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Liquid Invasion from Multiple Inlet Sources and Optimal

Gas Access in a Two-Layer Thin Porous Medium

N. Belgacem1,3
· T. Agaësse1,3

· J. Pauchet3
·

M. Prat1,2

Abstract This study builds upon previous work on single-layer invasion percolation in thin

layers to incorporate a second layer with significantly different pore sizes and to study the

impact of the resulting water configuration on gas-phase mass transport. We consider a

situation where liquid water is injected at the assembly inlet through a series of independent

injection points. The challenge is to ensure the transport of the liquid water while maintaining

a good diffusive transport within the gas phase. The beneficial impact of the fine layer on the

gas diffusion transport is shown. It is further shown that there exists a narrow range of fine

layer thicknesses optimizing the gas transport. The results are discussed in relation with the

water management issue in polymer electrolyte membrane fuel cells. Additional discussions,

of more general interest in the context of thin porous system, are also offered.

Keywords Thin porous media · Invasion percolation · Pore network simulation ·

Polymer electrolyte fuel cell

1 Introduction

As discussed in Prat and Agaësse (2015), the modeling of transport phenomena in thin porous

media (TPM) poses specific questions. This is notably so because the traditional modeling

tools, such as the classical volume-averaged transport equations, cannot often be used at all or

cannot be used in their traditional forms (e.g., Qin and Hassanizadeh 2014). This is especially

true for the TPM with only a few pores over their thickness because the traditional concept of
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Fig. 1 Sketch of the problem considered in this study. Liquid water (in blue) is injected at the inlet of the

fine layer through a series of independent injection bonds and percolates through the assembly up to the outlet

where it forms droplets (referred to as breakthrough points). A gaseous species is transported by diffusion

between the outlet surface and inlet surface in the gas phase (pores and bonds shown in light blue gray in the

coarse layer; the various phases are not illustrated in the fine layer)

length scale separation underlying the classical Darcy scale equations is not satisfied over the

thickness. In the present article, we consider a quite different approach, not based on volume-

averaged or thickness-averaged equations or any other types of up-scaled partial differential

equations (PDE). Instead, transfer “laws” are established from a series of extensive pore

network simulations and it is shown how these laws can be used to predict the properties of

the considered thin system. The idea is not to determine local fields but rather to determine

the response of the entire thin system. Thus, from a methodological standpoint, the objective

is to enrich the TPM tool box with the consideration of an approach not based on up-scaled

PDE.

The approach is presented from the consideration of the problem depicted in Fig. 1. A

thin hydrophobic porous medium is formed by the assembly of two porous layers. The lateral

extension of this system is typically on the order of 2–3 mm. A coarser porous layer is on top.

The thickness of this layer is typically on the order of 200–300µm with an average pore size

of 30–50µm. A thinner porous layer, hereafter called the fine layer, forms the bottom layer.

The average pore size in this layer is on the order of 500 nm, thus about ten times smaller

than in the coarse layer. The system inlet is formed by the bottom surface of the fine layer,

whereas the outlet is formed by the coarse layer top surface (Fig. 1). Initially, all the pores

are occupied by the gaseous phase. The latter is a mixture of several species, and we will

be interested in the diffusive transport of one of these species across the two-layer assembly

between the outlet and the inlet (gas transport is on average in the direction opposite to that of

liquid flow). Liquid water is then injected at the inlet, thus at the entrance of the fine layer until

it reaches the outlet on top of the coarse layer. This corresponds to the liquid breakthrough.

It is assumed that all the water reaching the outlet is immediately removed owing to the gas

flow existing along the outlet surface. This means that there is no influence of transfers at the

outlet surface on the gas–liquid distribution within the porous system.

At the inlet liquid water is injected through a series of independent injection points. Let

denote the number of injection points by Ni . Ni can vary between 1 and Ni max where Ni max

is the number of entry pores at the fine layer inlet.



The objective is then to predict the number of breakthrough points at the system outlet

and the liquid saturation in both the fine layer and the coarse layer and to characterize the gas

access to the inlet. As discussed in Ceballos and Prat (2010), breakthrough points correspond

to droplet formation spots at the outlet surface. Those droplets represent observable data.

Determining their number is therefore interesting to characterize the two-phase flow in the

system under study.

This problem was studied in previous publications (i.e., Ceballos and Prat 2010; Ceballos

et al. 2011; Ceballos and Prat 2013). However, the system was formed only by the coarse layer

without the fine layer. The impact of the fine layer was thus not studied. Hence, this study

builds upon previous work on single-layer invasion percolation in thin layers to incorporate

(i) a second layer with significantly different pore sizes but otherwise similar behavior and (ii)

the impact of the resulting water configuration on gas-phase mass transport. Also, we provide

in the present article simple theoretical arguments supporting the detailed numerical results

reported in Ceballos (2011). Additional pore network simulations on random networks are

also presented to confirm the universal nature of the results used in the present work.

This problem is inspired from a situation encountered in a polymer electrolyte membrane

fuel cell (PEMFC) (e.g., Barbir 2005). However, there is no need to be familiar with PEMFC

to understand the present article. The PEMFC terminology is not used in what follows except

in a subsection in Sect. 6 where the results are briefly discussed in relation with PEMFC.

This subsection can be skipped by readers not interested in PEMFC.

The paper is organized as follows. The main results presented in previous papers and useful

for the present paper are briefly recalled in Sect. 2. New results for a single coarse layer are

presented in Sect. 3 together with the theoretical arguments. The properties of fine layer are

given in Sect. 4. The main part of the paper, i.e., the study of the fine layer–coarse layer

assembly, is presented in Sect. 5. Discussions are presented in Sect. 6. These notably include

a brief discussion of main results in relation with the water management issue in PEMFC

and a discussion about the modeling of the fine layer–coarse layer interface. Conclusions are

presented in Sect. 7.

