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Effectiveness of Physiological and Psychological
Features to Estimate Helicopter Pilots’ Workload:

A Bayesian Network Approach
Patricia Besson, Christophe Bourdin, Lionel Bringoux, Erick Dousset, Christophe Maïano,

Tanguy Marqueste, Daniel R. Mestre, Sophie Gaetan, Jean-Pierre Baudry, and Jean-Louis Vercher

Abstract—Despite growing interest over the decades, the ques-
tion of estimating cognitive workload of operators involved in
complex multitask operations, such as helicopter pilots, remains
a key issue. One of the main difficulties facing workload inference
models is that no single specific indicator of workload exists, so
that multiple sources of information have to be inputted to the
model. The question then arises as to the nature and the quantity
of features to be used for increasing model performance. In this
research, done in cooperation with Eurocopter, the effectiveness of
physiological, psychological, and cognitive features for estimating
helicopter pilots’ workload was systematically investigated, using
Bayesian networks (BNs). The study took place in two different
contexts: a constrained laboratory situation with low ecological
validity and a more realistic and challenging situation relying
on virtual reality. The constrained conditions of the laboratory
study allowed us for testing various combinations of entropy-based
physiological, cognitive, and affect features as inputs of BN mod-
els. These three different kinds of features are shown to carry
complementary information that can be used with advantage by
the model. The results also suggest that increasing the number of
physiological inputs improves the model performance. The second
study aimed at challenging some of these conclusions in a more
ecological context, by using the NH90 full-flight simulator of the
Helisim company. The results emphasize the problem of accessing
the ground truth, as well as the need for an efficient feature
selection or extraction step prior to the classification step.

Index Terms—Cognitive science, graph theory, human com-
puter interaction, human factors, intelligent systems.

I. INTRODUCTION

H ELICOPTER pilots are involved in complex multitask
activities where they constantly have to make quick and

appropriate decisions. Advanced systems provide them with
some assistance, by automating some processes and by deliv-
ering large amounts of information on task context. However,

Manuscript received October 15, 2012; revised February 20, 2013 and
April 26, 2013; accepted June 10, 2013. This work was supported by
Eurocopter. The Associate Editor for this paper was C. Wu.

P. Besson, C. Bourdin, L. Bringoux, E. Dousset, T. Marqueste, D. R. Mestre,
S. Gaetan, and J.-L. Vercher are with Aix-Marseille Université, CNRS, ISM
UMR 7287, 13288, Marseille cedex 09, France.

C. Maïano was with the Aix-Marseille Université, CNRS, ISM UMR 7287,
13288, Marseille cedex 09, France. He is now with the Cyberpsychology
Laboratory, Department of Psychoeducation and Psychology, Université du
Québec en Outaouais, Gatineau, QC J98X 3X7, Canada.

J.-P. Baudry is with the Human Factors and Cockpit Design Department,
Eurocopter, 13725 Marignane, France.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TITS.2013.2269679

automated agents impose additional information processing de-
mands that might also increase the level of cognitive workload
(denoted as workload from now on) and be not relevant neither
to the task context nor to the real needs of the helicopter
pilots (individualistic approach) [1]. Consequently, it would
be more efficient to develop intelligent systems, able to adapt
the assistance to the current level of pilots’ workload [2]–[5].
Being able to estimate and to characterize operator’s workload
in real time is, therefore, a prerequisite to adaptive intelligent
systems.

However, despite intensive researches in the domain, no
reliable estimator of operators’ workload has shown up yet.
On the one hand, activity analysis and subjective evaluations,
conventionally used in human factor studies, are well estab-
lished approaches, but the methods or information they rely
on are not suitable for real-time estimation. These methods
may be also considered as too subjective and task dependent,
making it difficult to build generic systems. On the other
hand, several physiological signals, a continuously available
information, have been shown to be sensitive to workload, but
no single indicator specific to workload does exist. This makes
the problem highly complex: these signals must be exploited
jointly, whereas the relationship between these measurements
and the “true” subjects’ psychophysiological state cannot be
directly accessed [6]–[9]. As a result, a wide variety of measure-
ments are proposed as inputs to workload estimation models,
raising the questions as to the complexity of these models and
the contribution of each measurement to workload estimation
from a computational point of view. Furthermore, when dealing
with estimation of psychophysiological states, the transfer of
the in-lab observations and methodologies to more ecological
situations (simulator or real life) is not straightforward (as
shown for example in [10] for fatigue evaluation).

The objective of this work was twofold: while using Bayesian
networks (BNs) to estimate workload in the context of heli-
copters’ piloting, we aimed at using them as a systematic tool to
investigate, from a computational point of view, the aforemen-
tioned points. Therefore, the question of the effectiveness, in
terms of both quantity and type, of different psychophysiologi-
cal features on workload estimation is first addressed in a con-
strained laboratory study with low ecological validity. Second,
experiment took place in a full-flight helicopter simulator, and
we discuss the difficulties coming out when a more realistic and
challenging situation is used. Our choice for BNs was motivated
by their flexibility and ability to model complex relationships
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among random variables (RVs), capturing both qualitative and
quantitative knowledge [11], [12].

