
HAL Id: hal-01435977
https://hal.science/hal-01435977v1

Submitted on 16 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Deductive Approach for Fault Localization in ATL
Model Transformations

Zheng Cheng, Massimo Tisi

To cite this version:
Zheng Cheng, Massimo Tisi. A Deductive Approach for Fault Localization in ATL Model Transfor-
mations. FASE 2017 : 20th International Conference on Fundamental Approaches to Software Engi-
neering, Apr 2017, Uppsala, Sweden. pp.300-317, �10.1007/978-3-662-54494-5_17�. �hal-01435977�

https://hal.science/hal-01435977v1
https://hal.archives-ouvertes.fr

A Deductive Approach for Fault Localization in ATL Model
Transformations

Zheng Cheng and Massimo Tisi

AtlanMod team (Inria, IMT Atlantique, LS2N), France
Email: {zheng.cheng, massimo.tisi}@inria.fr

Abstract. In model-driven engineering, correct model transformation is essential for reliably
producing the artifacts that drive software development. While the correctness of a model
transformation can be specified and checked via contracts, debugging unverified contracts
imposes a heavy cognitive load on transformation developers. To improve this situation, we
present an automatic fault localization approach, based on natural deduction, for the ATL
model transformation language. We start by designing sound natural deduction rules for the
ATL language. Then, we propose an automated proof strategy that applies the designed
deduction rules on the postconditions of the model transformation to generate sub-goals:
successfully proving the sub-goals implies the satisfaction of the postconditions. When a sub-
goal is not verified, we present the user with sliced ATL model transformation and predicates
deduced from the postcondition as debugging clues. We provide an automated tool that
implements this process. We evaluate its practical applicability using mutation analysis, and
identify its limitations.

1 Introduction

Model-driven engineering (MDE), i.e. software engineering centered on software models and
their transformation, is widely recognized as an effective way to manage the complexity
of software development. One of the most widely used languages for model transformation
(MT) is the AtlanMod Transformation Language (ATL) [18]. Like several other MT lan-
guages, ATL has a relational nature, i.e. its core aspect is a set of so-called matched rules,
that describe the mappings between the elements in the source and target model.

With the increasing complexity of ATL MTs (e.g., in automotive industry [25], medical
data processing [29], aviation [6]), it is urgent to develop techniques and tools that prevent
incorrect MTs from generating faulty models. The effects of such faulty models could be
unpredictably propagated into subsequent MDE steps, e.g. code generation. Therefore, the
correctness of ATL is our major concern in this research. Typically correctness is specified
by MT developers using contracts [9–13, 19, 21, 23]. Contracts are pre/postconditions that
express under which condition the MT is considered to be correct. In the context of MDE,
contracts are usually expressed in OCL [22] for its declarative and logical nature.

In [12], Cheng et al. developed the VeriATL verification system to deductively verify
the correctness of ATL transformations w.r.t. given contracts. VeriATL automatically gen-
erates the axiomatic semantics of a given ATL transformation in the Boogie intermediate

1

verification language [5], combined with a formal encoding of EMF metamodels [26] and
OCL contracts. The Z3 automatic theorem prover [20] is used by Boogie to verify the
correctness of the ATL transformation.

However, when a contract on the MT is not verified, current verification systems like
VeriATL do not report useful feedback to help the transformation developers fix the fault.
Consequently, manually examining the full MT and its contracts and reasoning on the
implicit rule interactions become a time-consuming routine to debug MTs.

Because of the advancement in computer science in the last couple of decades (e.g.
in the performance of satisfiability modulo theory - SMT - solvers), many researchers are
interested in developing techniques that can partially or fully automate the localization of
faults in software (we refer the reader to [24,31] for an overview).

In this work, we argue that the characteristics of the considered programming language
have a significant impact on the precision and automation of the fault localization. More
precisely, we think that in MT languages like ATL, automated fault localization can be
more precise because of the available static trace information, i.e. inferred information
among types of generated target elements and the rules that potentially generate these
types. This idea has recently been introduced in [8] using a conservative and syntactical
approach. However, we believe that a deductive approach can fully exploit its potential.

Our deductive approach is based on a set of sound natural deduction rules. It includes
4 rules for the ATL language based on the concept of static trace information, and 16
ordinary natural deduction rules for propositional and predicate logic [16]. Then, we pro-
pose an automated proof strategy that applies these deduction rules on the input OCL
postcondition to generate sub-goals. Each sub-goal contains a list of hypotheses deduced
from the input postcondition, and a sub-case of the input postcondition to be verified.
Successfully proving the sub-goals soundly implies the satisfaction of the input OCL post-
condition. When a sub-goal is not verified, we exploit its hypotheses in two ways to help the
user pinpoint the fault: (a) slicing the ATL MT into a simpler transformation context; (b)
providing debugging clues, deduced from the input postcondition to alleviate the cognitive
load for dealing with unverified sub-cases. Our fault localization approach has been imple-
mented and integrated with VeriATL. We evaluate our approach with mutation analysis.
The result shows that: (a) the guilty constructs are presented in the slice; (b) deduced clues
assist developers in various debugging tasks (e.g. the elaboration of a counter-example);
(c) the number of sub-goals that need to be examined to pinpoint a fault is usually small.