2 Literature Review

Capillarity-controlled two-phase flows in thin layers have motivated many studies in recent

years in relation with the problem of the water management in PEMFC, a crucial aspect of

this technology. As for the present work, many of these studies are based on pore network

models (PNM) (e.g., Sinha and Wang 2007; Markicevic et al. 2007; Bazylak et al. 2008;

Hinebaugh et al. 2010; Lee et al. 2009, 2010, 2014; Gostick 2013; Wu et al. 2013; Fazeli

et al. 2015; Quin 2015).

The majority of these studies used the traditional invasion percolation algorithm (e.g.,

Wilkinson and Willemsen 1983; Sheppard et al. 1999). However, as discussed in Ceballos

and Prat (2010), the boundary condition of uniform pressure at the inlet used in classical IP

simulations can be questioned in the context of PEMFC studies. In particular, the classical

boundary condition is not consistent with the in situ observations showing several break-

through points at the outlet of the thin layer since only one breakthrough point is obtained

using the traditional version of the IP algorithm. This led to the consideration of a different

inlet boundary condition where the non-wetting fluid is injected through a series of indepen-

dent injection points at the inlet. As shown in Ceballos and Prat (2010), the surface density

of breakthrough points is then consistent with the observations. The impact of this boundary



condition was then studied in detail in Ceballos et al. (2011) and Ceballos and Prat (2013). We

are not aware of previous works in the context of IP theory where the IP variants considered

in Ceballos and Prat (2010) and Ceballos et al. (2011) were studied.

In this section, we recall some of the results presented in Ceballos et al. (2011) and Ceballos

and Prat (2013) which are useful for the present study. These results were obtained using a

simple cubic pore network. In this model, the pores are located at the nodes of a cubic mesh.

Two adjacent pores are connected by a narrower channel called bond. The pore and bond

sizes are randomly distributed according to given probability density functions. The size of

the cubic network was denoted by L × L × H , where H was the porous medium thickness

or Nx × Ny × Nz (with Nx = Ny) measured in number of pores along each direction of a

Cartesian coordinate system. In this pore network model, the inlet is formed by N 2
x bonds

oriented in the z direction giving access to the N 2
x pores located in the first x–y plane of pores.

Liquid is injected through these bonds, which are thus referred to as “injection points” or

“injection bonds.” The number of injection points was defined via the fraction ni of injection

points at the inlet, ni = Ni/N 2
x , where Ni is the number of injection points. Thus, ni = 1, for

example, corresponds to Ni = Ni max = N 2
x . The injection bonds were randomly selected at

the inlet when ni < 1. The impact of ni was explored varying ni in the range [0.02, 1]. Thus,

fractions of inlet injection bonds lower than 2 % were not considered.

The pore network was hydrophobic, and the liquid water injection was supposed to

be sufficiently slow for viscous effects to be negligible compared to capillary effects.

Gravity effects are also negligible so that water invasion was simulated using a variant

of the invasion percolation (IP) algorithm (Wilkinson and Willemsen 1983). As men-

tioned above, the variant lies in the boundary condition (multiple independent injection

points versus a reservoir-type condition with the classical IP algorithm). Also, the coales-

cence between liquid paths originating from different liquid injection points is taken into

account.

2.1 Liquid Invasion Simulation Algorithm

We used the simultaneous IP algorithm referred to as the sequential algorithm in Ceballos

et al. (2011). The algorithm can be summarized as follows:

1. The network is fully saturated by the gas phase initially.

2. A first liquid flow path is computed using the standard IP algorithm without trapping

starting from a first injection point (selected at random among the inlet active bonds or

sequentially). The computation of this step stops at breakthrough, that is when the liquid

water reaches the outlet.

3. The simulation is repeated starting from a second injection bond at the inlet. This second

invasion stops either when the flow path generated from this second injection point merges

into the flow path associated with the first injection bond (flow path coalescence) or at

breakthrough, i.e., when the liquid injected from the second inlet bond reaches the outlet

through a path independent from the path connected to the first injection point.

4. The procedure is repeated starting successively from all the other injection bonds at the

inlet.

Simulations were performed with this algorithm over many realizations of the cubic net-

work varying the thickness of the layer. The results were ensemble-averaged over the number

of considered realizations. The results of interest for the present work are presented in Figs. 2,

3 and 4. These results were obtained for Nx = Ny = 20 and Nx = Ny = 40, varying Nz

using random distributions of bond and pore sizes.
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Fig. 2 a Probability that an outlet bond is a breakthrough point as a function of network thickness Nz when all

inlet bonds are active at the inlet (ni = 100 %). b Average number of breakthrough points NBT as a function

of porous layer relative thickness Nz/Nx when all pores are active at the inlet (Ni = Nmax) (ni = 100 %).

The results are shown for two network lateral sizes (Nx = Ny = 20 and Nx = Ny = 40)

2.2 Breakthrough Points

Figure 2a shows the probability that an outlet bond is a breakthrough point as a function of

network thickness Nz , whereas Fig. 2b shows the average number of breakthrough points

NBT as a function of porous layer relative thickness Nz/Nx when all pores are active at the

inlet (ni = 1).
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Fig. 3 Mean overall liquid saturation as a function of porous layer thickness for various injection point fraction

ni for two network lateral sizes [Nx = Ny = 20 (dashed lines) and Nx = Ny = 40 (solid lines)]
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Fig. 4 Variation of effective diffusion coefficient as a function of network thickness for various injection point

fraction ni for two network lateral sizes [Nx = Ny = 20 (dashed lines) and Nx = Ny = 40 (solid lines)]

Four regions can be distinguished in Fig. 2a depending on the thickness Nz of the system:

(1) the ultrathin system region when the system is sufficiently thin, i.e., Nz ≤ 10, (2) the

power law region for larger thicknesses right after the region of ultrathin systems where

NBT/N 2
x ∝ N−2

z , (3) a transition region between the power law region and region #4, (4) the



thick systems characterized by only one breakthrough point (plateaus on the right-hand side

in Fig. 2a, noticing that only the beginning of plateaus is shown).

