is not impacted and remains expressed by Formula 4.  
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4.2. Computing cost 

Using materialized views implies modifying the computing cost model, since query processing 

may exploit materialized views, and views must be materialized and maintained. Computing cost Cc  now 

depends on V: Cc(Q, V, IC, P).  

Applying Amazon and Microsoft pricing model with materialized views and considering that the 

cloud consists of a constant number of identical instances
2
, Formula 5 thus becomes:  

 

 𝐶𝑐(𝑄,𝑉, 𝐼𝐶,𝑃) = 𝑇(𝑄,𝑉,𝑃) × 𝑐𝑐
𝑃(𝐼𝐶0) × 𝑛𝐼𝐶 . (9) 

T(Q, V, P) is the total computing time, which is the sum of the time Tproc (Q, V, P) for processing 

the queries in workload Q using the set V of materialized views, the time Tmat (V, P) for materializing 

these views, and the time Tmaint (V, P) for maintaining them. As a consequence, the total computing time 

can be expressed as:  

 

 𝑇(𝑄,𝑉,𝑃) = 𝑇𝑝𝑟𝑜𝑐 (𝑄,𝑉,𝑃) + 𝑇𝑚𝑎𝑡 (𝑉,𝑃) + 𝑇𝑚𝑎𝑖𝑛𝑡 (𝑉,𝑃). (10) 

If a view is materialized, its associated query must be executed, which must be paid for in 
the cloud. Let the materialization time of view Vk  be tmat

P(Vk). The total materialization time is:  
 

 𝑇𝑚𝑎𝑡 (𝑉,𝑃) =  𝑡𝑚𝑎𝑡
𝑃

𝑉𝑘∈𝑉

(𝑉𝑘). (11) 

The maintenance cost of materialized views is directly proportional to the time required for 

updating materialized views when they are impacted by modifications of the source dataset. Note that we 

consider that querying and maintenance do not occur at the same time. For example, queries are posed 

during day-time and maintenance is performed during night-time. Let the maintenance time of view Vk  be 

tmaint
P(Vk). Then, the total maintenance time of V is:  

 

 𝑇𝑚𝑎𝑖𝑛𝑡 (𝑉,𝑃) =  𝑡𝑚𝑎𝑖𝑛𝑡
𝑃

𝑉𝑘∈𝑉

(𝑉𝑘). (12) 

When using materialized views, query processing time is defined by two main parameters: query 

workload Q and set of materialized views V. Queries may use the contents of materialized views instead 

of recomputing their result. Note that we consider that Q is fixed, variable workload is left for future 

work. Since views are usually materialized with respect to a given workload and ours is fixed, then V is 

also fixed. Let tP (Qi , V) be the processing time of query Qi when exploiting the set of materialized views 

V. Thus, the total processing time of Q against V is: 

 

 𝑇𝑝𝑟𝑜𝑐 (𝑄,𝑉,𝑃) =  𝑡𝑃

𝑛𝑄

𝑖=1

(𝑄𝑖 ,𝑉). (13) 

                                                           
2
Considering variable instances is out of the scope of thispaper and is part of our perspectives. 
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4.3. Storage cost 

Using materialized views does not impact the storage cost model as presented by Formulas 6, 7 

and 8. Exploiting materialized views to enhance query performance implies storing them in the cloud and 

paying the corresponding cost. As a consequence, some data can be duplicated. In that case, the size of 

D + V, i.e., s(D) +  sVk∈V (Vk), is used instead of the size s(D) of D alone in the storage cost model. 

Therefore, the storage cost model depending on D and V can be expressed as:  

 

 𝐶𝑠(𝐷,𝑉, 𝐼𝐶,𝑃) = 𝐶𝑠(𝐷 + 𝑉, 𝐼𝐶,𝑃). (14) 

Note that we assume that original data and materialized views are stored for the whole considered 

storage period.  

Example 5.In our running example with Amazon S3, the dataset (0.5 TB) has been stored for a 

year, the size of duplicated data due to materialized views is 50 GB. In addition, no data are inserted 

during the considered period. Thus, we have a single period, and storage cost is 𝐶𝑠(𝐷,𝑉, 𝐼𝐶, 𝑆3) =
(512 + 50) × 0.095 × 12 = $640.68. 