As we just mentioned, many psychophysiological features
and machine-learning techniques have been proposed to infer
cognitive states, such as workload, distraction, or stress [13].
Task performance analyses, sensorimotor features (gaze, head
movements, etc.), or physiological measurements have been
shown to be useful [9], [14]–[16]. Thus, electrocardiogram
(ECG), electromyogram (EMG), skin conductance (SC), and
respiration were used in [17] to infer the level of stress experi-
enced by drivers using linear discriminant analysis. In [18], the
authors developed an artificial neural network (ANN) taking
electroencephalogram (EEG), electrooculogram (EOG), and
respiration as inputs to assess workload levels. ECG, EEG, and
EOG were also used in [19] to derive an information-theoretic
indicator of cognitive state. A support vector machine and an
ANN were applied to workload estimation in [20], using EEG,
SC, respiration, and heart rate (HR) data. These works might
also rely on reaction times (RT) to a secondary task, shown
to be a valuable cognitive indicator of resource allocation and,
indirectly, of workload [3], [6].

Additionally, several works have addressed the problem of
inferring users’ affects from physiological signals [21], [22].
These works take place in the field of affective computing,
which aims at endowing machines with emotional skills, in par-
ticular, the ability of perceiving and adapting to the user’s cur-
rent affective state to improve the efficiency of human–machine
interfaces. At a first glance, affect and workload estimations
may seem unrelated problems, but we can see at least two
reasons why they should be considered jointly. First, affective
computing is based on findings suggesting that humans’ emo-
tional intelligence provides them with the capacity to reason
about emotions and of emotions to enhance thinking [23].
As a result, the subjects’ affective states are also subjective
and mostly related to their own perception or analysis of the
context at hand, as well as to their ability to face the situation.
Thus, Isen [24] showed that positive affects enhance problem
solving and decision making. Moreover, according to cognitive
appraisal theory, psychological stress results from assessment
of a discrepancy between situational demand and subject’s
resource [25], [26]. In that sense, affects and workload are
obviously linked. Second, physiological signals are exploited
in models inferring either workload or affects, which means
that these signals carry information related to both elements.
Being able to distinguish between workload-related and affect-
related information would allow for noise filtering and lead to
improved model performance.

Based on the literature, we used physiological, cognitive, and
affective features in our study, the ground truth being provided
by subjective measurements. We let aside some features com-
monly used to infer operators’ cognitive states, such as behav-
ioral (e.g., action commands), performance (e.g., flight data),
or sensorimotor (e.g., eye movements) features, because they
require to be interpreted in connection with some knowledge
about the current surrounding conditions to make sense. In the
specific context of helicopters’ piloting intended here, the rela-
tionships between pilot’s actions and helicopter’s motions show
substantially larger degrees of freedom than those attached

to car driving, or even, airplane flying contexts, for example,
making the interpretation of these behavioral or sensorimotor
features very complex. Therefore, we decided not to use them in
this work. We also decided not to measure EEG (incompatible
to date with helmets wore by helicopter pilots) since we wanted
to use noninvasive and minimally intrusive sensors.

Thus, in the laboratory study, we used EMG, HR, SC, and
respiration. The RT to a secondary task (dual-task paradigm)
was chosen as a cognitive feature. As previously stated, RT
is expected to vary when more mental (cognitive) resources
are demanded by the task. Finally, the positive and negative
affect state scale (PANAS) [27], [28] evaluated subjectively the
participants’ affective state during the experiment.

Different BN structures, built from expert knowledge, were
tested, using in turn several combinations of these features.
Their performance was evaluated in terms of two criteria to
be jointly optimized: the accuracy (i.e., how close from the
workload level the model prediction is) and the diversity (i.e.,
the ability of the model to be functional for different subjects).
Indeed, the literature points out the problem of large differences
among individuals, when trying to estimate psychophysiologi-
cal states (see [29]). In addition, notice that part of the results
related to this study has been presented in [30] and [31].

In the virtual reality study, the experimental protocol took
place in the NH90 full-flight simulator of the Helisim company.
Physiological measurements (EMG, HR, SC, and respiration)
were collected during two offshore mission scenarios, and BNs
were used to infer the pilot’s workload. In this second study, the
level of workload was directly estimated and compared with the
self-evaluation made online by the subjects.

Sections II Sections III Sections IV describe the laboratory
study. Section II describes the experimental protocol used to
collect representative data. Section III presents the BN models
tested on the data set, i.e., the performance being assessed in
Section IV, in terms of two criteria to be jointly optimized: di-
versity and accuracy. The virtual reality study performed on the
helicopter simulator is presented and discussed in Section V.