As can be seen from Fig. 2a, the behaviors of ultrathin and thin systems (power law

region) is independent of lateral size, which means that NBT/N 2
x only depends on Nz in the

ultrathin and thin porous medium domain. It is of course interesting to determine the range

of validity of the universal behaviors corresponding to the ultrathin and the thin systems. As

can be seen from Fig. 2b, the power law regime characterizing the thin systems is observed

up to Nz/Nx ≈ 0.8. Thus, for a given lateral size Nx , the universal behaviors are obtained

as long as Nz ≤ 0.8Nx . Universal behaviors mean here independent of lateral size. This can

be expressed as

NBT/N 2
x = f (Nz, ni ) if Nz ≤ 0.8 Nx (1)

where f is a function depending only on Nz for a given ni .

Additional information not considered in the previous works is the distribution of break-

through points at the outlet. There is no reason to expect something different from a

homogeneous distribution [as long as NBT is not too small, i.e., in the regime corresponding

to Eq. (1)]. Assuming that the breakthrough points are evenly distributed at the surface, the

mean distance d between two neighbor breakthrough points is then given by

d

a
=

2
√

π f (Nz, ni )
(2)

where a is the lattice spacing (distance between two neighbor pores in the network).

2.3 Overall Liquid Saturation

Somewhat similarly as for the breakthrough point statistics, the results reported in (Ceballos

et al. 2011) show that the overall liquid saturation at the end of displacement only depends

on Nz for a given fraction ni of injection bonds at the inlet as long as Nz < 20. Thus,

S = fs(Nz, ni ) if Nz < 20 (3)

This is illustrated in Fig. 3.

3 Coarse Single-Layer Additional Results

3.1 Diffusion Coefficient

The gas phase is a binary mixture of two species A and B. The gas access is characterized

by the diffusive flux of species B through the layer for a given concentration difference ∆c

imposed across the layer. This flux, denoted by J , can be expressed as

J ≈
D∗

H
�c (4)

where D∗ is the effective diffusion coefficient of the layer; D∗ can be computed from pore

network simulations. We used the method described in Gostick et al. (2007).

Variations of D∗ as a function of layer thickness computed from pore network simulations

are shown in Fig. 4. Again an “universal” behavior is observed for the sufficiently thin

systems,



D∗

D
= fD(Nz, ni ) if Nz ≤ 20. (5)

where D is the molecular diffusion coefficient of the considered species.

Note also the non-monotonous variation of D∗ as a function of Nz . This non-monotonous

variation may appear as counterintuitive since the variation of saturation in Fig. 3 is monoto-

nously decreasing. In fact, the expected result is that the diffusive flux J decreases with Nz

and this is indeed what is obtained (as shown in Fig. 6a in Ceballos and Prat (2013)). From

Eq. (4), D∗ can thus be interpreted as the product of an increasing function of Nz(H = aNz ,

where a is the distance between two pores in the network) and a decreasing function of

Nz(= J ). This can be expressed mathematically as ∂ D∗

∂ H
∝ H ∂ J

∂ H
+ J where ∂ J

∂ H
< 0 and

J > 0. In the range of very low thicknesses, the variation of D∗ is dominated by the term

H ∂ J
∂ H

, and thus ∂ D∗

∂ H
< 0 whereas the variation for greater Nz is dominated by the term J ,

leading to ∂ D∗

∂ H
> 0.

3.2 Simple Theoretical Considerations

The universal behavior regarding the number of breakthrough points described in Sect. 2.2

can be predicted from a simple argument. We consider the situations where Nz < Nx .

Figure 5 shows a pore network numerical simulation of the considered invasion scenario for

ni = 1. A colored cluster in the figure corresponds to the liquid cluster associated with one

breakthrough point. Thus, there are 6 breakthrough points in this example. This figure clearly

suggests that the system can be decomposed into a finite number of independent regions (the

lateral limiting surfaces of a region act as capillary barriers for the liquid present in the

adjacent regions). The liquid phase in each region is connected to only one breakthrough

point.

Here we make the simplifying assumption that the size of an elementary region is approx-

imately equal to its thickness. Thus, we decompose the system into a number of elementary

cubes of lateral size Nz . There are Nb elementary cubes with Nb = (Nx/Nz)
2.

Suppose now that the number of breakthrough points is the same (in an average sense)

for each cube independently of thickness Nz . This number is denoted by Ne. We do not

take Ne = 1 a priori because we do not know whether the size of each elementary cube

corresponds to the size of the clusters illustrated in Fig. 5, noting that the image in Fig. 5 is

Fig. 5 Multiple injection scenario leads to the formation of a series of independent liquid occupied regions

in the network. Each region is shown with a different color and is connected to only one breakthrough point.

Hence, each breakthrough point is associated with a well-defined and individualized region of the system



for a small network and is merely illustrative. Then, the total number of breakthrough points

is simply given by,

NBT ≈ Ne(Nx/Nz)
2 (6)

leading to
NBT

N 2
x

≈
Ne

N 2
z

(7)

which perfectly corresponds to the power law regime depicted in Fig. 2a.

The numerical results on a cubic network indicate that Ne ≈ 1.24. In fact, the numerical

results for a network of size Nx × Nx × Nx show that the number of breakthrough points is

one with a probability P1, two with probability P2 and three with probability P3 (see Fig. 7b

in Ceballos et al. (2011)) with P1 + P2 + P3 ≈ 1 provided that Nx is not too small. Hence, the

probability of having more than three breakthrough points is negligible. Thus, the prefactor

Ne should be equal to Ne ≈ P1 + 2P2 + 3P3. The numeral value 1.24 is consistent with the

values of P1, P2, and P3 reported in Fig. 7b in Ceballos et al. (2011).

Naturally, the consideration of elementary cube becomes meaningless when Nz ≥ Nx ,

i.e., Nz/Nx ≥ 1, which is also consistent with the numerical results. The latter indicates that

the scaling given by Eq. (6) actually holds up to Nz/Nx ≈ 0.8.

