
HAL Id: hal-01436047
https://hal.science/hal-01436047v1

Submitted on 25 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NeoEMF: a Multi-database Model Persistence
Framework for Very Large Models

Gwendal Daniel, Gerson Gerson Sunyé, Amine Benelallam, Massimo Tisi,
Yoann Vernageau, Abel Gómez, Jordi Cabot

To cite this version:
Gwendal Daniel, Gerson Gerson Sunyé, Amine Benelallam, Massimo Tisi, Yoann Vernageau, et al..
NeoEMF: a Multi-database Model Persistence Framework for Very Large Models. Proceedings of the
MoDELS 2016 Demo and Poster Sessions co-located with ACM/IEEE 19th International Conference
on Model Driven Engineering Languages and Systems (MoDELS 2016), Oct 2016, Saint-Malo, France.
�hal-01436047�

https://hal.science/hal-01436047v1
https://hal.archives-ouvertes.fr


NeoEMF: a Multi-database Model Persistence
Framework for Very Large Models

Gwendal Daniel1, Gerson Sunyé1, Amine Benelallam1, Massimo Tisi1, Yoann
Vernageau1, Abel Gómez2;4, and Jordi Cabot3;4

1 AtlanMod Team
Inria, Mines Nantes & Lina

ffirst name.last nameg@inria.fr
2 Departamento de Informtica e Ingeniera de Sistemas

Universidad de Zaragoza
abel.gomez@unizar.es

3 ICREA
jordi.cabot@icrea.cat

4 Internet Interdisciplinary Institute
Universitat Oberta de Catalunya

Abstract. The growing use of Model Driven Engineering (MDE) techniques in
industry has emphasized scalability of existing model persistence solutions as
a major issue. Specifically, there is a need to store, query, and transform very
large models in an efficient way. Several persistence solutions based on relational
and NoSQL databases have been proposed to achieve scalability. However, ex-
isting solutions often rely on a single data store, which suits a specific modeling
activity, but may not be optimized for other use cases. In this article we present
NEOEMF, a multi-database model persistence framework able to store very large
models in key-value stores, graph databases, and wide column databases. We in-
troduce NEOEMF core features, and present the different data stores and their
applications. NEOEMF is open source and available online.

Keywords: Model Persistence, Scalability, Large Models

1 Introduction

With the progressive adoption of MDE techniques in industry [10], existing model per-
sistence solutions have to address scalability issues to store, query, and transform large
and complex models [13]. Indeed, existing modeling frameworks were first designed to
handle simple modeling activities, and often rely on XMI-based serialization to store
models. While this format is a good fit for small models, it has shown clear limitations
when scaling to large ones [11].

To overcome these limitations, several persistence frameworks based on relational
and NoSQL databases have been proposed [5,7,11]. They rely on a lazy-loading mech-
anism, which reduce memory consumption by loading only accessed objects. These
solutions have proven their efficiency compared to state-of-the-art tools, but they are
often tailored to a specific data-store implementation.



In these approaches, the choice of the datastore is totally decoupled from the ex-
pected model usage (for example complex querying, interactive editing, or complex
model-to-model transformation): the persistence layer offers generic scalability im-
provements, but is not optimized for a specific scenario. For example, a graph-based
representation of a model can improve scalability by offering a lazy-loading mecha-
nism, but will have poor execution time performance in scenarios involving repeated
atomic value accesses.

Our previous work on model persistence have shown that providing a well-suited
data store for a specific modeling scenario can dramatically improve performance.
Based on this observation, we present in this article NEOEMF, a scalable model per-
sistence framework based on a modular architecture enabling model storage into mul-
tiple data stores. Currently, NEOEMF provides three implementations-map, graph, and
column–each one optimized for a specific usage scenario. NEOEMF provides two APIs,
one strictly compatible to the Eclipse Modeling Framework (EMF) API, easing its in-
tegration into existing modeling tools, and an advanced API that provides specific fea-
tures that bypass the standard EMF API to further improve scalability of particular
modeling scenarios.

The rest of the paper is organized as follows: Section 2 presents an overview of the
NEOEMF architecture, Section 3 and 4 present the core features of the framework and
the different datastores. Section 5 provides insights on the framework’s implementation,
and finally Section 6 summarizes the key points of the paper and presents our future
work. Note that examples of NEOEMF usages are provided on NEOEMF’s wiki5 and
in a demonstration video available online at https://youtu.be/_OyWpcOMOfA.
It highlights NEOEMF’s core features such as model import, API usage, and the lazy
model editor which allows to navigate interactively large models with a low memory
footprint. The demonstration also present a concrete use case by showing the different
steps needed to integrate NEOEMF into an existing EMF-based application, and use it
to store and query models containing several million of elements. Finally, the demon-
stration presents an overview of two tools developed on top of NEOEMF: the Mogwaı̈
query framework and ATL-MR, a distributed version of the ATL transformation engine.