Paper organization. We motivate our work by a sample problem in Section 2. Section 3
illustrates our fault localization approach in detail. Evaluation is presented in Section 4,
followed by discussion of the limitations identified in our approach. Section 5 compares our
work with related research, and Section 6 draws conclusions and lines for future work.

2

2 Motivating Example

As our running example we use the HSM2FSM MT. HSM2FSM transforms hierarchical
state machine (HSM) models to flattened state machine (FSM) models. Both models
conform to the same metamodel (Fig. 1). However, classifiers in the two metamodels are
distinguished by the HSM and FSM prefix. Specifically, a named StateMachine contains
a set of labelled Transitions and named AbstractStates. Each AbstractState has a concrete
type, which is either RegularState, InitialState or CompositeState. A Transition links a
source to a target AbstractState. Moreover, CompositeStates are only allowed in the models
of HSM, and optionally contain a set of AbstractStates.

StateMachine
name: String

name: String

Transition
label: String

InitialState

RegularState

CompositeStatestateMachine

transitions

stateMachine

states
source

target

compositeState

states

AbstractState

* * *

Fig. 1. The hierarchical and flattened state machine metamodel

2.1 Specifying OCL Contracts

We consider a contract-based development scenario where the developer first specifies cor-
rectness conditions for the to-be-developed ATL transformation by using OCL contracts.
Let us first consider the contracts shown in Listing 1.1. The precondition Pre1 specifies
that in the input model, each Transition has at least one source. The postcondition Post1
specifies that in the output model, each Transition has at least one source.

1 context HSM!Transition inv Pre1:
2 HSM!Transition.allInstances()−>forAll(t | not t.source.oclIsUndefined())
3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 context FSM!Transition inv Post1:
5 FSM!Transition.allInstances()−>forAll(t | not t.source.oclIsUndefined())

Listing 1.1. The OCL contracts for HSM and FSM

2.2 Developing the ATL Transformation

Then, the developer implements the ATL transformation HSM2FSM (a snippet is shown
in Listing 1.21). The transformation is defined via a list of ATL matched rules in a mapping
style. The first rule maps each StateMachine element to the output model (SM2SM). Then,
we have two rules to transform AbstractStates: regular states are preserved (RS2RS), initial
states are transformed into regular states when they are within a composite state (IS2RS).
Notice here that initial states are deliberately transformed partially to demonstrate our

1 Our HSM2FSM transformation is adapted from [9]. The full version can be accessed at: https://goo.
gl/MbwiJC.

3

https://goo.gl/MbwiJC
https://goo.gl/MbwiJC

1 module HSM2FSM;
2 create OUT : FSM from IN : HSM;
3

4 rule SM2SM { from sm1 : HSM!StateMachine to sm2 : FSM!StateMachine (name <− sm1.name) }
5

6 rule RS2RS { from rs1 : HSM!RegularState
7 to rs2 : FSM!RegularState (stateMachine <− rs1.stateMachine, name <− rs1.name) }
8

9 rule IS2RS { from is1 : HSM!InitialState (not is1.compositeState.oclIsUndefined())
10 to rs2 : FSM!RegularState (stateMachine <− is1.stateMachine, name <− is1.name) }
11

12 −− mapping each transition, that between two noncomposite states, of the source model into the target model.
13 rule T2TA { ... }
14

15 −− mapping each transition, whose source is a composite state, of the source model into the target model.
16 rule T2TB { ... }
17

18 rule T2TC {
19 from t1 : HSM!Transition, src : HSM!AbstractState, trg : HSM!CompositeState, c : HSM!InitialState
20 (t1.source = src and t1.target = trg and c.compositeState = trg
21 and not src.oclIsTypeOf(HSM!CompositeState))
22 to t2 : FSM!Transition
23 (label <− t1.label, stateMachine <− t1.stateMachine, source <− src, target <− c }

Listing 1.2. Snippet of the HSM2FSM model transformation in ATL

problem, i.e. we miss a rule that specifies how to transform initial states when they are
not within a composite state. The remaining three rules are responsible for mapping the
Transitions of the input state machine.

Each ATL matched rule has a from section where the source pattern to be matched in
the source model is specified. An optional OCL constraint may be added as the guard, and
a rule is applicable only if the guard evaluates to true on the source pattern. Each rule also
has a to section which specifies the elements to be created in the target model. The rule
initializes the attributes/associations of a generated target element via the binding operator
(<-). An important feature of ATL is the use of an implicit resolution algorithm during the
target property initialization. Here we illustrate the algorithm by an example: 1) considering
the binding stateMachine <- rs1.stateMachine in the RS2RS rule (line 7 of Listing 1.2),
its right-hand side is evaluated to be a source element of type HSM!StateMachine; 2)
the resolution algorithm then resolves such source element to its corresponding target
element of type FSM!StateMachine (generated by the SM2SM rule); 3) the resolved result
is assigned to the left-hand side of the binding. While not strictly needed for understanding
this paper, we refer the reader to [18] for a full description of the ATL language.