5. Optimizing view materialization in the cloud 

In this section, we investigate how to select the views to materialize in order to improve query 

performance with a minimum overhead of storage cost. We define optimization problems to select the 

best set of materialized views by exploiting the cost models introduced in Section 4. These problems are 

expressed here as linear programs with continuous and integer variables, in order to be solved efficiently 

using a mixed-integer programming (MIP) solver such as CPLEX
3
. However, for large instances, MIP 

solvers could not provide an optimal solution in a limited time. Thus, a GRASP heuristic (Feo & 

Resende, 1995) is proposed to find good solutions faster.  

5.1. Optimization objectives 

Based on the ideas in(Kllapi, Sitaridi, Tsangaris, & Ioannidis, 2011), we propose three 

optimization problems, labelledMV1 to MV3, with different objective functions to satisfy the needs and 

capacity of customers.  

Problem 𝑴𝑽𝟏: find a set of views V that minimizes response time Tproc  under budget limit Cmax  

for total cost C.  

 (𝑀𝑉1)

 
 
 

 
 

minimize 𝑇𝑝𝑟𝑜𝑐

subject to 𝐶 ≤ 𝐶𝑚𝑎𝑥
𝑎𝑛𝑑 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑡𝑎𝑡 𝑑𝑒𝑓𝑖𝑛𝑒:

 − 𝑡𝑒 𝑐𝑜𝑠𝑡 𝑚𝑜𝑑𝑒𝑙
 − 𝑡𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑣𝑖𝑒𝑤𝑠

  (15) 

Problem 𝑴𝑽𝟐: find a set of views V that minimizes total cost C under limit Tmax  for response 

time Tproc .  

                                                           
3
IBM ILOG CPLEX Optimizer: http://www.ibm.com/software/integration/optimization/cplex-optimizer 
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 (𝑀𝑉2)

 
 
 

 
 

minimize 𝐶

subject to 𝑇𝑝𝑟𝑜𝑐 ≤ 𝑇𝑚𝑎𝑥
𝑎𝑛𝑑 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑡𝑎𝑡 𝑑𝑒𝑓𝑖𝑛𝑒:

 − 𝑡𝑒 𝑐𝑜𝑠𝑡 𝑚𝑜𝑑𝑒𝑙
 − 𝑡𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑣𝑖𝑒𝑤𝑠

  (16) 

Solving the bi-objective optimization problem (i.e., to minimize both C and Tproc ) is not directly 

addressed in this paper, as it requires specific optimization techniques (e.g.,(Coello, Lamont, & 

Veldhuisen, 2007)) that differ from mono-objective optimization techniques. It is not possible to provide 

a solution that optimizes both objectives. However, non-dominated solutions can be provided (i.e., 

solutions of the Pareto frontier), meaning solutions that can not be improved on one objective without 

worsening the other objective (Ehrgott, 2005). The model presented here is fully valid for multi-objective 

optimization, by removing budget and response time limits.  

We can consider using exact methods (e.g., Two-Phases Method (Visée, Teghem, Pirlot, & 

Ulungu, 1998)) or approximate methods (e.g., NSGA-II, Non-dominated Sorting Genetic Algorithm-

II(Deb, Pratap, Agarwal, & Meyarivan, 2002)) to solve the bi-objective problem. The former approach is 

based on solving the following problem MV3, which aims at optimizing both objectives with a coefficient 

α setting the relative importance of the response time criterion against the cost criterion. 

Problem 𝑴𝑽𝟑: find a set of views V that is a trade-off between minimum response time Tproc  

and minimum total cost C.  

 (𝑀𝑉3)

 
 
 

 
 

minimize 𝛼 × 𝑇𝑝𝑟𝑜𝑐 + (1− 𝛼) × 𝐶

subject to 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑡𝑎𝑡 𝑑𝑒𝑓𝑖𝑛𝑒:

 − 𝑡𝑒 𝑐𝑜𝑠𝑡 𝑚𝑜𝑑𝑒𝑙
 − 𝑡𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑣𝑖𝑒𝑤𝑠

  (17) 

5.2. Mixed integer programming formulation 

In order to select the set of views V to materialize, we rely on an existing algorithm, such as(Baril 

& Bellahsene, 2003), enabling to obtain a set of candidate views for materialization Vcand = {Vk}k=1..nV
. 

In a first step, we make some assumptions on Vcand . Notably, to determine the gain of using a view, or 

several views, for a given query requires either to know enough details on the functioning of the cloud to 

be able to express analytically this gain, or to run many experiments to measure or estimate the gain.  