2 Architecture Overview

Figure 1 describes the integration of NEOEMF in the EMF ecosystem. Modelers typ-
ically access a model using Model-based Tools, which provide high-level modeling
features such as a graphical interface, interactive console, or query editor. These fea-
tures internally rely on EMF’s Model Access API to navigate models, perform CRUD
operations, check constraints, etc. In its core, EMF delegates the operations to a per-
sistence manager using its Persistence API, which is in charge of the serialization/de-
serialization of the model. The NEOEMF core component is defined at this level, and
can be registered as a persistence manager for EMF, same as, for example, the default
XMI persistence manager. This design makes NEOEMF both transparent to the client-
application and EMF itself, that simply delegates calls without taking care of the actual
storage.

5 https://github.com/atlanmod/NeoEMF/wiki

https://youtu.be/_OyWpcOMOfA
https://github.com/atlanmod/NeoEMF/wiki


CachingNeoEMF Core
/Map

EMF

/Graph

Model-Based Tools
Model Access API

Persistence API

Backend API

/Column

HBase/
ZooKeeper

Blueprints MapDB

“Standard” 
Modeling User

“Advanced” User 
& Developer

Fig. 1: NEOEMF Integration in EMF Ecosystem

Once the core component has received the modeling operation to perform, it for-
wards the operation to the appropriate database driver (Map, Graph , or Column),
which is in charge of handling the low-level representation of the model. These connec-
tors translate modeling operations into Backend API calls, store the results, and reify
database records into EMF EObjects when needed. NEOEMF also embeds a set of de-
fault caching strategies that are used to improve performance of client applications, and
can be configured transparently at the EMF API level.

In addition to this transparent integration into existing EMF applications, NEOEMF
provides a specific API, which targets advanced users / high-performance applications.
This API provides utility methods which overcome EMF limitations, allow fine-grained
tuning of the databases, and access to internal caches. By using this API, NEOEMF can
be tuned to improve execution time and/or scalability of a specific modeling scenario.

To provide this smooth integration into the EMF infrastructure, the NEOEMF core
component redefines the behavior of several EMF classes. For instance, each NEOEMF
driver defines a specific implementation of PersistenceBackendFactory that
is responsible of the concrete data store creation. This factory creates an instance of
the data store that corresponds to the Resource options. Once the data store has been
created, the driver instantiates a specific implementation of the EStore interface–also
depending on the Resource options–that translates the delegated method calls into data-
store specific API calls. This architecture allows to change the underlying data store
by simply updating the Resource options. The EStore also returns Persistent-
EObject from the database when needed, using a specific reification mechanism.

3 Software Features

As introduced in the previous Section, NEOEMF provides two API levels: one for a
standard use of existing EMF applications / APIs, and one advanced that allows to
bypass EMF’s limitations, tune internal data stores, and configure caches. In this Section
we present first the standard features, available simply by plugging NEOEMF into an
existing application, then we introduce its advanced features.

3.1 Standard Features

An important characteristic of NEOEMF is its compliance with the EMF API. All class-
es/interfaces extending existing EMF ones strictly define all their methods, and we put



a special attention to ensure that calling a NEOEMF method produces the same behav-
ior (including possible side effects) as standard EMF API calls. As a result, existing
applications can integrate NEOEMF with a very small amount of efforts and bene-
fit immediately from NEOEMF scalability improvements. Existing code manipulating
regular EMF EObjects does not have to be modified, and will behave as expected.

Specifically, NEOEMF supports the following EMF features:

– Code generation: NEOEMF provides a dedicated code generator that transpar-
ently extends the EMF one, and allows client applications to manipulate models
using generated java classes.

– Reflexive/Dynamic API: reflexive and dynamic EMF methods (eSet, eGet,
eUnset, eDynamicGet, eDynamicSet ...) can be used on NEOEMF
objects, and behave as their standard implementations.

– Resource API: NEOEMF also implements the resource specific API, such as get-
Contents, getAllContents, save, and load. In addition, NEOEMF takes
advantage of the flexible save and load options to enable backend-specific cus-
tomizations.

As other model persistence solutions [5, 11], NEOEMF achieves scalability using
a lazy-loading mechanism, which loads into memory objects only when they are ac-
cessed, overcoming XMI’s limitations. Lazy-loading is defined at the core component:
NEOEMF implementation of EObject consists of a simple wrapper delegating all its
method calls to an EStore, that directly manipulates elements at the database level. Us-
ing this technique, NEOEMF benefits from datastore optimizations (such as caches),
and only maintains a small amount of elements in memory (the ones that have not been
saved), reducing drastically the memory consumption of modeling applications.