The numerical study indicates that the power law behavior does not hold for the ultrathin

systems corresponding approximately to Nz ≤ 10. The variation of probability NBT

N 2
x

with

the thickness is slower than predicted by Eq. (7) for Nz ≤ 10. This reflects the fact that

the number of breakthrough points can vary much more than between 1 and 3 from one

elementary cube to another when Nz ≤ 10. This is shown in Fig. 8 in Ceballos et al. (2011)

which indicates that the number of breakthrough points follows a Gaussian distribution when

Nz < 10.

Showing that Eq. (7) (with Ne ≈ 1.24) overestimates the probability NBT

N 2
x

for the ultrathin

systems is easy. To this end, consider a system formed by a single layer of pores (Nz = 1) for

the case ni = 1. Applying Eq. (7) leads to NBT

N 2
x

≈ 1.24. Each pore in this layer is connected to

4 neighbor pores located in the same horizontal plane (we recall that a simple cubic network

is considered) and to a vertical inlet bond and a vertical outlet bond. The probability for the

liquid to go straight from the inlet bond to the outlet bond (where it forms a breakthrough

point) is therefore only 1/5. Thus, it is clear that the total of breakthrough points NBT is

necessary significantly lower than 1.24N 2
x , which is the value given by Eq. (6). A more

refined analysis of this probability is as follows. Consider an outlet bond. As just discussed,

the probability for this outlet bond to be a breakthrough point because of direct invasion

from immediate neighbor inlet bond is 1/5. However, water can also reach the pore adjacent

to the considered outlet bond from neighboring pores with probability 2/5 (we consider the

sequential algorithm assuming that two of the four neighboring pores have been invaded

before the considered pore is activated). Then, the probability of invading the outlet bond

from a path originating from the two considered neighbor pores is 1/4 (the inlet bond cannot

be invaded). This leads to NBT

N 2
x

≈
1
5

+
2
5

×
1
4

≈ 0.3, which almost exactly corresponds to the

numerical results for Nz = 1 in Fig. 2a.

3.3 On the Universal Nature of Results from PN Simulations on Random

Networks

In order to confirm that the results discussed in previous sections are generic and not spe-

cific to cubic networks, a few simulations were performed over unstructured networks. The



Fig. 6 Example of generated fiber image generated using the method described in Gostick (2013). The Voronoi

lines (fibers) create polyhedral cages that define pore bodies

model used in this section has a random 3D architecture based on Delaunay tessellations to

represent the pore space and Voronoi tessellations to represent the fiber structure. This model

is illustrated in Fig. 6 (see also Fig. 5), and the procedure for generating it is described in

detail in Gostick (2013). This procedure is therefore not described again here. This type of

network is referred to as a Voronoi network in the following.

Similarly as for the cubic network, Nz is the number of pores (a pore corresponds to a

polyhedral cage in Fig. 6) in the through plane direction, whereas Nx is the number of cages

(pores) in the in-plane directions (Ny = Nx ).

Figure 7 shows the average number of breakthrough points NBT as a function of porous

layer relative thickness Nz/Nx when all pores are active at the inlet (ni = 1) obtained for

Voronoi networks of lateral size Nx = 30 and Nx = 40, respectively.

As can be seen from Fig. 7, the results obtained with the Voronoi network are consistent

with the power law behavior obtained with the cubic network. In particular, the data for the

network size Nx = 40 are consistent with the exponent 2 of the power law. The conclusion

is that the results shown in Fig. 7 are a sufficiently clear indication that the results discussed

in previous sections are generic of thin systems.

4 Fine Layer

The average pore size in the thin layer is much smaller than in the coarse layer. As an

example, consider a thin layer of 50µm in thickness and of 2.6 mm in lateral size. The lattice

spacing af is 700 nm. The fine layer is thus represented by a 3715 × 3715 × 72 pore network

(Nxf = Nyf = 3715, Nzf = 72). Pore network simulations in such a big network would be

computationally extremely long, if even feasible. Therefore, the fact of knowing “universal”

laws is here crucial. Note that the subscript “ f ” is used to label the data relative to the fine

layer.
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the results for a cubic network of lateral size Nx = Ny = 40

4.1 Breakthrough Points

In relation with the results shown in Fig. 2, we first note that Nzf/Nxf ≤ 0.8 (Nzf/Nxf =

0.019). Thus, the system is in the universal regime. Second, Nzf ≥ 10. Thus, we can use

the power law relationship to obtain the number of breakthrough point. As an example

consider the case nif = 1. Applying Eq. (7) (with Ne = 1.24) yields NBT ≈ 3300, to be

compared with the number of injection points Ni = 37152. Hence, NBT/Ni ≈ 2 × 10−4,

which illustrates the efficiency of liquid path coalescence process. Also it can be noted that the

thickness corresponding to the end of the power law regime, i.e., Nzf/Nxf ≈ 0.8 corresponds

to Nzf ≈ 2972 for this network lateral size. Similarly, other properties such as the overall

saturation and the diffusion coefficient can be predicted using the data obtained from the

simulations over much smaller networks presented in Sect. 2. How to construct these data is

the main objective of the present section.

4.2 Overall Liquid Saturation

The objective is to determine the variation of Sf as a function of Nzf for different fraction nif in

the range [0.02, 0.9]. Figure 3 shows the results obtained with networks of size 20 ×20 × Nz

and 40 × 40 × Nz . The obvious and expected result is that the saturation increases with

increasing ni for a given thickness. There is absolutely no reason to expect a different tendency

in a large network such as the 3715 × 3715 × Nzf network used to represent the fine layer.

One problem is that the results shown in Fig. 3 cannot be directly applied because the

variation of Sf with thickness Nzf and nif also depends on lateral size Nxf for Nzf > 20. The

situation is as follows. For Nzf < 20, the variation of Sf with Nzf is independent of lateral

size Nxf , and thus, the values determined on network of relatively small lateral extensions and



shown in Fig. 3 are also the ones expected with a large network in this range of thicknesses.