2.3 Formally Verifying the ATL Transformation

The source and target EMF metamodels and OCL contracts combined with the developed
ATL transformation form a Hoare triple which can be used to verify the correctness of
the ATL transformation, i.e. MM, Pre, Exec ` Post. The Hoare triple semantically means
that, assuming the axiomatic semantics of the involved EMF metamodels (MM) and OCL

4

1 context HSM!Transition inv Pre1: ...
2

3 rule RS2RS { ... }
4 rule IS2RS { ... }
5 rule T2TC { ... }
6

7 context FSM!Transition inv Post1 sub:
8 ∗hypothesis∗ var t0
9 ∗hypothesis∗ FSM!Transition.allInstances()−>includes(t0)

10 ∗hypothesis∗ genBy(t0,T2TC)
11 ∗hypothesis∗ t0.source.oclIsUndefined()
12 ∗hypothesis∗ not (genBy(t0.source,RS2RS) or genBy(t0.source,IS2RS))
13 ∗goal∗ false

Listing 1.3. The problematic transformation scenario of the HSM2FSM transformation w.r.t. Post1

preconditions (Pre), by executing the developed ATL transformation (Exec), the specified
OCL postcondition has to hold (Post).

In previous work, Cheng et al. have developed the VeriATL verification system that
allows such Hoare triples to be soundly verified [12]. Specifically, the VeriATL system de-
scribes in Boogie what correctness means for the ATL language in terms of structural Hoare
triples. Then, VeriATL delegates the task of interacting with Z3 for proving these Hoare
triples to Boogie. The axiomatic semantics of EMF metamodels and the OCL language
are encoded as Boogie libraries in VeriATL. These libraries can be reused in the verifier
designs of MT languages other than ATL.

In our example, VeriATL successfully reports that the OCL postcondition Post1 is not
verified by the MT in Listing 1.2. This means that the transformation does not guarantee
that each Transition has at least one source in the output model. Without any capability
of fault localization, the developer then needs to manually inspect the full transformation
and contracts to understand that the transformation is incorrect because of the absence of
an ATL rule to transform InitialStates that are not within a CompositeState.

2.4 Our Goal: Localizing the Fault

In our running example, our proposed fault localization approach presents the user with two
problematic transformation scenarios. One of them is shown in Listing 1.3. The scenario
consists of the input preconditions (abbreviated at line 1), a slice of the transformation
(abbreviated at lines 3 - 5), and a sub-goal derived from the input postcondition. The
sub-goal contains a list of hypotheses (lines 7 - 12) with a conclusion (line 13).

The scenario in Listing 1.3 contains the following information, that we believe to be
valuable in identifying and fixing the fault:

– Transformation slicing. The only relevant rules for the fault captured by this problem-
atic transformation scenario are RS2RS, IS2RS and T2TC (lines 3 - 5).

– Debugging clues. The error occurs when a transition t0 is generated by the rule T2TC
(lines 8 - 10), and when the source state of the transition is not generated (line 11). In
addition, the absence of the source for t0 is due to the fact that none of the RS2RS
and IS2RS rules is invoked to generate it (line 12).

5

From this information, the user could find a counter-example in the source models that
falsifies Post1 (shown in the top of Fig. 2): a transition tc between an initial state ic (which
is not within a composite state) and a composite state cc, where cc composites another
initial state ic

′. This counter-example matches the source pattern of the T2TC rule (as
shown in the bottom of Fig. 2). However, when the T2TC rule tries to initialize the source
of the generated transition t2 (line 23 in Listing 1.2), ic cannot be resolved because there is
no rule to match it. In this case, ic (of type HSM!InitialState)) is directly used to initialize
the source of t2 (t2.source is expected to be a sub-type of FSM!AbstractState). This causes
an exception of type mismatch, thus falsifying Post1. The other problematic transformation
scenario pinpoints the same fault, showing that Post1 is not verified by the MT also when
t0 is generated by T2TA.

t : Transition c : CompositeStatei : InitialStatec c c
source target

T2TC

ctrgt1src

Source HSM Model

HSM2FSM Transformation

i ' : InitialState

compositeState

c

Fig. 2. Counter-example derived from Listing 1.3 that falsify Post1

In the next section, we describe how we automatically generate problematic transfor-
mation scenarios like the one shown in Listing 1.3.