3.2 Advanced Features

In addition to its compliance with the EMF API, NEOEMF provides specific utility fea-
tures to tackle EMF’s limitations, such as the List<EObject> allInstances(EClass eClass) method,
which is accessible through the PersistentResource interface. This feature tack-
les the problem of allInstances computation in EMF [14] by delegating it to the data
store, allowing to retrieve requested element fastly, using data store indexes, or specific
data representation.

NEOEMF also includes an io module, providing a scalable Model Importer, that
consists of an event-based XMI parser that bypasses the EMF API to efficiently store the
model in a dedicated database with a low memory footprint. The importer is designed
to be generic and can be implemented in each backend component. We also plan to
add an efficient Model Exporter module that would allow to produce optimized model
serializations from their database representation.

Finally, NeoEMF contains a set of caching strategies that can be plugged on top of
the data store according to specific needs. Note that these caches are available for all
connectors, unless otherwise stated.

– EStructuralFeaturesCaching: a LRU cache storing loaded objects by their ac-
cessed feature.



– IsSetCaching: a cache keeping the result of isSet calls to avoid multiple ac-
cesses to the database.

– SizeCaching: a cache keeping the result of size calls on multi-valued features to
avoid multiple accesses to the database.

– RecordCaches: a set of database-specific caches maintaining a list of records to
improve execution time.

These caches can be configured using the save and load Resource methods, which al-
lows to add specific options which are then forwarded to the appropriate Persis-
tenceBackendFactory.

4 Datastores

The previous features are available for a variety of data stores supported by NEOEMF.
In this section we introduce the different datastores available. We introduce briefly
model representation in these stores and describe their differences and the specific mod-
eling scenario they better address. Both, standard and advanced, features presented in
the previous section are implemented in the supported datastores.

4.1 NEOEMF/MAP

NEOEMF/MAP [7] has been designed to provide fast access to atomic operations, such
as accessing a single element/attribute, and navigating a single reference. This imple-
mentation is optimized for EMF API-based accesses, which typically generate atomic
and fragmented calls on the model. NEOEMF/MAP embeds a key-value store, which
maintains a set of in-memory/on disk maps to speed up model element accesses. The
benchmarks performed in previous work [7] show that NEOEMF/MAP is the most suit-
able solution to improve performance and scalability of EMF API-based tools that need
to access very large models on a single machine.

NEOEMF/MAP data model is composed of three different maps that store model
information: (i) a property map, which keeps all objects data in a centralized place; (ii)
a type map, which tracks how objects relate to the meta-level (such as the instance of
relationships); and (iii) a containment map, which defines the model structure in terms
of containment references.

4.2 NEOEMF/GRAPH

NEOEMF/GRAPH [2] persists models in an embedded graph database that represents
model elements as vertices, attributes as vertex properties, and references as edges.
Metamodel elements are also persisted as vertices in the graph, and are linked to their
instances through the INSTANCE_OF relationship.

Using graphs to store models allows NEOEMF to benefit from the rich traversal
features that graph databases usually provide, such as fast shortest-path computation, or
efficient complex navigation paths among several vertices/edges. These advanced query
capabilities have been used to develop the Mogwaı̈ [4] tool, that maps OCL expressions



to graph navigation traversals. On the other hand, graph databases are not well-suited
to compute atomic accesses of single elements or attributes, which are typical queries
computed in interactive model edition.

4.3 NEOEMF/COLUMN

NEOEMF/COLUMN [6] has been designed to enable the development of distributed
MDE-based applications by relying on a distributed column-based datastore. NEOEM-
F/COLUMN uses a single table with three column families to store model information:
(i) a property column family that keeps all objects data stored together; (ii) a type col-
umn family that tracks how objects relate to the meta-level (such as the instance of
relationships); and (iii) a containment column family that defines the model structure in
terms of containment hierarchy.

In contrast with Map and Graph implementations, NEOEMF/COLUMN offers con-
current read/write capabilities and guarantees ACID properties at model element level.
It exploits the wide availability of distributed clusters in order to distribute intensive
read/write workloads across datanodes. The distributed nature of this persistence so-
lution is used in the ATL-MR [3] tool, a distributed engine for model transformations
in the ATL language on top of MapReduce. NEOEMF/COLUMN, enables the cluster’s
nodes to share read/write rights over the same set of input/output models.

5 Implementation

NEOEMF has been implemented as a set of open source Eclipse plugins distributed
under the EPL license. The NEOEMF website6 presents an overview of the key features
and current ongoing work, and the source code repository is fully available on GitHub
(https://github.com/atlanmod/NeoEMF). NEOEMF has been released as
part of the MONDO platform [8].