II. LABORATORY EXPERIMENT

A. Subjects and Material

Ten subjects (nine males and one female, aged 30 ± 10.7
years) with normal or corrected to normal sight and hearing,
participated in the first experiment, which aimed at investi-
gating the problem of workload estimation in a controlled
environment.

The subjects sat in darkness, facing a standard 24-in mon-
itor, where graphical dynamic flying scenes generated by the
home-grown ICE software were displayed. An experimenter’s
computer was used to acquire all the data synchronously, using
the Captiv Software (TEA, France). These data were made of
the simulation data (e.g., aircraft position) sampled at 100 Hz
and of the physiological data acquired at a sampling rate of
2048 Hz using the FlexComp Infinity sensors and encoder
(Thought Technology Ltd., Canada). The subjects bore stereo
headphones, so that they could hear the prerecorded instructions
(the instructions’ tone and content were then strictly identical
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Fig. 1. Screenshot of a typical flying scene created by our home-grown
software ICE. The ratio of hit rings over the total number of rings in the
trajectory appeared on the cockpit dashboard (e.g., 1/60), and a green or red
light indicated whether the last ring had been hit or missed.

for each subject) and the task-related noises such as the engine
noise (leading to greater immersion) or the possible alarms.

B. Procedure

Using a standard joystick, the subjects were asked to pilot
an aircraft and to do their best to follow a trajectory defined by
60 rings, alternatively red and yellow (see Fig. 1). They were
instructed to fly through the center of each ring, without missing
any if possible. The trajectories varied only along the vertical
dimension. The aircraft’s speed was maintained constant at the
same predefined value for all the trajectories. The score, which
is defined as the ratio of hit rings over the total number of rings
in the trajectory, appeared on the cockpit dashboard. A green or
red light indicated whether the last ring was hit or missed.

The experiment was organized in five sessions of six trials.
Each trial lasted approximately1 90 s. In the first three sessions
(labeled S1D1, S2D2, and S3D3), the subjects were presented
with three different trajectories of increasing difficulty (D1, D2,
and D3). The trajectory difficulty was an independent variable
meant to manipulate the task workload requirement. It was
varied by changing the vertical distance between two successive
rings, while keeping their depth distance constant. In the last
two sessions (labeled S4D1 and S5D3), the subjects were asked
to fly again on the simplest and hardest D1 and D3 trajectories
and to try to beat their own mean scores over these trajectories.
Moreover, a strident alarm sound was emitted in case of a
missed ring. This challenge and the alarm were introduced in
order to maintain the subjects’ motivation and involvement in
the task.

For each of the five sessions, a dual-task paradigm was
introduced. Two geometrical shapes (a square or a triangle)
appeared on the screen during 1 s, at pseudo-random positions
(the ring apparition zone was avoided and the same number
of targets appeared in each of the four screen quarters, with
eccentricity values ranging from 10◦ to 25◦) and at pseudo-
random times (no apparition while the ring was crossed and a
minimum time interval of 1.5 s between two successive targets).
The subjects had to press a button on the joystick with the
forefinger, as quickly as possible, in response to the square

1Although the speed was maintained constant, the duration of each trial was
not necessary the same, since the aircraft’s trajectory could be more or less
sinusoidal.

target apparition. They should not react to a triangle target.
Fig. 1 shows a typical screen shot of the simulated scene.

C. Dependent Variables

Performance on the primary (percentage of hit rings) and
secondary tasks (false and good detection rates; RT) were
recorded. The physiological variables comprised the following
measurements:

• HR, estimated from the ECG by the Captiv software, using
R–R intervals;

• Root mean squares (RMS) of the flexor digitorum EMG
(RMS1) of the dominant arm and of the right trapezius
descendens EMG (RMS2);

• Tidal volume (Vt): respiration measured through chest
expansion;

• SC, measured using electrodes placed on the first and little
fingers of the nondominant hand (temperature in the room
equal to 19.33 ± 0.98 ◦C).

Psychological data were also collected at the end of each
session. The subjects self-assessed their own workload during
the performed task, using the NASA Task Load Index (TLX)
scale [32]. The NASA TLX asks the subjects to rate their
perceived workload on six different subscales. At the end of
the experiment, these six components were matched two by
two, and the subjects had to choose for each couple which
component best described the workload in the performed task.
Each component score can thus be weighted accordingly to the
number of times it has been chosen in the matching phase.
In the present experiment, the NASA TLX rates on the six
subscales were weighted and summed for each session to result
in a single Workload Index (WI) (normalized on [0, 1]) per
session. The subjects also completed the PANAS questionnaire
[27], [28] after each session. This instrument was used to
provide information on participants’ affective reactions to the
experiment. It comprised the two affects’ scale: positive (i.e.,
interested, excited, etc.) and negative (i.e., distressed, scared,
etc.). The 20 items of this instrument were rated on a five-point
Likert scale from: (1) = “very slightly or not at all” to (5) =
“Extremely”. The ratings for each participant were normalized
between 0 and 1, and the positive affect scores (PA) reversed
(1 − PA) for all the scores to be interpretable in a consistent
way. These normalized negative and reversed positive scores
were then summed and normalized on [0,1], resulting in the
Affect Index (AI) used in the following of the paper.