3 Overview of Fault Localization for ATL by Natural Deduction and
Program Slicing

The flowchart in Fig. 3 shows a bird’s eye view of our approach to enable fault localization
for VeriATL. The process takes the involved metamodels, all the OCL preconditions, the
ATL transformation and one of the OCL postconditions as inputs. We require all inputs to
be syntactically correct. If VeriATL successfully verifies the input ATL transformation, we
directly report a confirmation message to indicate its correctness (w.r.t. the given postcon-
dition) and the process ends. Otherwise, we generate a set of problematic transformation
scenarios (as the one shown in Listing 1.3), and a proof tree to the transformation devel-
oper.

To generate problematic transformation scenarios, we first perform a systematic ap-
proach to generate sub-goals for the input OCL postcondition. Our approach is based on
a set of sound natural deduction rules. The set contains 16 rules for propositional and
predicate logic such as introduction/elimination rules for ∧ and ∨ [16], but also 4 rules

6

Fig. 3. Overview of providing fault localization for VeriATL

specifically designed for ATL expressions (e.g. rewriting single-valued navigation expres-
sion).

Then, we design an automated proof strategy that applies the designed natural de-
duction rules on the input OCL postcondition. Executing our proof strategy generates a
proof tree. The non-leaf nodes are intermediate results of deduction rule applications. The
leafs in the tree are the sub-goals to prove. Each sub-goal consists of a list of hypotheses
and a conclusion to be verified. The aim of our automated proof strategy is to simplify
the original postcondition as much as possible to obtain a set of sub-conclusions to prove.
As a by-product, we also deduce new hypotheses from the input postcondition and the
transformation as debugging clues.

Next, we use the trace information in the hypotheses of each sub-goal to slice the input
MT into simpler transformation contexts. We then form a new Hoare triple for each sub-goal
consisting of the semantics of metamodels, input OCL preconditions, sliced transformation
context, its hypotheses and its conclusion.

We send these new Hoare triples to the VeriATL verification system to check. Notice
that successfully proving these new Hoare triples implies the satisfaction of the input OCL
postcondition. If any of these new Hoare triples is not verified by VeriATL, the input OCL
preconditions, the corresponding sliced transformation context, hypotheses and conclusion
of the Hoare triple are presented to the user as a problematic transformation scenario for
fault localization. The Hoare triples that were automatically proved by VeriATL are pruned
away, and are not presented to the transformation developer. This deductive verification
step by VeriATL makes the whole process practical, since the user is presented with a
limited number of meaningful scenarios.

Then, the transformation developer consults the generated problematic transformation
scenarios and the proof tree to debug the ATL transformation. If modifications are made
on the inputs to fix the bug, the generation of sub-goals needs to start over. The whole
process keeps iterating until the input ATL transformation is correct w.r.t. the input OCL
postcondition.

7

3.1 Natural Deduction Rules for ATL

Our approach relies on 20 natural deduction rules (7 introduction rules and 13 elimina-
tion rules). The 4 elimination rules (abbreviated by Xe) that specifically involve ATL are
shown in Fig. 4. The other rules are common natural deduction rules for propositional and
predicate logic [16]. Regarding the notations in our natural deduction rules:

– Each rule has a list of hypotheses and a conclusion, separated by a line. We use standard
notation for typing (:) and set operations.

– Some special notations in the rules are T for a type, MMT for the target metamodel,
Rn for a rule n in the input ATL transformation, x.a for a navigation expression, and
i for a fresh variable / model element. In addition, we introduce the following auxiliary
functions: cl returns the classifier types of the given metamodel, trace returns the ATL
rules that generate the input type (i.e. the static trace information)2, genBy(i,R) is
a predicate to indicate that a model element i is generated by the rule R, unDef(i)
abbreviates i.oclIsUndefined(), and All(T) abbreviates T.allInstances().

x.a : T T ∈ cl(MMT)

x.a ∈ All(T) ∨ unDef(x.a)
Tpe1

x.a : Seq T T ∈ cl(MMT)

(|x.a| > 0 ∧ ∀i · (i ∈ x.a ⇒ i ∈ All(T) ∨ unDef(i))) ∨ |x.a| = 0
Tpe2

T ∈ cl(MMT) trace(T) = {R1, ..., Rn} i ∈ All(T)

genBy(i, R1) ∨ ... ∨ genBy(i, Rn)
Tre1

T ∈ cl(MMT) trace(T) = {R1, ..., Rn} i : T unDef(i)

¬(genBy(i, R1) ∨ ... ∨ genBy(i, Rn))
Tre2

Fig. 4. Natural deduction rules that specific to ATL

Some explanation is in order for the natural deduction rules that are specific to ATL:

– First, we have two type elimination rules (TPe1, TPe2). TPe1 states that every single-
valued navigation expression of the type T in the target metamodel is either a member
of all generated instances of type T or undefined. TPe2 states that the cardinality of
every multi-valued navigation expression of the type T in the target metamodel is either
greater to zero (and every element i in the multi-valued navigation expression is either
a member of all generated instances of type T or undefined) or equal to zero.

