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RESEARCH ARTICLE

To crash or not to crash: how do hoverflies cope with free-fall
situations and weightlessness?
Roman Goulard, Jean-Louis Vercher and Stéphane Viollet*

ABSTRACT
Insects’ aptitude to perform hovering, automatic landing and tracking
tasks involves accurately controlling their head and body roll and
pitch movements, but how this attitude control depends on an internal
estimation of gravity orientation is still an open question. Gravity
perception in flying insects has mainly been studied in terms of
grounded animals’ tactile orientation responses, but it has not yet been
established whether hoverflies use gravity perception cues to detect a
nearly weightless state at an early stage. Ground-based microgravity
simulators provide biologists with useful tools for studying the effects of
changes in gravity. However, in view of the cost and the complexity
of these set-ups, an alternative Earth-based free-fall procedure was
developed with which flying insects can be briefly exposed to
microgravity under various visual conditions. Hoverflies frequently
initiated wingbeats in response to an imposed free fall in all the
conditions tested, but managed to avoid crashing only in variably
structured visual environments, and only episodically in darkness. Our
results reveal that the crash-avoidance performance of these insects in
various visual environments suggests the existence of a multisensory
control system based mainly on vision rather than gravity perception.

KEY WORDS: Flight stabilization, Free fall, Gravity perception,
Vision, Dipterous, Insect

INTRODUCTION
The ability of flying insects such as flies, hoverflies, wasps and
dragonflies to perform highly demanding flight manoeuvres (Collett
and Land, 1975; Schilstra and van Hateren, 1998; Zeil et al., 2008;
Wijngaard, 2010; Viollet and Zeil, 2013; Mischiati et al., 2015) is
known to involve the accurate control of their body’s roll and pitch
movements as well as a precise stabilization of their gaze. However,
the question as to whether these insects use gravity orientation cues
to stabilize their attitude and hence their flight remains to be
answered (Bender and Frye, 2009). In crickets and flies placed on
tilted surfaces or a Styrofoam ball, gravity perception processes
based on gravity-sensitive sensillae (Horn and Föller, 1998), leg
load cues (Horn and Knapp, 1984; Hengstenberg, 1993; Kress and
Egelhaaf, 2012; Mendes et al., 2014) and antennal receptors (Horn
and Kessler, 1975; Horn and Bischof, 1983; Kamikouchi et al.,
2009) enable insects to stabilize their gaze and compensate for their
body tilt, but it has not yet been established whether they use gravity
perception processes during flight. In the cockroach, the tricholiths
– pendulous gravity-sensitive sensilla located on the cerci (Walthall

and Hartman, 1981; Hartman et al., 1987) – were reported to be
involved in contralateral wingbeating and possibly in flight
equilibrium (Fraser, 1977). Apart from cockroaches’ responses,
Taylor and Krapp (2007) have suggested that a static sense of gravity
would be largely irrelevant in view of the fast accelerations
performed by many insects during flight. However, the perfect
hovering performances observed in many insect species such as
Episyrphusmight be largely due to robust vertical references such as
gravity cues. In this case, a specialized gravity organ serving as a
linear accelerometer (i.e. analogous to the inner ear in mammals),
like the devices used in aerial vehicles (aircraft, helicopters and
unmanned aerial vehicles), would therefore usefully complement
the halteres, which serve as dipterans’ rate gyros. Once placed in a
free-fall condition, an accelerometer measuring the physical
acceleration (also called the proper acceleration) will yield a value
equal to zero (or almost zero). This state, which is also known as
‘zero gravity’ or ‘zero-g’, always produces a sensation of
weightlessness in falling subjects. This means that, during the free
fall, graviception (which can be used by falling subjects to
determine their orientation with respect to gravity) is no longer
available. However, the occurrence of a transition from a proper
acceleration equal to g, due to a static position, to zero is a reliable
indicator of a free-fall state.