For Nzf ≈ 2 Nxf , there is only one breakthrough point and there is a clear dependence

of saturation with lateral size Nxf as also illustrated in Fig. 3. Since the system is at the

percolation threshold (only one breakthrough point) at Nzf ≈ 2 Nxf , it is tempting to make

use of the percolation scaling S ∝ N
df−3
x , where df is the fractal dimension of the percolation

cluster (df = 2.52 in 3D). According to the results presented in Ceballos et al. (2011), see

the inset in Fig. 12b in this reference, this is a quite reasonable idea. Thus, suppose we know

the saturation SN x1 at Nz1 ≈ 2 Nx1 for a network of lateral size Nx1 then the saturation SN x2

at Nz2 ≈ 2 Nx2 for a network of lateral size Nx2 is expected to be

SN x2 ≈ SN x1

(

Nx1

Nx2

)3−df

, (8)

which consistently with available numerical simulations predicts that S at Nzf ≈ 2 Nxf

decreases with increasing lateral size (this is illustrated in Fig. 3).

From the data available for networks of lateral size Nx = 40, we therefore know for any

larger size the saturation for the thicknesses lower than 20 (there are identical to the ones for

the network of lateral size 40) and the saturation at Nzf ≈ 2 Nxf , which is given using obvious

notations by Sf (2Nxf ) = Sf (2Nx40)

(

Nx40

N xf

)3−df

. For our network of lateral size Nxf = 3715,

this means that we know the saturations for the thickness lower than 20 and at Nzf = 7430.

The question is then how to estimate the saturation between Nzf = 20 and Nzf = 7430.

From the shape of the curves shown in Fig. 3, we decided to perform power law adjust-

ments, i.e.,

Sf = ηN
χ
zf (9)

between the values limiting the range of variations of Sf . This gave the variations shown in

Fig. 8, whereas the values of coefficients of the power law adjustments for the various nif

are given in Table 1

4.3 Diffusion Coefficient

The next step is to evaluate the effective diffusion coefficient of the fine layer for the various

nif . Figure 4 shows the variations obtained from simulations on networks of size 20×20×Nz

and 40×40×Nz . A natural idea based on the approach prevailing for traditional porous media

is to try to express D∗ as a function of liquid saturation S. However, combining the results

of Figs. 3 and 4 leads to the results shown in Fig. 9. Interestingly, contrary to traditional

porous media, there is not a one to one relationship between D∗ and S. This is another

illustration of the scale dependence of results in a thin system for the situation considered

in the present article. See also García-Salaberri et al. (2015) for further discussion on the

relationship between D∗ and S in thin systems.

Since searching for simple relationships between D∗ and S is not appropriate here, we

proceed similarly as for constructing the saturation profiles. This means that we are interested

in the variation of D∗ as functions of Nzf and nif rather than S.

As illustrated in Fig. 4, we first note that the values of D∗

f are independent of lateral size

Nxf for Nzf < 20. Then, we estimate D∗

f for Nzf = 2Nxf . For this thickness, we know

that the invading phase, i.e., the liquid phase, forms a percolation cluster (there is only one

breakthrough point). The defending phase (the gas phase) is therefore well connected (except

of course when nif approaches 100 %). In others terms, the gas phase is far from a percolation

threshold and thus traditional relationship expressing the variation of D∗

f with saturation
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Fig. 8 Constructed variation of overall saturation as a function of layer thickness for various fractions of inlet

injection bonds nif for the 3715 × 3715 × Nzf network used to represent the fine layer. The symbols on the

left corresponds to the “universal” values (i.e., independent of lateral size) obtained on a smaller network for

Nzf < 20. The symbols on the right corresponds to the saturations computed using the percolation scaling

[Eq. (8)]. These saturations are actually very close for the various nif and the symbols on the right are therefore

almost superposed one on top of another. The lines correspond to the power law adjustments [Eq. (9), see text]

Table 1 Coefficients of power

law [Eq. (9)] for various nif
nif (%) η χ

2 0.579 −0.367

4 0.697 −0.386

10 0.840 −0.403

20 0.877 −0.355

50 0.956 −0.394

90 1.044 −0.411

should be acceptable for this thickness. As an example we took a classical relationship of the

form,

D∗

f (Sf )

D
= α(1 − Sf )

1.5 (10)

and determined the numerical coefficient α from the results of invasion percolation simula-

tions reported in Ceballos and Prat (2013). This gave α = 0.23.

Equation (10) is used to determine D∗

f at Nzf = 2Nxf from the saturations determined for

this thickness as explained previously [i.e., using Eq. (8)].

Then from the shape of the curves shown in Fig. 4, we again decided to perform power

law adjustments, i.e.,
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D∗

f

D
= ηD N

χD

zf (11)

between the values limiting the range of variations of D∗

f . This gave the variations shown in

Fig. 10, whereas the values of coefficients of the power law adjustments for the various nif

are given in Table 2

5 Fine Layer–Coarse Layer Assembly

The objective of this section is to show how the behavior of the fine layer–coarse layer

assembly can be predicted from the results presented in the previous sections taking advantage

of the established “universal” laws. Also, the objective is to illustrate why the presence of

the fine layer can be extremely beneficial to gas access across the coarse layer.

A first problem lies in the nature of the assembly. Here we make the simple assumption

that the interface between the fine layer and the coarse layer is sharp. In other terms, this

interface has no particular properties. This point is further commented in Sect. 5.

As before, we are interested in the number of breakthrough points at the outlet of coarse

layer, the overall saturations in the layers and the gas access through the assembly.

The dimensions and other properties of the fine layer are those given in Sect. 3. As an

example, we consider a coarse layer of 200µm in thickness with a lattice spacing ac of 40µm.