III. COMPUTATIONAL ANALYSIS

A. Selection of Output and Input Features

Analysis of variance (ANOVA) statistical tests show that
the workload level has been effectively manipulated using our
experimental paradigm: the WI scores increased with difficulty,
with significant differences between sessions (F (4, 26) =
12.284, p = 0.000). Hence, variations observed in the physi-
ological signals can be expected to effectively correspond to
variations of workload. Notice that the interested readers are
referred to [30] and [31], for more detailed statistical analyses
of the experimental data.
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Fig. 2. Mean physiological feature values (entropy H of the physiological
signals, in bits), performance on the primary task (in %), RT (in seconds),
workload and affect indexes, for each session performed by subject 4.

We expected (and we observed) variations in the physiolog-
ical signals as the subjects’ cognitive state varied. The physio-
logical signals we recorded are mainly under the control of the
autonomous nervous system, which regulates the body’s home-
ostasis through successive activations of the sympathetic and
parasympathetic systems (resulting in mobilization or slowing
down of the organism) [33]. These variations can be captured by
Shannon’s entropy of the physiological data, which is a measure
of the average uncertainty in RV X [34]. The input for our
model is then the entropy of the physiological data.

Before estimating the entropy values, the noise in the raw
signals was first smoothed using a low-pass median filter. The
first and last seconds of each trial signal were also removed to
avoid possible starting and ending effects. Then, the data were
normalized between 0 and 1, taking the minimal and maximal
values observed on the first three sessions (used as training
sessions). Entropy values were estimated on 15-s-long windows
slided by 5 s along the signals, using a histogram of 41 bins
that ranged on [0, 1]. Therefore, there were about 90 values per
session and per subject. Entropy values were also normalized
between 0 and 1, by taking the maximal and minimal values
over the first three sessions for each subject. For simplification
purposes, the RV denoting the entropy features were named as
the acronyms of the corresponding physiological data (SC, Vt,
HR, RMS1, and RMS2).

It could be observed that, generally, variations of mean
entropy features were consistent with variations of performance
on the primary task, RT, and WI (see Fig. 2 showing subject 4’s
features as an illustrative example). However, we observed the
variations of the physiological data to be idiosyncratic, e.g., for
some subjects (as for the subject 4), the mean entropy values of
SC increases with the difficulty level, whereas it decreases for
some others. As a result, the models were individual (trained
and tested on each subject separately).

B. Model Definition

BN models were defined to infer the subject’s WI on each
session, from different kinds of features.

Fig. 3. BN models inferring the WI value from physiological features Φ1, Φ2,
and Φ3 either directly (Structure 1) or via RT (Structure 2). The models were
tested with or without an AI node as parent of the Φ nodes (thus, this edge is
dashed on the graph). There could also be either one, two, or three physiological
nodes in the model.

To examine the impact of the number and type of physio-
logical inputs on the models’ performance, different classifiers
were tested, each taking one, two, or three2 of the possible phys-
iological features SC, Vt, HR, RMS1, and RMS2 as inputs. The
generic denomination Φi, with i ∈ {1, 2, 3}, is used to refer to
these physiological nodes. The structure of these models where
WI, the estimate of the subject’s workload, was a direct child
of the physiological nodes is referred to as Structure 1. Then,
the impact of adding to the model a cognitive feature, namely,
RT, was evaluated. An RT node could be added to the model
at different positions. However, in our opinion, RT should be a
child of physiological nodes because we consider that probabil-
ity of changes in RT is conditioned on changes in body arousal.
Thus, models with Structure 2 were also tested, where WI was a
child of RT, which was itself a child of the physiological nodes.
Finally, we assessed how the affective state of the subject could
impact the physiological data, and hence, estimation of the WI
score. As stated in Section I, changes in the affects are known to
induce physiological changes [35]. Therefore, an AI node was
also introduced as a possible parent of the physiological nodes.

The different models are presented in Fig. 3. Notice that, if
some more complex structures were tested in [30], only naive
BNs were tested here, for the primary question we addressed
was the effectiveness of psychophysiological inputs to estimate
workload, not the study of the “true” relationships between
these features.