To simplify matters, we assume here that each query Qi can use only one single view among a set 

of candidate views, meaning that for each query Qi, there is a set Vi ⊂ V of candidate views, and no more 

than one view in this set must be selected for query Qi. In future work, one can consider the candidate 

views of query Qi to be Vi =  Vij 
j=1..ni

 that contains ni  candidate sets of views Vij ⊂ V. The objective 

will thus be to select a set of views Vij  for a query Qi instead of a single view.  

The decision of the optimization problem is to select a view Vk  for each query Qi. For this 

purpose, decision variables xik  are introduced: xik = 1 if query Qi uses Vk, and xik = 0 otherwise. Let us 

define gik
P  as the gain on response time for query Qi when using view Vk with cloud provider P. Gains 

are considered constant in this problem, meaning that they have been measured or estimated upstream 

(from experiments, statistics, or models). The response time of query Qi using views is expressed as 

follows:  
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 𝑡𝑃(𝑄𝑖 ,𝑉) = 𝑡𝑖
𝑃 − 𝑔𝑖𝑘

𝑃

𝑛𝑉

𝑘=1

 𝑥𝑖𝑘 , (18) 

where ti
P  is the response time with cloud provider P for query Qi without any view, and 

assuming that no more than one view is selected for query Qi. This latter point is ensured by the following 

constraints:  

  𝑥𝑖𝑘

𝑛𝑉

𝑘=1

≤ 1,  ∀𝑖 = 1. .𝑛𝑄 . (19) 

Decision variables yk  are also introduced to determine whether view Vk is materialized: yk = 1 if 

view Vk is materialized, and yk = 0 otherwise. A view Vk is materialized if it is used by at least one query 

(i.e., when at least one query Qi exists such that xik = 1), which is expressed by the following constraints: 

 

 𝑥𝑖𝑘 ≤ 𝑦𝑘 ,  ∀𝑖 = 1. .𝑛𝑄 ,  ∀𝑘 = 1. .𝑛𝑉 . (20) 

Moreover, there is no need to materialize Vk if it is not used at all, which is expressed by the 

following constraints:  

 𝑦𝑘 ≤ 𝑥𝑖𝑘

𝑛𝑄

𝑖=1

,  ∀𝑘 = 1. .𝑛𝑉 . (21) 

As for the gains on response time, materialization and maintenance times (tmat
P(Vk) and 

tmaint
P(Vk)) have been estimated upstream. These times must be considered for a view Vk only if this 

view is materialized:  

 

𝑇𝑚𝑎𝑡 (𝑉,𝑃) =  𝑡𝑚𝑎𝑡
𝑃

𝑛𝑉

𝑘=1

(𝑉𝑘) 𝑦𝑘 ,

𝑇𝑚𝑎𝑖𝑛𝑡 (𝑉,𝑃) =  𝑡𝑚𝑎𝑖𝑛𝑡
𝑃

𝑛𝑉

𝑘=1

(𝑉𝑘) 𝑦𝑘 .

 (22) 

As long as we assume that no data are inserted in the dataset during operation, we can consider a 

single period of length t(D) for storage. The size S of these data is:  

 

 𝑆 = 𝑠(𝐷) +  𝑠

𝑛𝑉

𝑘=1

(𝑉𝑘) 𝑦𝑘 , (23) 

and their storage cost is:  

 𝐶𝑠(𝐷,𝑉, 𝐼𝐶,𝑃) = 𝑐𝑠
𝑃(𝑆) 𝑡(𝐷) 𝑛𝑠

𝑃 , (24) 

wherecs
P  is the storage cost function (we assume that it is piecewise linear, Section 3.4) applied 

by provider P, and ns
P = nIC  if provider P enables global storage (like Amazon EBS, Section 3.4) or 

ns
P = 1 otherwise.  
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Note that transfer cost Ct is not impacted by the selection of views. It is a constant value in the 

optimization problem and remains expressed by Formula 4. To sum up, the whole optimization problem, 

for instance MV1 (MV2 and MV3 being very similar), is finally expressed as follows
4
:  

 