This corresponds to a 65 × 65 × 5 network. Thus, we have a 65 × 65 × 5 network coupled

with a 3715 × 3715 × Nzf network, where Nzf is the thickness of the fine layer (measured

in fine layer lattice spacing unit af ).
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Fig. 10 Constructed variation of diffusion coefficient as a function of layer thickness for various fractions of

inlet injection bonds nif for the 3715 × 3715 × Nzf network used to represent the fine layer. The symbols on

the left corresponds to the “universal” values (i.e., independent of lateral size) obtained on a smaller network

for Nzf < 30. The symbol on the right corresponds to the saturations computed using the percolation scaling

[Eq. (8)]. These saturations are actually very close for the various nif leading to indiscernible variations at

Nzf = 2 Nxf (=7430) for the various values of nif . The lines correspond to the power law adjustments

[Eq. (11), see text]

Table 2 Coefficients of diffusion

coefficient power law [Eq. (11)]

for various nif

nif (%) ηD χD

2 0.772 0.122

4 0.617 0.148

10 0.439 0.186

20 0.306 0.226

50 0.121 0.330

90 0.0091 0.620

The reference case is the case where there is no fine layer and all bonds at the coarse layer

inlet are injection points (nic = 1). The impact of the fine layer on transport in the coarse

layer is illustrated by varying the thickness of the fine layer without modifying the coarse

layer.

5.1 Impact of Fine Layer Thickness on the Number of Breakthrough Points at

Coarse Layer Outlet

We are first interested in the minimal fine layer thickness Nzfmin above which the gas transfer

becomes possible across the assembly.

According to Eq. (1), the number of breakthrough points NBTf at the fine layer–coarse

layer interface can be expressed as,

NBTf/N 2
xf = f (Nzf , nif ) if Nzf ≤ 0.8 Nxf (12)



The number of inlet bonds at the inlet of coarse layer is N 2
xc. Assuming that the fine layer

breakthrough points are evenly distributed at the fine layer–coarse layer interface, we can

first estimate the fine layer thickness Nzfmin for which the number of fine layer breakthrough

points is about equal to the number of inlet bonds at the coarse layer inlet. This thickness is

given by the equation,

NBTf = f (Nzfmin, nif )N 2
xf = N 2

xc (13)

As discussed in Sect. 2, f (Nzf , nif ) ≈
1.24

N 2
zf

independently of nif as long as Nzf is greater

than about 20 (over the range [0.02–1] of ni considered in Ceballos et al. 2011). Under these

circumstances, we deduce from Eq. (13) that,

Nzfmin ≈ 1.1135
Nxf

Nxc
(14)

In our case (Nxf = 3715, Nxc = 65), this gives Nzfmin ≈ 63. Hence, Nzf must be greater

than Nzfmin for having gas percolating paths across the coarse layer–fine layer assembly. For

Nzf ≤ Nzfmin, all inlet bonds at the inlet of coarse layer are invaded by liquid, which blocks

the gas access.

The situation Nzf ≤ Nzfmin also corresponds to a maximum of breakthrough points at the

outlet of coarse layer since all coarse layer inlet bonds are injection bonds.

To determine the number NBTc of breakthrough points at the coarse layer outlet for

Nzf > Nzfmin, we first have to determine the fraction nic of coarse layer inlet bonds which

are injection bonds. Again we assume that the fine layer breakthrough points are evenly

distributed at the fine layer–coarse layer interface, which leads to,

nic =
NBTf

N 2
xc

=
1.24

N 2
zf

N 2
xf

N 2
xc

(15)

Then, we need to know how NBTc varies for fixed coarse layer dimensions (Nxc = 65,

Nzc = 5) as a function of nic. According to the results reported in Ceballos et al. (2011), the

coarse layer is sufficiently thin for the “universal” behaviors characterized in Ceballos et al.

(2011) to apply. So we made a fit of the data reported in Ceballos et al. (2011) for the case

Nz = 5 to obtain,

NBTc

N 2
xc

=
2.585 ln(100nic) + 4.4605

400
(16)

Combining Eqs. (15) and (16) leads to the desired relationship between the number of

breakthrough points at the outlet of the assembly as a function of fine layer thickness,

NBTc

N 2
xc

=
2.585

400
ln

(

124

N 2
zf

N 2
xf

N 2
xc

)

+
4.4605

400
(17)

Applied to our example, this leads to the results shown in Fig. 11. As can be seen, increasing

Nzf above Nzfmin has a clear impact on the number of breakthrough points at the coarse

layer outlet. The number of breakthrough points is decreasing with an increasing fine layer

thickness, which is first indication that the presence of a sufficiently thick fine layer should

improve the gas access.
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Fig. 11 Number of breakthrough points at the coarse layer outlet as a function of fine layer thickness Nzf .

As an order of magnitude, 100 breakthrough points correspond to a density of 15 droplets per mm2 at the

surface of the assembly for our example. The inset shows the mean overall liquid saturation in coarse layer as

a function of fine porous layer thickness Nzf

5.2 Impact of Fine Layer Thickness on Overall Liquid Saturation in Coarse and

Fine Layer

For evaluating the evolution of global saturation Sc in the coarse layer, we need again a

relationship between Sc and nic for a fixed network size in the “universal” domain. As can

be seen from Fig. 3, Sc only depends on nic for Nz = 5 (and thus does not depend on lateral

dimension). The variation of Sc with nic for this thickness is shown in Fig. 12. We then made

a polynomial fit from the data reported in Ceballos et al. (2011) and shown in Fig. 12 in order

to easily compute Sc as a function of nic.

Combined with Eq. (15), this leads for our example to the results depicted in the inset in

Fig. 11 showing the variation of overall saturation in coarse layer as a function of fine layer

thickness.

As can be seen, increasing the fine layer thickness significantly decreases the liquid sat-

uration in coarse layer when Nzf > Nzfmin. As depicted in Fig. 8, the effect of thickness

increase is also to reduce the overall saturation in the fine layer. An interesting difference

between the fine and the coarse layer is that the variation of saturation in the coarse layer for

a given assembly (i.e., a given fine layer thickness) is independent of nif (for the range of

nif considered), whereas the saturation in the fine layer does depend on nif (as illustrated in

Fig. 8).