– Second, we have 2 elimination rules for trace (TRe1, TRe2). These rules state that, given
that the rules R1,...,Rn in the input ATL transformation are responsible to create model
elements of type T in the target metamodel, we may rightfully conclude that:
• (TRe1): every created element i of type T is generated by one of the rules R1,...,Rn.
• (TRe2): every undefined element i of type T is not generated by any of the rules
R1,...,Rn.

Soundness of natural deduction rules. The soundness of our natural deduction
rules is based on the operational semantics of the ATL language. Specifically, the soundness

2 In practice, we fill in the trace function by examining the output element types of each ATL rule, i.e.
the to section of each rule.

8

for type elimination rules TPe1 and TPe2 is straightforward. We prove their soundness by
enumerating the possible states of initialized navigation expressions for target elements.
Specifically, assuming that the state of a navigation expression x.a is initialized in the form
x.a<-exp where x.a is of a non-primitive type T :

– If exp is not a collection type and cannot be resolved (i.e. exp cannot match the source
pattern of any ATL rules), then x.a is undefined3.

– If exp is not a collection type and can be resolved, then the generated target element
of the ATL rule that matches exp is assigned to x.a. Consequently, x.a could be either
a member of All(T) (when the resolution result is of type T) or undefined (when it is
not).

– If exp is of collection type, then all of the elements in exp are resolved individually,
and the resolved results are put together into a pre-allocated collection col, and col is
assigned to x.a.

The first two cases explain the two possible states of every single-valued navigation ex-
pressions (TPe1). The third case explains the two possible states of every multi-valued
navigation expressions (TPe2).

The soundness of trace elimination rules TRe1 is based on the surjectivity between each
ATL rule and the type of its created target elements [9]: elements in the target metamodel
exist if they have been created by an ATL rule since standard ATL transformations are
always executed on an initially empty target model. When a type can be generated by
executing more than one rule, then a disjunction considering all these possibilities is made
for every generated elements of this type.

About the soundness of the TRe2 rule, we observe that if a target element of type T is
undefined, then clearly it does not belong to All(T). In addition, the operational semantics
for the ATL language specifies that if a rule R is specified to generate elements of type
T, then every target elements of type T generated by that rule belong to All(T) (i.e.
R ∈ trace(T) ⇒ ∀i · (genBy(i, R) ⇒ i ∈ All(T))) [12]. Thus, TRe2 is sound as a logical
consequence of the operational semantics for the ATL language (i.e. R ∈ trace(T) ⇒
∀i · (i /∈ All(T)⇒ ¬genBy(i, R))).

3.2 Automated Proof Strategy

A proof strategy is a sequence of proof steps. Each step defines the consequences of applying
a natural deduction rule on a proof tree. A proof tree consists of a set of nodes. Each
node is constructed by a set of OCL expressions as hypotheses, an OCL expression as the
conclusion, and another node as its parents node.

3 In fact, the value of exp is assigned to x.a because of resolution failure. This causes a type mismatch
exception and results in the value of x.a becoming undefined (we consider ATL transformations in non-
refinement mode where the source and target metamodels are different).

9

Next, we illustrate a proof strategy (Algorithm 1) that automatically applies our natural
deduction rules on the input OCL postcondition. The goal is to automate the derivation of
information from the postcondition as hypotheses, and simplify the postcondition as much
as possible.

Algorithm 1 An automated proof strategy for VeriATL
1: Tree ← {createNode({}, Post, null)}
2: do
3: leafs ← size(getLeafs(Tree))
4: for each node leaf ∈ getLeafs(Tree) do
5: Tree ← intro(leaf) ∪ Tree
6: end for
7: while leafs 6= size(getLeafs(Tree))
8: do
9: leafs ← size(getLeafs(Tree))

10: for each node leaf ∈ getLeafs(Tree) do
11: Tree ← elimin(leaf) ∪ Tree
12: end for
13: while leafs 6= size(getLeafs(Tree))

Our proof strategy takes one argument which is one of the input postconditions. Then,
it initializes the proof tree by constructing a new root node of the input postcondition as
conclusion and no hypotheses and no parent node (line 1). Next, our proof strategy takes
two sequences of proof steps. The first sequence applies the introduction rules on the leaf
nodes of the proof tree to generate new leafs (lines 2 - 7). It terminates when no new leafs
are yield (line 7). The second sequence of steps applies the elimination rules on the leaf
nodes of the proof tree (lines 8 - 13). We only apply type elimination rules on a leaf when:
(a) a free variable is in its hypotheses, and (b) a navigation expression of the free variable is
referred by its hypotheses. Furthermore, to ensure termination, we enforce that if applying
a rule on a node does not yield new descendants (i.e. whose hypotheses or conclusion are
different from their parent), then we do not attach new nodes to the proof tree.