 𝑀𝑉1

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

minimize 𝑇𝑝𝑟𝑜𝑐 =   𝑡𝑖 − 𝑔𝑖𝑘

𝑛𝑉

𝑘=1

 𝑥𝑖𝑘 

𝑛𝑄

𝑖=1

subject to 𝐶 = 𝐶𝑐 + 𝐶𝑡 + 𝐶𝑠 ≤ 𝐶𝑚𝑎𝑥 𝐶𝑠 = 𝑐𝑠(𝑆) 𝑡(𝐷) 𝑛𝑠

𝐶𝑐 =  𝑇𝑝𝑟𝑜𝑐 + 𝑇𝑚𝑎𝑡 + 𝑇𝑚𝑎𝑖𝑛𝑡   𝑐𝑐(𝐼𝐶0) 𝑛𝐼𝐶 𝑆 = 𝑠(𝐷) +  𝑠

𝑛𝑉

𝑘=1

(𝑉𝑘) 𝑦𝑘

 𝑥𝑖𝑘

𝑛𝑉

𝑘=1

≤ 1,  ∀𝑖 = 1. .𝑛𝑄 𝑇𝑚𝑎𝑡 =  𝑡𝑚𝑎𝑡

𝑛𝑉

𝑘=1

(𝑉𝑘) 𝑦𝑘

𝑥𝑖𝑘 ≤ 𝑦𝑘 ,  ∀𝑖 = 1. .𝑛𝑄 ,  ∀𝑘 = 1. .𝑛𝑉 𝑇𝑚𝑎𝑖𝑛𝑡 =  𝑡𝑚𝑎𝑖𝑛𝑡

𝑛𝑉

𝑘=1

(𝑉𝑘) 𝑦𝑘

𝑦𝑘 ≤ 𝑥𝑖𝑘

𝑛𝑄

𝑖=1

,  ∀𝑘 = 1. .𝑛𝑉

𝑥𝑖𝑘 ∈ {0,1},  ∀𝑖 = 1. .𝑛𝑄 ,  ∀𝑘 = 1. .𝑛𝑉
𝑦𝑘 ∈ {0,1},  ∀𝑘 = 1. .𝑛𝑉

  (25) 

Notice that cs  is piecewise linear. It can be reformulated with linear constraints on continuous and 

integer variables (cf. (Chen et al., 2010), page 64), making the formulation fully linear.  

5.3. GRASP heuristic 

GRASP (Greedy Randomized Adaptive Search Procedure) is a metaheuristic with two phases: a 

randomized construction and a local search (Feo & Resende, 1995). The two phases are repeated a given 

number of times(itGR  times), and the best solution of all iterations is kept. In the construction phase, 

which is a greedy approach, a solution is iteratively constructed, by adding one element at a time in the 

solution. Then, the local search iteratively improves the solution obtained in the first phase by moving 

from solution to solution in the space of candidate solutions (by adding or removing elements in the 

solution).  

There are two sets of decision variables in the view materialization problem: yk  that indicates 

whether view Vk is materialized, and xik  that indicates whether view Vk is used by query Qi. Note that if 

all yk  are fixed, then finding the optimal values for all xik  is straightforward: selecting the materialized 

view Vk that maximizes gain gik  for each query Qi provides an optimal solution for xik , since all yk  are 

fixed.  

In our GRASP heuristic, a solution is thus represented by vector y =  yk k=1..nV
, and adding an 

element in the solution means materializing a view (i.e., for a given k, set yk = 1).  

                                                           
4
For clarityreasons, notation issimplified: parameters𝑄, 𝐷, 𝑉, 𝐼𝐶, and 𝑃 are masked. 
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5.3.1. Randomized construction 

The construction phase starts with a solution where no view is materialized. Iteratively, one view 

is selected and materialized in the solution. The aim here is to generate a feasible solution, meaning that 

the cost C of final solution y must be lowerthan Cmax . Therefore, only views that reduce cost C are 

inserted in the solution. Several indicators are necessary to estimate the impact of materializing a view.  

Let ck be the sum of the cost ΔCc(Vk) of materializing view Vk (including processing the 

materialization and the maintenance of the view), and the cost ΔCs(Vk) of storing the view:  

 

 

𝑐𝑘 = Δ𝐶𝑐(𝑉𝑘) + Δ𝐶𝑠(𝑉𝑘),

Δ𝐶𝑐(𝑉𝑘) =  𝑡𝑚𝑎𝑡 (𝑉𝑘) + 𝑡𝑚𝑎𝑖𝑛𝑡 (𝑉𝑘) 𝑐𝑐(𝐼𝐶0) 𝑛𝐼𝐶 ,

Δ𝐶𝑠(𝑉𝑘) =  𝑐𝑠(𝑆 + 𝑠(𝑉𝑘))− 𝑐𝑠(𝑆) 𝑡(𝐷) 𝑛𝑠 .
 (26) 

Let gk  be the gain on total response time Tproc  of materializing view Vk, which is the sum of all 

the gains induced by the materialization of view Vk on each query Qi (Vk provides a gain for query Qi 

only if gik > gil , where Vl is the current view selected for query Qi):  