The effects of changes in gravity on living organisms havemainly
been studied by performing complex, expensive experiments on
Earth and in space (Ishay and Sadeh, 1975; Hill et al., 2012; Herranz
et al., 2013). In view of the heavy investments required to perform
experiments on insects on these lines, we decided to develop a low-
cost platform. With the original inexpensive setup presented here,
insects can be briefly subjected to near-weightless conditions in an
Earth-based laboratory. To address this question in the case of
dipterans, we investigated the following: (i) how do tethered insects
react when a free-fall situation is suddenly triggered?; (ii) do
hoverflies use gravity perception cues to detect a near-weightless
state and stabilize their flight?

In a structured visual environment lined with a pattern of
horizontal stripes, hoverflies consistently produced wingbeats in
response to an imposed free fall. These insects’ crash-avoidance
abilities and the response times recorded when they were exposed to
free-fall situations in various visual environments suggest the
existence of a multisensory control process based mainly on vision
as well as other sensory inputs, such as those based on airflow-
sensing processes.

MATERIALS AND METHODS
Animals
Hoverfly pupae, Episyrphus balteatus (De Geer 1776), were
purchased (Katz Biotech AG, Baruth, Germany) and reared until
hatching in a cage measuring 53×29×29 cm, which was subjected to
a 12 h light:12 h dark cycle at a temperature of 25±2.5°C. Newly
hatched adults had ad libitum access to a pollen–sugar mixture andReceived 30 March 2016; Accepted 6 June 2016
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water, as well as to real flowers to stimulate flying behaviour. A
piece of entomological pin approximately 5 mm in length was glued
to the dorsal part of the animals’ thorax, perpendicular to their
longitudinal axis (Fig. 1A): the pin (∼5 mg) weighed approximately
15% of the hoverfly’s mass (∼35 mg). The animals’ flight and
hovering abilities were then checked in the breeding cages. In the
subsequent experiments, 24 hoverflies were tested (12 males and 12
females; in darkness: N=18, in a striped environment: N=21, in a
uniformly white environment: N=23). Animals were aged from 3 to
21 days during the experiments.

Procedure
Hoverflies were exposed to microgravity by subjecting them to
free-fall conditions in the following original set-up. An
electromagnet (TEAC RL-1615) was used to suspend the
insects with their legs dangling from the ceiling of a
40×40×40 cm box (see Fig. 1B). The box was covered with a
white diffuser (PMMA WH02, 3 mm thickness) and illuminated
from above by a halogen light (Kaiser Studiolight H). Hoverflies
were filmed through a two-way mirror with a fast camera
(Phantom Miro M110) at a rate of 1600 frames s−1 at full
resolution (1280×800 pixels). Flies were then released to make
them fall by switching off the magnetic field. Until initiating their
wingbeats, the flies experienced near-weightlessness for a period
of up to 290 ms (see Fig. 2).

A total number of 313 falls were conducted in the box in which
three visual environments were presented (Fig. 1C): total darkness,
a nearly uniform white environment and a visual environment in
which two sides of the box were lined with horizontal black and
white stripes (2.8 cm width; see Movie 1). Complete darkness was
obtained by switching off the experimental room light, covering the
box with a large black cloth and placing two additional black panels
on the sides of the box. Recordings in darkness are obtained by
using two infrared LED projectors (BLANKO, wavelength of
850 nm). Three consecutive falls in the same experimental
condition were conducted at each run; in a given experimental
condition, individuals were subjected to several runs on different
days. We always checked whether the hoverflies could fly with their
glued pin in the breeding cages before and after each experiment to
confirm that their flight ability was not affected by eventually
crashing on the floor. Only flying animals were randomly selected
to perform experiments on each day. The horizontal and vertical 2D
positions of the hoverflies’ centre of mass moving over a uniform
background were recorded using a custom-made image-processing
program running under MATLAB.