The NEOEMF/GRAPH implementation relies on Blueprints [12], an interface de-
signed to unify graph databases under a common API. Blueprints has been implemented
by a large number of databases, such as Neo4j, OrientDB, and Titan. The use of this
abstraction layer on top of graph databases enable client applications to use the graph
implementation of their choice, as long as it implements the Blueprints API. For now,
NEOEMF/GRAPH embeds Blueprints 2.5.0 and provides a convenience wrapper for
Neo4j 1.9.6. An implementation relying on the new Blueprints API (called Tinkerpop3)
is under study for now, as well as the creation of additional database wrappers.

NEOEMF/MAP embeds the key-value store MapDB 1.0.9. MapDB provides Maps,
Sets, Lists, Queues and other collections backed by off-heap or on-disk storage, and
describes itself as a hybrid between Java Collections and an embedded database en-
gine [9]. It provides advanced features such as ACID transactions, snapshots, and in-
cremental backups. NEOEMF/MAP relies on the set of Maps provided by MapDB and
uses them as a key-value store.

NEOEMF/COLUMN is built on top of Apache HBase [1] 0.98.13-hadoop2, a non-
relational wide column database providing distributed data storage on top of HDFS. It

6 www.neoemf.com

https://github.com/atlanmod/NeoEMF
www.neoemf.com


is able to host very large tables–billions of rows containing millions of columns–atop
clusters of commodity hardware. Model distribution is hidden from client applications,
which accesses the elements transparently using the standard EMF API.

6 Conclusion

In this article we have presented NeoEMF, a multi-datastore model persistence frame-
work. It relies on a lazy-loading capability allowing very large model navigation in a
reduced amount of memory, by loading elements when they are accessed. NeoEMF pro-
vides three implementations that can be plugged transparently to provide an optimized
solution to different modeling use cases: atomic accesses through interactive editing,
complex query computation, and cloud-based model transformation.

References
1. Apache. Apache HBase, 2016. URL: https://hbase.apache.org/.
2. Amine Benelallam, Abel Gómez, Gerson Sunyé, Massimo Tisi, and David Launay.

Neo4EMF, a Scalable Persistence Layer for EMF Models. In Proc. of the 10th ECMFA,
pages 230–241, York, United Kingdom, 2014.

3. Amine Benelallam, Abel Gómez, Massimo Tisi, and Jordi Cabot. Distributed Model-to-
Model Transformation with ATL on MapReduce. In Proc. of the 8th SLE Conference, pages
37–48. ACM, 2015.

4. Gwendal Daniel, Gerson Sunyé, and Jordi Cabot. Mogwaı̈: a Framework to Handle Complex
Queries on Large Models. In Proc of the 10th RCIS Conference (to appear). IEEE, 2016.
Available Online at http://tinyurl.com/jgopmvk.

5. Eclipse Foundation. The CDO Model Repository (CDO), 2016. URL: http://www.
eclipse.org/cdo/.

6. Abel Gómez, Amine Benelallam, and Massimo Tisi. Decentralized Model Persistence for
Distributed Computing. In Proc. of the 3rd BigMDE Workshop, pages 42–51. CEUR-
WS.org, 2015.

7. Abel Gómez, Gerson Sunyé, Massimo Tisi, and Jordi Cabot. Map-based Transparent Persis-
tence for Very Large Models. In Proc. of the 18th FASE Conference, pages 19–34. Springer,
2015.

8. Dimitrios S. Kolovos, Louis M. Rose, Richard F. Paige, Esther Guerra, Jesús Sánchez
Cuadrado, Juan de Lara, István Ráth, Dániel Varró, Gerson Sunyé, and Massimo Tisi.
MONDO: Scalable Modelling and Model Management on the Cloud. In Proc. of the Projects
Showcase, (STAF 2015), pages 44–53, 2015.

9. MapDB. MapDB, 2016. URL: www.mapdb.org.
10. Parastoo Mohagheghi, Miguel A Fernandez, Juan A Martell, Mathias Fritzsche, and Wasif

Gilani. MDE Adoption in Industry: Challenges and Success Criteria. In Models in Software
Engineering, pages 54–59. Springer, 2009.

11. Javier Espinazo Pagán and Jesús Garcı́a Molina. Querying Large Models Efficiently. IST,
2014.

12. Tinkerpop. Blueprints API, 2016. URL: blueprints.tinkerpop.com.
13. JB Warmer and AG Kleppe. Building a Flexible Software Factory using Partial Domain

Specific Models. In Proc. of the 6th OOPSLA DSM Workshop. University of Jyvaskyla,
2006.

14. Ran Wei and Dimitrios S Kolovos. An Efficient Computation Strategy for allInstances(). In
Proc. of the 3rd BigMDE Workshop, pages 32–42. CEUR-WS.org, 2015.

https://hbase.apache.org/
http://tinyurl.com/jgopmvk
http://www.eclipse.org/cdo/
http://www.eclipse.org/cdo/
www.mapdb.org
blueprints.tinkerpop.com

	NeoEMF: a Multi-database Model Persistence Framework for Very Large Models