 

 𝑔𝑘 =  max 0,  𝑔𝑖𝑘 − 𝑔𝑖𝑙

𝑛𝑉

𝑙=1

 𝑦𝑙 

𝑛𝑄

𝑖=1

. (27) 

Let wk  be the benefit of materializing view Vk, which is the difference between the cost of the 

gain on response time and the cost of materializing the view:  

 

 𝑤𝑘 = 𝑔𝑘  𝑐𝑐(𝐼𝐶0) 𝑛𝐼𝐶 − 𝑐𝑘 . (28) 

At each iteration of the greedy construction, views that are not materialized yet are ranked 

according to wk . Only the views with wk > 0 are considered, and among a given proportion(selRC  %) of 

the bestcandidates (i.e., with highest wk), one is chosen randomly. This selected view is materialized in 

solution y, and the procedure repeats, until there is no more candidate view to add in the solution.  

At the end of the procedure, if cost C > Cmax  for solution y, then a new attempt to build a feasible 

solution is performed. If, after a given number itRC  of attempts, no feasible solution is found, then the 

heuristic stops with no feasible solution.  

5.3.2. Local search 

The goal of the local search is to improve the feasible solution obtained from the randomized 

construction, by reducing total processing time Tproc . The procedure moves from solution to solution by 

adding a view to be materialized at each iteration. For this purpose, the indicator gk  of each view Vk that 

is not materialized yet is computed. Neighborhood solutions of y will be solutions with one more 

materialized view Vk such that gk > 0, and that are still feasible, i.e., such that C−wk ≤ Cmax . The 

heuristic moves to the solution that is randomly selected among a given proportion(selLS  %) of the best 

solutions (i.e., with highest gk) of the neighborhood.  

Note that each time a new view is materialized, it can make some already materialized views 

useless, meaning that there can exist materialized views that are not used anymore by any query. To not 

materialize such views reduces total cost without increasing total processing time. Therefore, such views 
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are detected and removed from each new solution of the local search. The procedure ends when no more 

view can be added to improve the solution.  

6. Experiments 

This section describes our experimental environment and the results we achieved. Experiments 

arerunat once in the cloud and on the client’s side. Both the dataset and materialized views are stored on 

the cloud and queries are processed on the cloud. View selection algorithms are executed at the client’s. 

The idea is to select views at the client’s and materialize them on the cloud. 

6.1. Environment 

We run our experiments on a cluster composed by 20 virtual machines with 8 GB hard drives, 

2 GB of RAM and 1 vCPU. The physical architecture corresponds to four 2.21 GHz processors with 12 

cores and 96 GB of RAM. All machines run Hadoop (version 0.20.2) and Pig (version 0.9.1). Since client 

configuration has no effect on the following results, we do not detail it. 

There are two main ways to generate workloads to test this kind of configuration. The first is 

using real traces. This approach usually helps provide good estimation of real usecases. However, a trace 

represents only a particular case and does not allow fully representing reality. Furthermore, if the main 

objective is to understand why a solution fits in a particular context, the use of one trace will be 

insufficient to highlight all operating mechanisms. The second approach consists in using a synthetic 

workload. Its main drawback lies in its artificial nature, but it allows comparing many configurations. In 

summary, if traces are available, using them help choose the model and calibrate it. Choosing the model is 

very important to provide a good representation of the target context. Since our goal is to illustrate the 

interest of our approach in datawarehouses, we use the Star Schema Benchmark (version 2.1.8.18). 

Queries are written in Pig Latin and executed by the Pig compiler asMapReduce tasks using a Hadoop 

cluster. 

6.2. Querying  

We have tested optimizationsMV1, MV2andMV3 described in Section 5.1 on a 5.5 GB database 

and Amazon S3 and EC2 prices. Measures have been performedwith variable parameters. The first 

parameter is experiment duration, from 1 to 24 months. The second parameter is workload frequency, i.e., 

the number of times the workload is executed during the considered period, from 1 to 5executions per 

week. The third parameter is the number of nodes used to process queries, from 5 to 20. A typical 

experiment fixes two parameters and varies the last. Fixed values used for experiment duration, workload 

frequency and node number are 12, 4 and 10, respectively. 