3.3 Transformation Slicing

Executing our proof strategy generates a proof tree. The leafs in the tree are the sub-
goals to prove by VeriATL. Next, we use the rules referred by the genBy predicates in the
hypotheses of each sub-goal to slice the input MT into a simpler transformation context.
We then form a new Hoare triple for each sub-goal consisting of the axiomatic semantics
of metamodels, input OCL preconditions, sliced transformation context (Execsliced), its
hypotheses and its conclusion, i.e. MM, Pre, Execsliced, Hypotheses ` Conclusion.

If any of these new Hoare triples is not verified by VeriATL, the input OCL precondi-
tions, the corresponding sliced transformation context, hypotheses and conclusion of the

10

Hoare triple are constructed as a problematic transformation scenario to report back to
the user for fault localization (as shown in Listing 1.3).

Our transformation slicing is based on the independence among ATL rules [28]: each
ATL rule is exclusively responsible for the generation of its output elements. Hence, when
a sub-goal specifies a condition that a set of target elements should satisfy, the rules that
do not generate these elements have no effects on the sub-goal. These rules can hence be
safely sliced away.

4 Evaluation

In this section, we evaluate the practical feasibility and performance of our fault localization
approach for the ATL language. The section concludes with a discussion of the obtained
results and lessons learnt.

4.1 Research questions

We formulate two research questions to evaluate our fault localization approach:

(RQ1) Can our approach correctly pinpoint the faults in the given MT?

(RQ2) Can our approach efficiently pinpoint the faults in the given MT?

4.2 Evaluation Setup

Our evaluation uses the VeriATL verification system [12], which is based on the Boogie
verifier (version 2.2) and Z3 (version 4.3). The evaluation is performed on an Intel 3 GHz
machine with 8 GB of memory running the Windows operating system. VeriATL encodes
the axiomatic semantics of the ATL language (version 3.7). The automated proof strategy
and its corresponding natural deduction rules are currently implemented in Java.

To answer our research questions, we use the HSM2FSM transformation as our case
study, and apply mutation analysis [17] to systematically inject faults. In particular, we
specify 14 preconditions and 5 postconditions on the original HSM transformation from [9].
Then, we inject faults by applying a list of mutation operators defined in [8] on the transfor-
mation. We apply mutations only to the transformation because we focus on contract-based
development, where the contract guides the development of the transformation. Our mu-
tants are proved against the specified postconditions, and we apply our fault localization
approach in case of unverified postconditions. We kindly refer to our online repository for
the complete artifacts used in our evaluation [1].

11

4.3 Evaluation Results

Table 1 summarizes the evaluation results for our fault localization approach on the chosen
case study. The first column lists the identity of the mutants4. The second and third columns
record the unverified OCL postconditions and their corresponding verification time. The
fourth, fifth, sixth and seventh columns record information of verifying sub-goals, i.e. the
number of unverified sub-goals / total number of sub-goals (4th), average verification time
of sub-goals (5th), the maximum verification time among sub-goals (6th), total verification
of sub-goals (7th) respectively. The last column records whether the faulty lines (Lfaulty,
i.e. the lines that the mutation operators operated on) are presented in the problematic
transformation scenarios (PTS) of unverified sub-goals.

Table 1. Evaluation metrics for the HSM2FSM case study

Unveri. Post. Sub-goals
Lfaulty ∈ PTS

ID Veri. Time(ms) Unveri. / Total Avg. Time (ms) Max Time (ms) Total Time (ms)

MT2 #5 3116 3 / 4 1616 1644 6464 True

DB1 #5 2934 1 / 1 1546 1546 1546 -

MB6 #4 3239 1 / 12 1764 2550 21168 True

AF2 #4 3409 2 / 12 1793 2552 21516 True

MF6
#2 3779 0 / 6 1777 2093 10662 N/A
#4 3790 1 / 12 1774 2549 21288 True

DR1
#1 2161 3 / 6 1547 1589 9282 -
#2 2230 3 / 6 1642 1780 9852 -

AR
#1 3890 1 / 8 1612 1812 12896 True
#3 4057 6 / 16 1769 1920 28304 True

First, we confirm that there is no inconclusive verification results of the generated sub-
goals, i.e. if VeriATL reports that the verification result of a sub-goal is unverified, then it
presents a fault in the transformation. Our confirmation is based on the manual inspection
of each unverified sub-goal to see whether there is a counter-example to falsify the sub-goal.
This supports the correctness of our fault localization approach. We find that the deduced
hypotheses of the sub-goals are useful for the elaboration of a counter-example (e.g. when
they imply that the fault is caused by missing code as the case in Listing 1.3).

Second, as we inject faults by mutation, identifying whether the faulty line is presented
in the problematic transformation scenarios of unverified sub-goals is also a strong indi-
cation of the correctness of our approach. Shown by the last column, all cases satisfies
the faulty lines inclusion criteria. 3 out 10 cases are special cases (dashed cells) where the
faulty lines are deleted by the mutation operator (thus there are no faulty lines). In the
case of MF6#2, there are no problematic transformation scenarios generated since all the

4 The naming convention for mutants are mutation operator Add(A) / Del(D) / Modify(M), followed by
the mutation operand Rule(R) / Filter(F) / TargetElement(T) / Binding(B), followed by the position
of the operand in the original transformation setting. For example, MB1 stands for the mutant which
modifies the binding in the first rule.