5.3 Impact of Fine Layer Thickness on Gas Access and Gas Transport

As discussed in Sect. 5.1, the fine layer thickness Nzf must be greater than Nzfmin for the gas

transfer to be possible across the assembly. Note that the gas transfer as a dissolved species in



0 20 40 60 80 100

n
ic 

(%)

0

0,1

0,2

0,3

0,4

0,5

S
c

Fig. 12 Mean overall liquid saturation in coarse layer as a function of fraction of injection bonds at layer inlet

the liquid is not considered. Thus, gas transfer is only possible when the gas phase percolates

through the assembly. For Nzf ≤ Nzfmin, all inlet bonds at the inlet of coarse layer are invaded

by liquid, which blocks the gas access.

In what follows, we consider again the case of the diffusive transfer of species B in the

gas phase formed by the binary mixture of two species A and B.

Then, the gas access is again characterized by the diffusive flux across the assembly for

a given concentration difference ∆c imposed across the assembly. This flux, denoted by J ,

can be expressed as

J ≈

(

Hf

D∗

f (Nzf , nif )
+

Hc

D∗
c (Sc)

)−1

�c (18)

where Hf and Hc are the thicknesses of fine and coarse layers, respectively; D∗

f (Nzf , nif )

and D∗
c (Sc) are the effective diffusion coefficient of fine and coarse layers, respectively. As

reference flux, we use the flux across a perfectly dry coarse layer,

Jref ≈
D∗

c (0)

Hc
�c (19)

which leads to express Eq. (18) in dimensionless form as

J

Jref
≈

(

Hf

D∗

f (Nzf , nif )
+

Hc

D∗
c (Sc)

)−1
Hc

D∗
c (0)

(20)

Equation (20) can be also expressed as

J

Jref
≈

(

Nzf af

D∗

f (Nzf , nif )
+

Nzcac

D∗
c (Sc)

)−1
Nzcac

D∗
c (0)

=
1

D∗
c (0)

D∗

f (Nzf ,nif )

Nzf af

Nzcac
+

D∗
c (0)

D∗
c (Sc)

(21)
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Fig. 13 Variation of gas diffusive flux through the fine layer–coarse layer assembly as a function of fine

porous layer thickness Nzf for various fractions of inlet injection bonds nif

To make use of Eq. (21), we need to know D∗

f (Nzf , nif ) and D∗
c (Sc). For D∗

f (Nzf , nif ),

we use the results presented in Sect. 4.3 and illustrated in Fig. 10. For the coarse layer, one

can directly use the results shown in Fig. 4. From the results shown in Fig. 4 for Nz = 5, we

can express D∗
c (Sc) as

D∗
c (Sc)

D
= 0.23 − 0.44Sc (22)

Figure 13 shows the variation of J/Jref as a function of Nzf for our example. We first

recall that no transfer is possible, i.e., J = 0., in the absence of the fine layer owing to

the flooding of coarse layer inlet bonds. Thus, the fine layer has clearly a beneficial effect

since it makes possible the gas transfer owing to the impact of fine layer on the number

of flooded bonds at the coarse layer inlet. Then, the most striking and interesting result is

that the variation of J/Jref is not monotonous but shows a maximum. Thus, there are a

range of fine layer thicknesses, around Nzf = 300 in Fig. 13, which leads to an optimal gas

transfer. Interestingly, the optimal thickness only slightly depends on nif over the range of

nif considered.

To understand the results shown in Fig. 13, one should remember that increasing the fine

layer thickness increases the diffusive resistance due to the fine layer but also decreases the

diffusive resistance in the coarse layer owing to the decrease in the coarse layer saturation

Sc. This can further analyzed by expressing Eq. (21) as

J

Jref
=

1

Rfine + Rcoarse
(23)

where Rfine =
D∗

c (0)

D∗
f (Nzf ,nif )

Nzf af

Nzcac
and Rcoarse =

D∗
c (0)

D∗
c (Sc)

represent resistances to diffusive trans-

port in the gas phase in the fine layer and the coarse layer, respectively.
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Fig. 14 Variation of fine layer and coarse layer diffusive resistances a function of fine porous layer thickness

Nzf for the case nif = 0.5

As an example, the variations of Rfine and Rcoarse as a function of Nzf are shown in Fig. 14

for the case nif = 0.5. For sufficiently low Nzf , the liquid saturation in the coarse layer is

high (see the inset in Fig. 11), close to the saturation corresponding to the gas percolation

threshold. As a result, the coarse diffusive resistance is by far dominant. Then, this resistance

decreases rapidly with the increase in the fine layer thickness owing to the impact of the fine

layer on the coarse layer saturation and diffusion coefficient [see the inset in Fig. 11 and

Eq. (22)]. The fine layer resistance progressively increases with Nzf until both resistances

are comparable. This corresponds to the optimal fine layer thicknesses. Further increase in

the fine layer thickness leads to the increase in the overall resistance owing to the increase

in fine layer resistance, which progressively becomes the dominant resistance.

6 Discussion

6.1 On the Fine Layer–Coarse Layer Interface

In the present investigation, the interface between the fine layer and the coarse layer was

considered as sharp. In fact, we implicitly assumed that the two layers could be prepared

independently and then just press one onto the other with negligible deformation and negli-

gible overlap between the two layers. However, in practice, the fine layer is often obtained by

depositing and agglomerating fine particles on the coarse layer. As a result a non-negligible

fraction of the fine layer can actually penetrate into the coarse layer. Under these circum-

stances, the system can actually be described in terms of at least three regions: the region

of the coarse layer far from the fine layer which is free from fine layer material, the fine

layer formed as a result of the agglomeration of particles and a transition region where both

solid phase belonging to the coarse layer and the fine layer material are present together.