Statistical analysis
All the results presented here were analysed statistically using R
free-ware with a generalized linear mixed-effects model procedure
(glmer) and selected using the Akaike information criterion (AIC),

Total darkness
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Fig. 1. Experimental set-up used to analyse hoverflies’ reactions to free-fall conditions. (A) Hoverflies were tethered by waxing an entomological pin (mass
5 mg, diameter 0.25 mm, length 5 mm) onto their thorax perpendicular to their longitudinal axis. The pin was aligned perpendicular to the ceiling (a white diffuser)
by means of an electromagnet. The vertical orientation of the pin in the magnetic field prevented the hoverflies from touching the ceiling of the box with their legs.
(B) Set-up consisting of a 40×40×40 cm transparent PVC box illuminated from above by a halogen light. Hoverflies were filmed in the box with a fast
camera through a two-way mirror at a rate of 1600 frames s−1 in full resolution (1280×800 pixels). The mirror was tilted at an angle of 45 deg to make the hoverfly
see a uniform white wall (i.e. the reflection of the white light-diffusing ceiling). A manual switch was used to trigger the camera and simultaneously turn off the
power to the electromagnet, thus releasing the resting fly and causing it to fall. (C) Hoverflies were exposed during these experiments to three different
visual scenes: a completely dark environment, a uniformly illuminated white box, and a box in which two sides were lined with a regular pattern of black and white
stripes. Typical trajectories of free-falling hoverflies exposed to the three visual conditions are presented (yellow and blue lines). Dotted green trajectories
correspond to wing flapping resulting in a successful flight, i.e. in no crashing of the flies onto the floor, whereas dotted red curves correspond to crashes due to
late wingbeat onset or no wingbeats at all. Hoverflies were said to have crashed when they touched the floor, as indicated by red asterisks.
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mathematically defined for a given model as a trade-off between
likelihood and number of parameters:

AIC ¼ 2k � 2lnðLÞ; ð1Þ
where k is the number of parameters and L is the likelihood of the
model; the model with the smallest AIC was selected (see Akaike,
1974).
In addition to the visual conditions (fixed effect), other factors

such as individual (random effect), repeated experimental runs
(random effect), date of experiment (random effect), sex (fixed
effect) and, in some cases, wingbeat initiation time (fixed effect)
were tested. Statistical significance of the effects observed was
subsequently calculated by performing ANOVAs for deviance
variation on each of the models selected. Only significant fixed
effects are discussed in the paper.

RESULTS
Free-fall detection
Fig. 1A,B shows the set-up used in this study to impose free-fall
conditions on hoverflies, and Fig. 1C shows a set of trajectories
recorded in the three different visual conditions. Falling in darkness
resulted in a large number of touch-downs (referred to here as
crashes), whereas in the presence of stripes on the walls, all the
hoverflies initiated wingbeats and often generated a large
enough thrust to compensate for their weight without crashing
(see Table S1). In addition, most of the hoverflies were able to reach
the upper part of the box when its walls were lined with stripes,
whereas their trajectories mostly ended in the lower part of the box

when it was uniformly white or placed in darkness (Fig. 1C). All the
data recorded in all the conditions from individuals that initiated no
wingbeats (which we have called non-flying individuals) were
grouped together in order to check the conformity of the descent
height and speed with classical kinematic models. As shown in
Fig. 2, the average height and descent speed of the flies versus time
diverged slightly from the frictionless model, but showed a very
close fit with the model for a freely falling object subjected to drag.
However, with an identified friction coefficient as small as
3.86×10−8, the drag force can presumably be neglected and the
non-flying individuals can therefore be assumed to have been
briefly subjected to near-weightless conditions. This is a crucial
point in our procedure because under weightless free-fall
conditions, a linear accelerometer will give a proper acceleration
value equal to zero, whereas it will measure g at rest. Therefore, our
hypothesis that insects may be endowed with an accelerometer-like
organ sensitive to gravity could be checked by testing its ability to
detect the transition between resting and free-fall conditions.