The joint probability density functions (pdfs) described by
the BNs were estimated on the training set using histograms
with the following parameters (RV take on values in [0, 1],
but RT, taking on values in [0,+∞[): five bins of width 0.2
for the physiological RV, 20 bins of width 0.05 for WI and
AI, and 16 bins of width exp(0.2) for RT, with the first bin
being centered on exp(−3.7) and the last bin taking all the
values greater than exp(−0.9). For each subject, the training
set was made of the data collected on the three first sessions
S1D1, S2D2, and S3D3. The testing set was made of the two
last sessions S4D1 and S5D3. Both the learning and inference
stages were implemented using the Bayes Net Toolbox for
MATLAB [36]. Because there were some missing data (HR in

2Our sample sizes were not large enough to let us test models with more
physiological nodes.
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particular could not be reliably recorded sometimes, and there
was not necessary one RT value per measurement window), the
expectation maximization algorithm was used (with a stopping
criterion of ten iterations).

C. Assessing the Models’ Performance

The performance of the models was assessed by looking at
the differences in the estimated WI between S4D1 and S5D3
sessions. Rather than assessing the ability of the models to
infer raw workload level itself, we focused on how good they
were in inferring the workload change between successive
tasks: in the context of defining adaptive intelligent systems,
estimating a workload change opposite to reality may drive
the system to undertake actions opposite to those required by
the operator’s state, with dramatic consequences, and should be
absolutely avoided. The model output was deemed as correct if
the observed and inferred WI were evolving the same way, that
is, if the performance index ρ, defined as follow, was positive:

ρ =sign(Δ) · sign(Δ∗) ·
∣
∣
∣
∣
Δ∗

Δ

∣
∣
∣
∣ , if Δ∗ < Δ (1)

=sign(Δ) · sign(Δ∗) ·
∣
∣
∣
∣
Δ

Δ∗

∣
∣
∣
∣ , else (2)

where Δ was the difference between the subjects’ WI on
sessions S4D1 and S5D3, and Δ∗ was the difference between
the predicted WI on these two sessions. The quality of the
model performance was given by the distance to 1 (the closer,
the better). A fine analysis of the model’s false detections was
useless, since we wanted this false detection rate to be null.

For each model, we looked at the performance over the sub-
ject set. Thus, we wanted the maximum number of subjects to
be correctly detected, with an accuracy as close as possible to 1.
This is a two-variable optimization problem: the percentage
of subjects correctly detected assessed the diversity S of the
model, whereas the normalized area under the ρ curve, plotted
as a decreasing function of S, defined the accuracy θ of the
model

θ = 10 ·
∑

ρ

S
, θ ∈ [0, 1]. (3)

In the next section, we will use both S and θ indicators for
determining which inputs can be of some interest, not only
for accurately estimating workload but also for this accurate
estimation to be maintained across individuals (a very important
point, yet often overlooked).

IV. MODELS’ PERFORMANCE ON LABORATORY

EXPERIMENTAL DATA

A. Impact of Adding Physiological, Cognitive, and Affective
Inputs on Models’ Performance

Most of the models perform well in either the diversity (S)
or accuracy (θ) criteria, as shown in Fig. 4. However, we were
interested in classifiers efficient in both dimensions simulta-
neously. These are referred to as the good models, i.e., the

Fig. 4. Performance of the models in terms of diversity (S score) and accuracy
(θ score). The good models (efficient in both dimensions simultaneously) lie in
the upper right-hand side quarter of the graph.

Fig. 5. Percentage of good models (with performance greater than 50%
for both accuracy and diversity criteria) for the different physiological node
numbers (no distinction is made between the two possible BN structures).
Models with or without the AI node are compared.

Fig. 6. Percentage of good models (with performance greater than 50% for
both accuracy and diversity criteria) for the different structures (whatever the
number of physiological nodes). Models with or without the AI node are
compared.

models with a performance greater than 50% over the sets for
both diversity and accuracy and lying in the upper right-hand
corner of the graph in Fig. 4. The percentage of good models for
different structures and input variables are presented in Figs. 5
and 6. It can be observed that increasing the number of phys-
iological nodes increases the model performance (see Fig. 5),
as well as adding RT to the model (i.e., using structure 2:
see Fig. 6).
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The highest improvement was obtained by adding an AI
node (i.e., information about the subjects’ affective states).
Thus, with an AI node, 20% of the models fit the good models
criterion with two physiological nodes only, and this number
reached 30% if three physiological nodes were used. Without
the AI node, three physiological nodes were required to get
some good models (10% only), and Fig. 6 shows that these
models also contained the RT node (structure 2). Finally, when
structure 2 was used (whatever the number of physiological
nodes) and an AI node was included, the percentage of good
models reached 32%.

B. Discussion of the Laboratory Study Results

Different numbers and types of inputs have been tested and
compared in terms of two criteria to be jointly optimized: the
accuracy and the diversity of the classifier.