12

sub-goals are verified. By inspection, we report that our approach improves the complete-
ness of VeriATL. That is the postcondition (#2) is correct under MF6 but unable to be
verified by VeriATL, whereas all its generated sub-goals are verified.

Third, shown by the fourth column, in 5 out of 10 cases, the developer is presented with
at most one problematic transformation scenario to pinpoint the fault. This positively
supports the efficiency of our approach. The other 5 cases produce more sub-goals to
examine. However, we find that in these cases each unverified sub-goal gives an unique
phenomenon of the fault, which we believe is valuable to fix the bug. We also report that
in rare cases more than one sub-goal could point to the same phenomenon of the fault.
This is because the hypotheses of these sub-goals contain a semantically equivalent set of
genBy predicates. Although they are easy to identify, we would like to investigate how to
systematically filter these cases out in the future.

Fourth, from the third and fifth columns, we can see that each of the sub-goals is faster
to verify than its corresponding postcondition by a factor of about 2. This is because we sent
a simpler task than the input postcondition to verify, e.g. because of our transformation
slicing, the Hoare triple for each sub-goal encodes a simpler interaction of transformation
rules compared to the Hoare triple for its corresponding postcondition. From the third and
sixth columns, we can further report that all sub-goals are verified in less time than their
corresponding postcondition.

4.4 Limitations
Language coverage. In this work we consider a core subset of the ATL and OCL lan-
guages: (a) We consider the declarative aspect of ATL (matched rules) in non-refining
mode, many-to-one mappings of (possibly abstract) classifiers with the default resolution
algorithm of ATL. Non-recursive ATL helpers can be easily supported by inlining, and
many-to-many mappings can be supported by extending our Boogie code generator. We
also plan to investigate other features of ATL (e.g. lazy rules) to make our approach more
general. (b) We support first-order OCL contracts and we plan to study more complex
contracts in future work.
Completeness of proof strategy. We define the completeness of a proof strategy mean-
ing that every elements of target types referred by each sub-goal and every rule that may
generate them are correctly identified after applying the proof strategy. If not detected,
an incomplete proof strategy could cause our transformation slicing to erroneously slice
away the rules that the sub-goal might depend on. By manual inspection, we confirm the
completeness of our proof strategy in our case study. However, our proof strategy is in
generally incomplete because: (a) we might lack deduction rules to continue the derivation
of the proof tree; (b) our current proof strategy lacks of a backtracking mechanism when it
chooses an unsuitable deduction rule to apply. Our current solution is detecting incomplete
cases and reporting them to the user. In practice we check whether every elements of target
types referred by each sub-goal are accompanied by a genBy predicate (this indicates full
derivation). In future, we plan to improve the completeness of our approach by adding
other natural deduction rules for ATL and smarter automated proof strategies.

13

Completeness of verification. Although we confirmed that there are no inconclusive
sub-goals in our evaluation, our approach could report inconclusive sub-goals in general
due to the underlying SMT solver. We hope the simplicity offered by the sub-goals would
facilitate the user in making the distinction between incorrect and inconclusive sub-goals. In
addition, if an input postcondition is inconclusive, our approach can help users to eliminate
verified sub-goals to find the source of its inconclusiveness.

Threats to validity of evaluation. We take a popular assumption in the fault localiza-
tion community that multiple faults perform independently [31]. Thus, such assumption
allows us to evaluate our fault localization approach in a one-postcondition-at-a-time man-
ner. However, we cannot guarantee that this is the case for realistic and industrial MTs.
We think classifying contracts into related groups could improve these situations.

Scalability. The main scalability issue of our approach is that a complex OCL postcon-
dition (e.g. an OCL expression with deeply nested quantifiers) can potentially generate a
big number of sub-goals and corresponding problematic transformation scenarios. Verify-
ing and displaying all of them becomes impractical for transformation developers. Since
sub-goals are meant to be manually examined by the user, a reasonable solution is allowing
the user to specify a bound for the maximum number of unverified cases to generate. To
improve scalability we are also investigating the possibility of verifying intermediate nodes
in the proof tree, and stop applying deduction rules if they are verified.

Usability. Currently, our approach relies on the experience of transformation developer
to interpret the deduced debugging clues. We think combining debugging clues with model
finders would further help in debugging MT, e.g. by automatically generating the counter-
examples [14].

5 Related Work

There is a large body of work on the topic of ensuring MT correctness [2]. To our knowledge
our proposal is the first applying natural deduction with program slicing to increase the
precision of fault localization in MT.