The presence of even quite sparse visual cues (in the striped and
uniformly white boxes) enabled the hoverflies to initiate their
wingbeats during almost every fall, whereas only 80% of the falls in
darkness (P<0.001, F=32.5426) resulted in flight initiation
(Fig. 3A). In the presence of horizontal stripes, only 10% of the
falls ended in crashes, compared with 70% of the falls in complete
darkness (χ2: P<0.001, deviance=20.743; see Fig. 3B), although
70% of the crashes in darkness happened when flight was initiated
(red dotted lines in Fig. 1C). Despite the hoverflies’ near-perfect
ability to detect free-fall conditions in the uniformly white
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falling fly. Comparison between average non-flying
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model with or without friction. In the model with friction,
the gravity acceleration g and the friction coefficient fwere
estimated based on the first half of the mean data.
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striped conditions (P<0.001, F=32.5426).
(B) Hoverflies’ crash rate in each visual
condition. The presence of horizontal
stripes in an illuminated environment
drastically improved the flies’ ability to avoid
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environment, a larger number of crashes occurred than in the striped
environment. As shown in Fig. 4B, hoverflies placed in darkness
responded to free-fall conditions more belatedly [P<0.001,
F=58.9701; median time elapsing before the onset of wingbeats:
186±52 ms (±quantile deviation)] compared with the striped and
uniformly white environments, where flight was triggered at around
112±23 and 116±37 ms, respectively, after the beginning of the fall.

Flight stabilization
Hoverflies’ fail-safe braking performances are due to their ability to
produce a sufficiently strong and appropriately oriented thrust to
compensate for their weight and thus stop falling. We therefore
analysed the trajectories and annotated those in which the insects
started slowing down their fall and performed rising vertical flight
before landing on a wall or crashing onto the floor. As the insects’
stabilization can be assumed to depend mainly on the speed and
pitch conditions at the onset of wingbeats, data were subdivided into
four groups depending on the wingbeat initiation time (0–100, 100–
150, 150–200 and >200 ms after the beginning of the fall). In the
striped visual environment, hoverflies easily managed to stabilize
their flight by cancelling the vertical falling speed (Fig. 4A,C), and a
later wingbeat initiation had relatively little effect on their fail-safe
braking rates (these rates decreased by 5% and 10% after a delay of
50 and 100 ms, respectively, χ2: P=0.0274, deviance=4.8651). The
fail-safe braking rates gradually decreased at intervals of up to
200 ms between the start of falls and the onset of wingbeats, beyond
which any flight initiation was followed by crashing (apart from one

case, in which flight was triggered after 208 ms). As confirmed by
the average trajectories shown in Fig. 4A, in all the visual conditions
tested, flights initiated after 200 ms of free falling were almost never
successful, probably because the limits of the stabilization ability of
E. balteatuswere reached in this particular set-up. When falling in a
uniformly white environment, triggering wingbeats within 100 ms
of the onset of the fall greatly improved the hoverflies’ ability to
compensate for their weight (85% rate), but the success rate dropped
greatly to 60% after 100 ms and 45% after 150 ms (P=0.0792,
F=3.1713; see Fig. 4C). In darkness, the fail-safe braking rate was
relatively high when wingbeat triggering occurred less than 100 ms
after the insects’ release (75%) but decreased sharply to less
than 40% after delays ranging between 100 and 150 ms, and to 20%
after 150 ms (χ2: P=0.02810, deviance=4.822, see Fig. 4C). The
stabilization performance recorded in degraded visual surroundings
(i.e. uniform white and darkness conditions) was significantly lower
compared with that for the striped box (χ2: P<0.001,
deviance=38.625). It is worth noting that late wingbeats initiated
150–200 ms after the beginning of the fall in the striped
environment resulted in similar fail-safe braking rates to those
recorded when the wingbeats were initiated within 100 ms in the
uniform white environment and in darkness (see Fig. 4C).

DISCUSSION
The main aim of this study was to develop and test a new
experimental platform for studying the sensory processes involved
in flies’ perception of gravity during flight. Being tethered to the
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ceiling with their legs dangling at the start of each trial certainly
corresponded to a highly unnatural situation for this animal, but the
high rate of positive reactions obtained even in darkness confirmed
the hoverflies’ ability to respond suitably to the free-fall situations.
The existence of this reflex therefore confirms the validity of the
present paradigm as a means of studying the mechanisms involved
in dipterans’ anti-crash responses. Alternatively, the existence of
such a reflex would be useful to trigger flight in an insect in which
observing spontaneous flying behaviour is unexpected, with non-
functional halteres for example, to allow the study of free-flight
stabilization performance.
It has been established that vertebrates are endowed with otolith