The most striking result is that taking into account subjects’
affective state increases performance on workload estimation.
Indeed, increasing the number of physiological inputs and
adding cognitive information (RT) in the model increases the
number of good models, as could be expected from the literature
(see, e.g., [6] and [8]). However, coupling these conditions
with some knowledge about the subjects’ affects (through the
use of features derived from the PANAS questionnaire outputs)
outstandingly improves the models’ performance.

Since some studies (see, e.g., [35]) have shown changes in
physiological signals to be related with changes in affective
states, we suggest that providing the model with information
about affective states helps it getting rid of the physiological
variations unrelated to subjects’ workload changes. Of course,
in this exploratory work, the information about the subjects’ af-
fect states are collected at the end of the task. Therefore, as it is,
the model cannot be used as a workload predictor. Nevertheless,
it is worth noticing that, in all the measurements we tested, only
the physiological measurements were continuously available.
From this perspective, they are essential to the model since they
may lead to the nearest real-time estimation. Hence, the main
lesson learned from this study is to point out that the modeling
process, in conjunction with the experimental paradigm, should
be designed such that the physiological variations related to
workload can be dissociated from the variations related to other
psychological states (the relationships between psychological
and physiological data being not one to one [9]). Advanced fea-
ture extraction processes could be of some help on that matter.

At that stage, the physiological features we used, i.e., the
entropy of the signals, appear to correctly catch the informa-
tion related to workload variations. Each of the five proposed
physiological features carries information related to the work-
load, since each of them appeared in one of the good models.
Therefore, a model including all these data would probably
outperform the proposed classifier. However, since we were
training subject-dependent models, our sample sizes were too
small to deal with a classifier with five physiological nodes;
hence, we were not able to check this hypothesis.

This study also stresses the importance of adding cognitive
features to the input set. Including the RT in the model yields
better workload prediction, at the expense of a slightly more

task-dependent method, since it requires a secondary task to be
performed. However, there are a lot of situations where routine
tasks can be used to infer RT values.

These are only preliminary results, and refinements should
be brought to the models, as well as tests on larger sample
sizes (which should result in improved models’ performance).
In addition, a deeper (subject-by-subject) analysis of the results
should be carried out, in order to check whether some combina-
tions of specific physiological features are better for some cat-
egories of subjects (labile versus stabile for example; see [37]).
Since affects varied between subjects, this subject-by-subject
analysis could also bring to light some relationships between
physiological and psychological data, beyond workload.

Nevertheless, as expected, this first laboratory study gave us
some clues about the added value of different kinds of features
to the models’ performance. It also validated the potential of
an approach relying on BNs to infer the operators’ workload,
while methodically examining the process.

V. VIRTUAL REALITY STUDY

A. Experiment

A second experiment has taken place in the NH90 full-
flight simulator of the Helisim society. This simulator, mounted
on hydraulic jacks with six degrees of freedom, is an exact
replica of the NH90 helicopter. It aims at training pilots rather
than doing research; therefore, it provides a highly realistic
environment, with low flexibility, however.

Six subjects, all mastering the piloting of the NH90 simula-
tor, took part in this experiment. Two of them (subjects 4 and 5)
were professional helicopter pilots with more than 5000 h of
flight and a good expertise on the kind of scenarios we proposed
(offshore missions).

The subjects had to flight on two offshore missions, taking
off from “Marignane airport” (France) and reaching in turn
different offshore platforms. The two missions were planned
to last about 20 and 30 min, respectively. The subjects were
briefed about the missions before to take off.

The first mission aimed at familiarizing the subjects with
the experimental conditions and at recording the level of the
physiological signals in quiet conditions. The second mission
aimed at pushing the subjects to their limits and to make them
experience different levels of workload. However, the scenario
had to stick to reality for the subjects to stay involved in
the task.

For each of the two missions, a guideline scenario had been
defined with possible incidents planned at some specific phases
of the mission, in order to induce different workload levels.
The sequence of workload level variations was the invariant
that the experimenter tried to stick to as much as possible. To
this end, the pilot reactions and decisions during the flight were
analyzed in real time, and elements of the scenarios, such as
weather conditions or occurrence of some possible technical
incidents, were manipulated online by the experimenter to bring
the pilot to the current expected workload level. A graphical
representation of the guideline scenario used for the second
mission is shown in Fig. 7.
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Fig. 7. Graphical representation of the guideline scenario used for the second
mission. The subjects took off from Marignane airport and had to reach three
offshore platforms (Alpha, Bravo, and Delta). Different incidents could occur
during the flight, in order to bring the pilot to different workload levels.
Other incidents could be introduced, or, on the contrary, some of the intended
incidents canceled, if needed. The numbers 1 to 4 stand for the expected levels
of workload at different instants.