 

(a) Cost w.r.t. duration (b) Response time w.r.t. duration (c) Cost w.r.t. workload frequency 
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(d) Response time w.r.t. workload 

frequency 
(e) Cost w.r.t. number of nodes (f) Response time w.r.t. number of 

nodes 

Figure 3. Experimental results 

The experimental results we achieved clearly showthat our approach allows selecting views that 

significantly improveboth response time and cost (Figure 3). Response time can indeed be divided by 

about 2 (for example, with 4 workload executions per week during 12 months on a 10-node cluster, 

response time is 20 hours with materialized views, while it is 42 hours without), and cost is about 30% 

lower(for example, still with 4 workload executions per week during 12 months on a 10-node cluster, cost 

with materialized views is $22, while it is $32 without). 

Our solution allows reaching the twoobjectives. When the objective is to reduce costs, 

materializing views allows paying the minimum for a given response. When the objective is performance, 

materializing viewsleads to the minimum response time for a given cost. However, note that both 

objectives do not seem contradictory. When fixing response time, we decrease cost by about 10%. When 

fixing cost, we improve responsetime by about 5%.But in large-scale environments, a gain of 5 to 10% is 

still estimated to thousands of dollars and hours of processing. 

6.3. View selection 

In this series of experiments, computational performance and solutions quality of the GRASP 

heuristic are compared with those obtained by solving the optimization problem MV1 with CPLEX 12.4. 

The experiments are performed on an Intel Core 2 Quad Processor (2.5 GHz), with 4 GB of RAM. We 

empirically tested different parameter values for GRASP and retained the following: itGR = 100, 

itRC = 200, selRC = 0.1, and selLS = 0.1.  

Solvers are tested on instances where values s(Vk), tmat (Vk), tmaint (Vk), ti, gik  are randomly 

generated. Instances of various sizes (i.e., with different number nQ  of queries, and number nV  of 

candidate views) are built. The pricing of Amazon EC2 and S3 services is used, using 2 small computing 

instances for an operating period t(D) = 1.  

Moreover, we test the same instances for three different values of Cmax , in order to consider a 

more or less restrictive budget constraint. The minimum cost C− of the instance (obtained by solving 

problem MV2 without response time limit) and the maximum cost C+ of the instance (obtained by solving 

problem MV1 without budget limit) are used to define three values for Cmax : C1 = C− + 0.05(C+ − C−) 

is 5 % above minimum cost C−, C2 is 15 % above C−, and C3 is 25 % above C−. Therefore, three groups 

are formed, denoted G1, G2, and G3, with Cmax being respectively equal to C1, C2, and C3.  

For each group, two tables are presented: on the left-hand table, the number of views is fixed to 

100 and the number of queries varies. On the right-hand table, the number of queries is fixed to 100 and 

the number of views varies. Tables feature average values from 5 different instances with the same size. 

They show the CPU time needed by CPLEX and GRASP to solve the problem and the relative difference 

(gap) between the response timeTproc  of the solutions found by both methods. A gap of n% means that 

GRASP achieved a response time n% greater than that found by CPLEX. Note that if CPLEX cannot find 
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the optimal solution within two minutes, the gap is computed with the best solution found by CPLEX 

(such cases are marked with * in tables).  

 
Queries CPU time (seconds) Gap 

(𝑛𝑄) CPLEX GRASP (%) 

10 0.1 0.0 0.5 

20 2.6 0.1 1.1 

30 8.6 0.1 0.4 

40 17.8 0.1 0.7 

50 14.1 0.1 0.5 

60 33.3 0.2 1.0 

70 51.8 ∗ 0.2 0.3 

80 67.6 ∗ 0.2 0.9 

90 48.6 0.3 0.6 

100 84.6 ∗ 0.3 0.4 

Table 8. Results for 𝑮𝟏, with 𝒏𝑽 = 𝟏𝟎𝟎. 

Views CPU time (seconds) Gap 

(𝑛𝑉) CPLEX GRASP (%) 

10  1.1 0.0 0.6 

20  3.4 0.0 0.6 

30  9.7 0.1 0.8 

40  17.4 0.1 0.4 

50  26.4 0.1 0.5 

60  47.7 0.2 0.4 

70  43.3 0.2 0.4 

80  69.2 ∗ 0.2 0.3 

90  73.4 ∗ 0.3 0.8 

100  84.6 ∗ 0.3 0.4 

Table 9. Results for 𝑮𝟏, with 𝒏𝑸 = 𝟏𝟎𝟎. 

The results for group G1 are presented in Tables 8 and 9. The time needed by CPLEX to solve the 

instances increases significantly with their size. For some instances, CPLEX cannot find an optimal 

solution within two minutes. As GRASP runs fast, i.e., in less than one second, it has difficulties to find 

an optimal solution. However, the response time Tproc  of its solutions is usually less than 1% greater than 

that of the best solutions found by CPLEX.  