organs, which estimate the orientation of the vertical and detect any
changes in the gravity conditions (Angelaki and Cullen, 2008).
However, very few studies have focused so far on assessing the time
required to elicit a muscle response to free-fall conditions. For
example, in humans suspended by their hands, it has been reported
that the contraction of the gastrocnemius muscle occurs 75 ms after
the onset of an unexpected vertical fall (Melvill Jones and Watt,
1971): this response time is similar to those recorded in the muscles
of cats subjected to free-fall conditions (Watt, 1976). In monkeys
undergoing a sudden free fall, egomotion cues perceived by the
visual system contribute mainly within 60–120 ms to the animals’
muscle reactions (Vidal et al., 1979), whereas in baboons, the
latency of the splenius muscle response (EMG) to a fall at an
acceleration of 8.8 m s−2 was reported to be 29 ms in darkness and
22 ms under normal visual conditions (Lacour et al., 1981), which
suggests that visual cues contribute to faster responses. In
arthropods, pendulous sensilla, which may act like an inner ear
and are located in the ventral part of the cerci, have been identified in
the cockroach (Walthall and Hartman, 1981; Hartman et al., 1987),
but as far as we know, the use of gravity perception has only been
confirmed by testing the insects’ tactile responses and varying the
orientation of the ground (Horn and Kessler, 1975; Horn and
Bischof, 1983; Horn and Knapp, 1984; Hengstenberg, 1993; Horn
and Föller, 1998; Kamikouchi et al., 2009). The response latencies
recorded here were much longer than those involved in the
mechanosensory responses elicited, for example, by stimulated
halteres within only 5 ms via a feedforward control pathway
(Sandeman and Markl, 1980). In addition, fruit-flies took only
45 ms to reject a yaw perturbation via a heading feedback loop
(Ristroph et al., 2010), 5 ms to detect a roll disturbance and elicit
counter-torque movements and 30 ms to reject the perturbation
(Beatus et al., 2015). If an early gravity perception process was
involved in the insects’ responses to free-fall situations, similar
wingbeat initiation rates could be expected to occur in darkness, and
faster mean reaction times would therefore have been recorded than
those measured here in the most favourable visual condition (around
110 ms in the presence of stripes), contradicting the existence of an
accelerometer-like organ in dipteran.
Comparisons between the performances recorded in the uniformly

white box and the striped box in terms of similar wingbeat initiation
rates and times (see Figs3Aand4B) andgreater crashing rate (Fig. 3B)
show the existence of differences in the hoverflies’ ability to perceive
free-fall conditions and their subsequent ability to stabilize their flight.
In the all-white box, hoverflies were probably able to detect the low-
contrast patterns provided by contrasting edges between the sides and
the ceiling and between the sides and the mirror. They may have been
endowedwith high contrast sensitivity vision (Collett andLand, 1975;
O’Carroll et al., 1996), which would enable them to perceive the fall
even in a poor visual environment, whereas achieving stabilization
may have required a richer source of visual information, which was

only accessible in the striped box, to enable them to finely control the
amplitude and orientation of their thrust. Although their fail-safe
braking ability was certainly affected by the wingbeat initiation time,
on which the initial speed and pitch depended, it can be seen from
Fig. 4C that the insects in all the time groups braked less efficiently in
darkness than in the striped box. In addition, contrary to the free-fall
responses measured with stripes, the insects’ braking ability was
strongly dependent on the wingbeat initiation time, both in darkness
and in the uniformly white environment. These data indicate that the
hoverfly’s ability to stop falling depends not only on its ability to
quickly initiatewingbeats but also on the visual cues available, which
means that vision was required to control the thrust and prevent the
insect from crashing onto the floor. It has not yet been established
whether dipterans use graviceptors or inclinometers to control their
flight, which would still be at work in darkness. Bender and Frye
(2009) have suggested that the halteres may serve as gravity sensors in
flies.However, thismeansof estimatinggravitywould benegligible in
comparison with processes based on the rotational acceleration
applied to the halteres (Nalbach, 1993; Northrop, 2000) as a means of
controlling the fast manoeuvres performed by flies during flight
(Taylor and Krapp, 2007).