During the flights, the physiological measurements SC,
RMS1, RMS2, and RMS3 were acquired. SC, RMS1, and
RMS2 were the same measurements than recorded during the
laboratory experiment (see Section II). RMS3 was the RMS
of the left trapezius descendens EMG. The more realistic
conditions of the experiment made the acquisition conditions
more challenging for the simple sensors we used: the motions of
the pilots (who were wearing flight suits) led to very noisy ECG
and Vt (ventilation) signals, and we have decided not to exploit
them in the model. For every ta time, a recorded voice asked
the subjects to verbally rate their workload level (workload was
defined during the briefing) on a rating scale going from 1 (very
low workload) to 4 (very high workload). ta was set to 3 min
for subjects 1 and 2, and to 1 min and 30 s for the other subjects.
Some additional spontaneous demands could be made between
two automatic demands, with a minimal refractory time of 30 s.

Unfortunately, although the laboratory studies have shown
the RT to a secondary task and the subjects’ affect to be valuable
to the model (see Section IV-B), none of them could be ex-
ploited in this simulator experiment. The simulator could only
time events to the second, a precision too small for analyzing
RT, and online evaluation of the subjects’ affects would have
improperly interfered with our workload manipulation primary
objective. In addition, recording these two features would have
somehow decreased the ecological validity level of the study.

B. Model

A preprocessing step similar to the one presented in
Section III was performed on the physiological signals (low-
pass filtering and normalization of the signals between 0 and 1,
using the maximal and minimal values found on the first
mission). The two missions were segmented in intervals of
size [ta − 45, ta + 45], where ta is the instant of workload
evaluation demand, in seconds. Thus, each interval, or segment,
is labeled with the workload score given by the subject at ta.

TABLE I
PERFORMANCE OF THE BN MODELS TAKING THREE PHYSIOLOGICAL

NODES AS INPUTS AND TESTED ON THE DATA ACQUIRED ON

THE NH90 SIMULATOR, FOR THE SIX SUBJECTS S

These values defined the ground truth. For each segment,
Shannon’s entropy values were estimated on 15-s-long win-
dows, slided by 5-s steps along the signal. The pdfs of the data
were estimated using 100-bin histograms on the range [0, 1].
The entropy was then normalized between 0 and 1, using the
maximal and minimal values found on the training data set.

Naive BNs with structure 1 [see Fig. 3(a)] have been used,
taking three physiological features as inputs. The output of
the network, i.e., W , was the subjects’ workload for the cur-
rent time segment, as subjectively self-evaluated. Since the
laboratory study had suggested that increasing the number of
physiological inputs would lead to better model performance,
we also tested a model taking the four physiological features as
inputs. However, the addition of a fourth node increases greatly
the dimension of the joint pdfs described by the model. The
results are then plagued by the curse of dimensionality and
should be handled with care.

The pdfs of the BNs were estimated using histograms with
the following parameters: for SC, five bins whose edges ranged
from log(1) to log(3), by log(0.5) steps; for the RMS, three
bins of width 0.3, covering the interval [0, 0.9], with a fourth
bin taking on all the values between 0.9 and 1; for W, four bins
centered on {1, 2, 3, 4}.

A cross-validation scheme was used, where the training set
was made of all the segments but one, used as the testing
set. Each of the segments appeared, in turn, in the testing
set. The performance of the model is assessed by looking at
the percentage of correctly inferred workload levels for each
segment (the number of segments being different for each
subject because of different flight durations).

C. Results

The performance achieved by the three physiological node
models is presented in Table I. Inputs RMS2 and RMS3 reflect
the activity of the two trapezius descendens muscles and can
then bring very redundant information. It can be observed
that the two models, taking as input only one source of in-
formation about the trapezius muscle activity, achieved better
performance than the model including both RMS2 and RMS3
(models SC;RMS2;RMS3 and RMS1;RMS2;RMS3). The four-
physiological-node model lead to an average performance of
47.7%. This model exceeded a 50% good prediction rate only
for subjects 3 and 5, and achieved very poor performance for
subject 1 (5% only), whereas the good prediction rates were
around 40% for the three remaining subjects.
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D. Discussion of the Simulator Study Results

The objective of this second study, taking place in a heli-
copter full-flight simulator, was to discuss the difficulty raised
by such a challenging situation (very close to real conditions).
More precisely, we aimed at investigating to which extent the
method and findings from previous laboratory study would
stand up against less constrained and more true-to-life exper-
imental conditions (with subjects experiencing stronger sensa-
tions and pressure than in laboratory experiment, in particular).

A first limit quickly showed up, as inputs labeled as impor-
tant from the laboratory experiment (affect and RT on a sec-
ondary task, in particular, but also some physiological signals
that could not be reliably recorded) could not be used directly
and simply in this new challenging context. This is already an
indication of the robustness of these features outside laboratory
conditions.