 
Queries CPU time (seconds) Gap 

(𝑛𝑄) CPLEX GRASP (%) 

10  0.4  0.0  1.5   

20  1.8  0.1  1.2   

30  4.3  0.1  0.5   

40  3.5  0.1  0.3   

50  10.4  0.2  0.3   

60  10.7  0.2  0.3   

70  21.1  0.3  0.2   

80  27.6  0.3  0.3   

90  17.1  0.4  0.4   

100  45.1  0.5  0.2   

Table 10. Results for 𝑮𝟐, with 𝒏𝑽 = 𝟏𝟎𝟎. 

Views CPU time (seconds) Gap 

(𝑛𝑉) CPLEX GRASP (%) 

10  0.6  0.0  1.6   

20  2.2  0.0  0.6   

30  6.5  0.1  0.4   

40  9.8  0.1  0.3   

50  13.5  0.2  0.3   

60  13.8  0.2  0.3   

70  14.0  0.3  0.3   

80  38.9  0.3  0.3   

90  53.0 ∗ 0.4  0.3   

100  45.1  0.5  0.2   

Table 11. Results for 𝑮𝟐, with 𝒏𝑸 = 𝟏𝟎𝟎. 

The results for group G2 are presented in Tables 10 and 11. With the budget constraint relaxed, 

CPLEX seems to solve the instances more easily, abouttwice faster, while GRASP finds better solutions 

(the gap is a little smaller).  
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Queries CPU time (seconds) Gap 

(𝑛𝑄) CPLEX GRASP (%) 

10  0.2  0.0  1.0   

20  0.5  0.1  0.7   

30  0.2  0.1  0.0   

40  0.8  0.2  0.1   

50  0.6  0.2  0.0   

60  0.8  0.3  0.0   

70  5.1  0.3  0.0   

80  2.6  0.4  0.0   

90  1.5  0.5  0.0   

100  1.0  0.6  0.0   

 Table 12. Results for 𝑮𝟑, with 𝒏𝑽 = 𝟏𝟎𝟎. 

Views CPU time (seconds) Gap 

(𝑛𝑉) CPLEX GRASP (%) 

10  0.6  0.0  0.8   

20  0.9  0.1  0.5   

30  3.3  0.1  0.2   

40  6.5  0.2  0.3   

50  5.8  0.2  0.1   

60  3.5  0.3  0.1   

70  2.6  0.3  0.0   

80  1.6  0.4  0.0   

90  2.3  0.5  0.0   

100  1.0  0.6  0.0   

Table 13. Results for 𝑮𝟑, with 𝒏𝑸 = 𝟏𝟎𝟎. 

Finally, the results for group G3 are presented in Tables 12 and 13. With the budget limit 

significantly loosened, CPLEX has no difficulty to solve the instances, while GRASP does not always 

find an optimal solution (even if for the biggest instances, optimal solutions are found). 

7. Related works 

We discuss in this section previous research related to the main domains addressed in this paper, 

i.e., cloud data management, data access optimization through materialized views, and cost models for 

large-scale distributed systems. 

Cloud data management brought about a lot of research and various operational systems. The 

most popular include so-called NoSQL systems, such as Amazon DynamoDB (DeCandia et al., 2007), or 

Cassandra (Lakshman & Malik, 2009), which scale up very efficiently but only proposes eventual 

consistency, in contrast to traditional ACID (Atomicity, Consistency, Isolation, Durability) guarantees. 

Full cloud relational systems enforcing ACID constraints are also available, e.g., Microsoft SQL Azure 

(Campbell, Kakivaya, & Ellis, 2010), Amazon RDS (Amazon, 2013) and Oracle Database Cloud Service 

(Oracle, 2013), but they currently operate on a smaller scale. Finally, there exist large-scale data analytics 

systems that are specifically tailored for the cloud, such as Pig (Gates et al., 2009) and Hive (Thusoo et 

al., 2010). The solution we propose in this paper is generic and can be applied within any of these 

systems. 

In the cloud, performance is mainly managed by exploiting computing power elasticity. 