As the hoverflies’ free fall perception and stabilization abilities
were not completely absent in darkness, the possibility that they
may have called on sensory modalities other than vision cannot be
ruled out. The results obtained using the novel free-fall procedure
presented here show that the cues generated by the sudden change in
the microgravity load exerted on the hoverflies’ dangling legs were
probably not used by the insects to detect and stop themselves from
falling. Alternatively, insects are sensitive to the air flow generated
by self-motion, as observed by Fuller et al. (2014) in studies of
forward speed control in fruit flies, by Combes and Dudley (2009)
in responses of neotropical bees to turbulent wind and in studies in
which the optic flow streamlining responses of bees were modulated
by air flow (Taylor et al., 2013). The high sensitivity of an arthropod
hair to airflow (Barth, 2014) might explain the fast responses
occasionally observed in the present study in darkness. It has been
suggested in many studies that a flying insect’s ability to detect
frontal air flow may contribute to sustaining the flapping flight
performance of tethered animals (Goodman, 1965; Hengstenberg,
1984, 1988; Hengstenberg et al., 1986; Hensler and Robert, 1990).
The delayed responses observed in darkness in this study may have
resulted from the time required for the hoverfly’s head to pitch
downward passively, probably due to the weight of the pin (around
5 mg) attached to its thorax. Air flow cues may therefore have been
used to trigger wingbeats and generate thrust, but this reflex often
failed to completely brake the insects’ descent and prevent them
from crashing, whereas visually induced responses involving
motion-sensing neurons, especially those with a vertical preferred
direction of motion, may have occurred before the air flow reached a
useful threshold. The shorter reaction times and greatly improved
stabilization performance observed in the presence of stripes
indicate that the thrust initiation and control were driven mainly
by the presence of visual cues. Comparisons between the flies’ crash
rates in three different visual environments confirmed that vision
certainly played a crucial role in the free-fall detection process. As
suggested by previous findings on tethered flies and bumblebees
(Wehrhahn and Reichardt, 1975; Tanaka and Kawachi, 2006), the
lift response dynamic seems to be largely controlled by the image
slip provided by periodically spaced vertical gratings. An optic
flow-based process compensating for vertical motion is supported
by observation of fruit flies (Straw et al., 2010) and houseflies
(Wehrhahn and Reichardt, 1975; Wehrhahn, 1978) responding to
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vertical grating motion. However, it is not clear in our experiment
whether optic flow was the only type of visual cue available:
lighting from above may well have enhanced the insects’ attitude
and thrust control system via the dorsal light reflex, for example
(Goodman, 1965; Hengstenberg, 1993; Goulard et al., 2015).
Motion-sensitive neurons provide flies with a crucial means of
perceiving their egomotion via the optic flow generated by their
flight; for example, hoverflies Volucella can perceive optic flows
ranging from 0.2 to about 2000 deg s−1 (O’Carroll et al., 1996). In
the present study, the optic flow generated during the hoverflies’
free fall reached a maximum value of approximately 775 deg s−1 (in
the case of a hoverfly falling at a constant mean acceleration of
−981 cm s−2 for up to ∼290 ms at a distance of approximately
20 cm from each side of the box). This new picture of how insects
may estimate and control their attitude differs from what is usually
thought to occur in vertebrates, where inertial vertical perception is
generally taken to result from a combination of tilt and rotational
speed measurements (Merfeld, 1995), as well as differing from the
strategies often used in avionics to stabilize aerial vehicles, based on
the use of devices such as accelerometers (Mahony et al., 2012).
In conclusion, we have developed a totally new, non-expensive,

easy means of studying insect behaviour during free-fall situations,
which could be further used to study the flight stabilization reflexes
involved in other contexts. The data obtained using this set-up show
that the perception of falling and the compensatory stabilizing reflex
induced in hoverflies certainly involved multisensory processes,
including those based on the perception of the air flow and the vertical
optic flow generated by the vertical slip speed of contrasts on the
hoverflies’ eyes rather than gravity perception processes. We propose
to test these hypotheses in future experiments using the free-fall
procedure presented here in order to determine the respective
contributions of each of the sensory channels discussed above.
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