Let us then focus on the robustness of the previous find-
ings, with regard to the entropy-based physiological features.
The best results, in terms of both accuracy and diversity, are
obtained when the two possible sources of information about
the trapezius muscle activity (RMS2 and RMS3) are not both
inputted to the model. When one of them is solely present, as
a complementary input with SC and RMS1 (the EMG-based
feature of the flexor digitorum), a similar average performance
is reached (models SC;RMS1;RMS2 and SC;RMS1;RMS3,
54% of correct estimation in average). The performance is also
higher than with the four-physiological-node model (whose
results must be analyzed with care, however, due to the curse
of dimensionality).

These results complete the laboratory study findings in an
interesting way, as they draw attention to the question of
optimizing the model’s inputs. Laboratory study analysis sug-
gested that increasing the number of physiological nodes would
increase the model performance. However, this also increases
the model complexity, raising the question of the size of the
required training sample and of the model’s predictive power.
In addition, it is worth noticing that the added features should
be carefully selected in order to carry valuable (i.e., comple-
mentary) information. These observations strongly advocate
the addition of a feature selection, or extraction, step in the
modeling process. Such a step could help in reducing the signal-
to-noise ratio, by extracting the valuable information from the
different inputs while decreasing the dimensionality of these
features [38] (a multimodal approach can be possibly used
[39]). As already mentioned in Section IV-B, it could also help
in distinguishing between the physiological variations related
to emotion rather than workload.

It can be observed that the performance is very different
from one subject to the other. The best scores are reached for
subjects 3 and 4, and the worse for subject 1, this tendency
remaining for the different input combinations that were
tested. Discussing the models’ performance subject per
subject, particularly in light of posttest psychological analyses
(semidirective interviews carried out with each subject), brings
out the question of the ground truth. This question becomes of
primary importance as the pressure put on the subject, hence,
the sensations they experiment, becomes more real. Indeed, the
two most expert pilots with simulator, real helicopter piloting,

and mission types were pilots 4 and 5. As professional pilots,
they are trained to avoid overload as much as possible (it was
very hard to push them to workload level 4). Subject 3 also
had some basic to intermediate knowledge in both simulator
and helicopter piloting and in offshore missions. Interestingly,
subject 4 is an instructor, and as such, he might be better in eval-
uating correctly his current workload level. Subjects 1 and 2,
on the contrary, neither had experience on helicopter piloting
nor on offshore missions, with subject 1 being the less exper-
imented. As a result, this subject had to put a lot of effort in
mastering the simulator by itself: contrary to the other subjects,
he estimated his workload to be globally higher in the first
mission than in the second one. In our opinion, these learning
effects not only impacted the subject’s piloting performance
but also the subject’s self-evaluation of his workload level,
particularly in this study, where no validated questionnaire,
such as the NASA TLX, was used. Since we only get access
to subjective evaluations of the “true” workload level, the
quality of the ground truth is largely dependent on the ability
of the subjects to self-assess their workload level. This makes it
difficult to distinguish whether the failures come from the mod-
eling approach by itself or from a poor quality of the ground
truth. Then, it is also very difficult to make direct comparisons
between different methods proposed in the literature [40].

VI. CONCLUSION

The question of estimating in real time the workload of
operators involved in complex multitask operations, such as
helicopter piloting, remains a big issue. This work intends
to take a few steps forward in this challenging problem by
addressing the question of the effectiveness of physiological,
cognitive, and psychological features for estimating helicopter
pilots’ workload, using BNs.

By using a BN approach to workload estimation, we aimed
at being able to discuss some of the main issues faced in such
undertaking. First, the effectiveness of different kinds and num-
bers of model’s inputs was addressed in constrained laboratory
conditions. Second, the method and findings were challenged in
a more ecological context, using an NH90 full-flight simulator.

Although we believe our method can apply to any type
of vehicle piloting (cars, aircrafts, etc.), we do not pretend
to propose, at this stage, a definite and universal method for
real-time workload estimation. The take-home message is that
extrapolation from laboratory to real operation (or, as here, top-
level simulation) conditions is not straightforward. On the one
hand, real (or realistic) conditions are much more demanding
and generate more variable and complex behaviors than labo-
ratory conditions. On the other hand, even highly realistic sim-
ulations face the specific difficulty of presence (belief of being
involved in a real mission) that impacts subjects’ performance
and feelings. In addition, the results point out the needs for
a careful optimization of the input features, using multimodal
feature extraction algorithms, in order to increase the signal-to-
noise ratio before the classification step itself. Specifically, this
feature extraction step should try to take the utmost advantage
of the complementary and redundant information in physio-
logical inputs but should also distinguish, in these signals, the
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affect-related variations from the workload-related variations.
The problem of the subjects’ specificity, particularly in terms
of the sensations experienced and ground truth elaboration, is
also discussed as an element that should not be overlooked.

These studies should be viewed as preliminary and replicated
using larger sample sets notably. Their primarily goal, however,
was to give us some clues about the added value of different
features to models’ performance. We hope these results can
be used as valuable guidelines for future works addressing the
problem of real-time workload estimation.
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