Nevertheless, well-known performance optimization techniques from the database domain, such as 

indexing, view materialization or caching, may be used to decrease the global monetary cost of querying 

data in the cloud. In this paper, we particularly focus onto view materialization. Numerous approaches 

help select (Agrawal, Silberstein, Cooper, Srivastava, & Ramakrishnan, 2009; Ceri & Widom, 1991; Luo, 

Naughton, Ellmann, & Watzke, 2003; Mami & Bellahsene, 2012; Yang, Karlapalem, & Li, 1997; Zhou, 

Larson, & Elmongui, 2007) materialized views, whether in transactional databases, in decision-support 

databases (i.e., data warehouses) or even on the Web. 

In the view selection problem we address, all combinations of attributes in a database constitute a 

lattice of candidate materialized views. Cost models then help determine the materialized views that allow 

the best global performance improvement, usually under disk space constraints. Various optimization 

techniques are used to exploit these cost models, ranging from simple greedy algorithms (Vijay Kumar & 

Ghoshal, 2009) to simulated annealing or genetic algorithms (Bellatreche et al., 2006). Finally, to reduce 

the dimensionality of the input candidate view set, materialized views may also be pre-filtered with 

respect to the query workload, e.g., with data mining techniques such as frequent itemset mining or 
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clustering (Aouiche & Darmont, 2009). Our own costs models aim at extending existing materialized 

view selection strategies by substituting classical space constraints by the pay-as-you-go economic model 

of the cloud, in order to achieve the best trade-off between storage cost (including the cost of storing 

materialized views) and computation cost. 

Existing cost models for cloud computing address a variety of problems. For instance, Kllapi et 

al. (2011) worked on data stream scheduling with respect to monetary cost and processing time. On each 

cloud node, they slice the time into windows. Financial cost is then assumed to be the count of the time 

windows that have at least one operator running, multiplied by the cost of leasing the node. Kantere, 

Dash, Gratsias, and Ailamaki (2011) sought to amortize the cost of data structures such as indexes and 

materialized views to ensure the economic viability of the cloud service provider. With the help of 

stochastic models, they compute, among other indicators, the influence Inf(S) of the cost of a new data 

structure S on the economy of the cloud service provider. Then, the number n of amortization payments 

for building S is such that the gain probability of at most n payments is equal to Inf(S). Dash, Kantere, and 

Ailamaki (2009) also worked on this topic, but for automatically managing caches. They consider the cost 

of a query plan PQ as the sum of the cost of executing PQ and the amortized cost of any structure used by 

PQ. Then, cost models for cache queries, network queries, building and maintaining caching structures 

are detailed. Finally, Upadhyaya, Balazinska, and Suciu (2012) envisaged the problem of selecting and 

pricing optimizations in the cloud as a mechanism design problem, i.e., maximizing the expected value to 

users of exploiting a set A of optimizations minus the actual cost of A, including its maintenance. 

Other costs models target specific applications, especially in the field of astronomy. In this 

domain, simulation experiments showed that a good trade-off between storing optimization structures and 

computing power helps reduce the global cost of data processing in the cloud (more precisely, in 

Amazon’s free solution) without reducing performances (Deelman, Singh, Livny, Berriman, & Good, 

2008). The performance of three applications managing data streams, bearing various characteristics in 

terms of I/Os and memory and CPU consumption, have also been compared on Amazon EC2 and a high-

performance cluster, to identify what applications achieved the best performances at the lowest cost 

(Berriman et al., 2010). Our work complements these existing cost models, but also differs from them in 

two ways. First, we introduce a new billing model that is generic enough to represent the billing models 

of all cloud service providers we are aware of. Second, our proposal rests on a detailed model of the 

optimization process that leads to materialized view selection. Finally, our materialized view selection 

approach is also independent from any particular target application. 

8. Conclusion 

We propose in this paper an approach to improve data management in the cloud using 

materialized views. Our main contributions are extended cost models for materializing views that take 

existing cloud pricing models into account. Our cost models are then exploited by an optimization 

process, which provides a compromise between the performance improvement due to materialization and 

budgetary constraints. Experiments on a private data center have highlighted the relevance of our 

approach. 

This work opens many perspectives. First, we aim at extending our costmodels to overcome some 

limits (multiple and variable instances, for example). Then, we plan to integrate our models in existing 

view selection algorithms to avoid splitting the selection process into two phases, i.e., we aim at fusing 

the candidate view generation and view selection processes. In addition, it would be relevant to consider 

other optimization techniques, such as indexing or caching. It has indeed been shown that, jointly 

employed, indexes and materialized views benefit from each other (Aouiche & Darmont, 2009). Finally, 

we plan to validate our proposals on a larger scale and cloud-specific query workloads (with good and 

bad candidates for parallelism). 
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