Fig. 15 a Illustration of the situation considered in the present article where the transition between the fine

layer (in yellow) and the coarse layer (represented as a fibrous material with fiber in blue and binder in green)

is sharp, b illustration of the situation with interpenetration of the fine layer and the coarse layer

This is illustrated in Fig. 15b. Thus, as discussed in Prat and Agaësse (2015), the interfacial

region between the two layers must then be considered as a transition region between the

two regions. The transition region was referred to as the “third layer” in Prat and Agaësse

(2015). In contrast to the sharp interface, transport properties must be determined also for

the transition region. It can be surmised that the transition region can have a great impact on

transport properties on the whole assembly. This of course depends notably on the thickness

of transition region compared to the thicknesses of the two other regions. It is difficult to

go further without considering a specific example. Thus, here the message is simply that the

fine layer–coarse layer assembly we have considered in the previous section can be an overly

simplified representation of the assembly and that further work is needed to study systems

such as the one illustrated in Fig. 15b.

6.2 Comparison with a Previous Work

Interestingly, a problem similar to the one considered in Sect. 5 was studied in Nam and

Kaviany (2003) but using traditional volume average equations, such as the generalized

Darcy’s law. As in the present work, they found a range of fine layer thicknesses optimizing

the gas diffusion transport. However, the impact of the fine layer was quite weak. By contrast,

the impact is quite significant in our study. To explain the difference, we first note that



considering discrete injection points cannot be made accurately within the framework of the

continuum approach. More importantly, the relevance of traditional continuum approach for

studying the considered problem is highly questionable. This is discussed in Rebai and Prat

(2009). First, there is an obvious lack of length scale separation as regards the coarse layer

(only five pore sizes thick in our example). Second, it is well known that the capillarity-

dominated regime considered in the present work and which is also supposed to prevail for

the case studied by Nam and Kaviany (2003) is a regime that cannot be described properly

with the traditional continuum two-phase flow model (e.g., Rebai and Prat 2009; Lenormand

et al. 1988). This is an example of thin porous medium specificity; i.e., traditional concepts

can be inappropriate or at best can lead to very approximate results.

6.3 Applications to PEMFC

This section can be skipped by readers not familiar with PEMFC. In the context of PEMFC,

the coarse layer corresponds to the gas diffusion layer (GDL), the fine layer to the microporous

layer (MPL). First, it can be noted that we considered a scenario in which liquid water forms

in the catalyst layer (the catalyst layer (CC) is a fine porous layer adjacent to the MPL where

the electrochemical reaction takes place and water is produced). Although this scenario has

been considered in many papers, it is now widely admitted that liquid–vapor-phase change

phenomena, e.g., evaporation and condensation, are also a key factor in this system (e.g.,

Straubhaar et al. 2015 and references therein). If one accepts that liquid water enters the

MPL–GDL assembly from the CC, then the consideration of multiple independent injection

points at the inlet comes from the fact that water formed in different points within the volume

of the CC (e.g., Ceballos and Prat 2010; El Hannach et al. 2011, 2012 for more details).

Experimental studies have shown that the presence of the MPL had a beneficial impact on

the fuel cell performance (e.g., Qi and Kaufman 2002; Chen et al. 2004; Kang et al. 2010).

The present study provides a piece of explanation in relation with the general problem of the

water management in PEMFC. In brief, adding the MPL improves the oxygen access to the

CC and reduces the risk of flooding of the GDL.

However, the situation in a fuel cell is more complex than considered in the present study.

For example, the GDL outlet surface is not entirely free. A significant fraction of this surface

is occluded by the ribs of the bipolar plate. The GDL is compressed differently below the rib

and below the channel. We considered isotropic networks, whereas the GDL is an anisotropic

medium. Also, considering a thick transition region (as discussed in Sect. 5.1) would be more

realistic. The GDL is often considered as only partially hydrophobic (e.g., Ceballos and Prat

2013), whereas we have assumed a perfectly hydrophobic assembly. Cracks are often present

in the MPL contrary to what we assumed. In brief, several aspects need to be incorporated in

the modeling for extending the results presented in the present paper. All these might explain

why the optimum fine layer was predicted to be 250µm in our study, which is very thick for

fuel cells, which have GDL+MPLs in that range. Nevertheless, we believe that the present

work well illustrates one of the possible beneficial impacts of the MPL–GDL assembly,

namely its impact on the gas access, compared to the situation where the MPL is not present.

7 Conclusion

Thin porous media represent a special class of porous media for which classical models based

on the traditional continuum approach to porous media cannot be adapted owing to the lack

of length scale separation over the thickness.



As an illustrative example, we considered a situation where the thin porous medium was

formed by the assembly of a fine layer and a coarse layer. We studied a situation, inspired

from a situation considered in relation with the water management problem in PEMFC, where

liquid water was injected at the assembly inlet and the gas present at the outlet must percolate

through the assembly.

It was first shown how laws or relationships governing different variables of interest could

be established from pore network simulations over single layers. Then, these relationships

were used to study the impact of fine layer thickness on gas diffusion transport properties of

the assembly.

It was showed that the consideration of the fine layer had a beneficial impact on gas

transport and that there exists a narrow range of fine layer optimal thicknesses. Furthermore,

the optimal thicknesses were found to be only slightly sensitive to the fraction of injection

bonds at the fine layer inlet.

Although the main result, i.e., the existence of a range of optimal thicknesses, is expected

to be quite general, several points deserve further investigations. For example, the coarse layer

thickness was not varied. It is likely that the optimal thickness depends on the coarse layer

thickness. More importantly, the data for large networks were extrapolated from data on small

networks. Extensive pore network simulations on larger networks than the ones considered

in previous works are desirable to confirm the validity of the extrapolation methods proposed

in the present work.

A perhaps still more interesting issue in the context of thin porous media would be to

analyze more properly the impact of the transition region between the fine layer and the

coarse layer. Here we simply assume a sharp interface between the two layers. In many thin

systems, the consideration of this interface as a transition region of a certain thickness having

specific properties seems more appropriate.
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