Büttner et al. use Z3 to verify a declarative subset of the ATL and OCL contracts [9].
Their result is novel for providing minimal axioms that can verify the given OCL contracts.
To understand the root of the unverified contracts, they demonstrate the UML2Alloy tool
that draws on the Alloy model finder to generate counter examples [10]. However, their tool
does not guarantee that the newly generated counter example gives additional information
than the previous ones. Oakes et al. statically verify ATL MTs by symbolic execution using
DSLTrans [21]. This approach enumerates all the possible states of the ATL transformation.
If a rule is the root of a fault, all the states that involve the rule are reported.

Sánchez Cuadrado et al. present a static approach to uncover various typing errors in
ATL MTs [14], and use the USE constraint solver to compute an input model as a witness
for each error. Compared to their work, we focus on contract errors, and provide the user
with sliced MTs and modularized contracts to debug the incorrect MTs.

14

Researchers have proposed several techniques that can partially or fully automate the
localization of faults in software [24, 31]. Program slicing refers to detect a set of program
statements which could affect the values of interest [27,30], which is used for fault localiza-
tion of general programming languages. Few works have adapted this idea to localize faults
in MTs. Aranega et al. define a framework to record the runtime traces between rules and
the target elements these rules generated [4]. When a target element is generated with an
unexpected value, the transformation slices generated from the runtime traces are used for
fault localization. While Aranega et al. focus on dynamic slicing, our work focuses on static
slicing which does not require test suites to exercise the transformation.

The most similar approach to ours is the work of Burgueño et al. on syntactically
calculating the intersection constructs used by the rules and contracts [8]. W.r.t. their
approach we aim at improving the localization precision by considering also semantic rela-
tions between rules and contracts. This allows us to produce smaller slices by semantically
eliminating unrelated rules from each scenario. Moreover, we provide debugging clues to
help the user better understand why the sliced transformation causing the fault. However,
their work considers a larger set of ATL. We believe that the two approaches complement
each other and integrating them is useful and necessary.

We implement our approach in Java. However, we believe that integrating our approach
to interactive theorem provers/framework such as Coq [7] and Rodin [3] could be beneficial
(e.g. drawing on recursive inductive reasoning). One of the easiest ways is through the Why3
language [15], which targets multiple theorem provers as its back-ends.

6 Conclusion and Future Work

In summary, in this work we confronted the fault localization problem for deductive verifi-
cation of MT. We developed an automated proof strategy to apply a set of designed natural
deduction rules on the input OCL postcondition to generate sub-goals. Each unverified sub-
goal yields a sliced transformation context and debugging clues to help the transformation
developer pinpoint the fault in the input MT. Our evaluation with mutation analysis posi-
tively supports the correctness and efficiency of our fault localization approach. The result
showed that: (a) faulty constructs are presented in the sliced transformation, (b) deduced
clues assist developers in various debugging tasks (e.g. generate counter-example), (c) the
number of sub-goals that need to be examined to pinpoint a fault are usually small.

Our future work includes facing the limitations identified during the evaluation (Sec-
tion 4.4). We also plan to investigate how our decomposition can help us in reusing proof
efforts. Specifically, due to requirements evolution, the MT and contracts are under unpre-
dictable changes during the development. These changes can invalidate all of the previous
proof efforts and cause long proofs to be recomputed. We think that our decomposition of
sub-goals would increase the chances of reusing verification results, i.e. sub-goals that are
not affected by the changes.

15

References

1. A deductive approach for fault localization in ATL model transformations [online]. available: https:
//goo.gl/xssbpn (2016)

2. Ab.Rahim, L., Whittle, J.: A survey of approaches for verifying model transformations. Software &
Systems Modeling 14(2), 1003–1028 (2015)

3. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin: An open toolset for
modelling and reasoning in Event-B. International Journal on Software Tools for Technology Transfer
12(6), 447–466 (2010)

4. Aranega, V., Mottu, J., Etien, A., Dekeyser, J.: Traceability mechanism for error localization in model
transformation. In: 4th International Conference on Software and Data Technologies. pp. 66–73. Sofia,
Bulgaria (2009)

5. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A modular reusable verifier
for object-oriented programs. In: 4th International Conference on Formal Methods for Components and
Objects. pp. 364–387. Springer, Amsterdam, Netherlands (2006)

6. Berry, G.: Synchronous design and verification of critical embedded systems using SCADE and Esterel.
In: 12th International Workshop on Formal Methods for Industrial Critical Systems, pp. 2–2. Springer,
Berlin, Germany (2008)

7. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development: Coq’Art The Cal-
culus of Inductive Constructions. Springer, 1st edn. (2010)

8. Burgueño, L., Troya, J., Wimmer, M., Vallecillo, A.: Static fault localization in model transformations.
IEEE Transactions on Software Engineering 41(5), 490–506 (2015)

9. Büttner, F., Egea, M., Cabot, J.: On verifying ATL transformations using ‘off-the-shelf’ SMT solvers.
In: 15th International Conference on Model Driven Engineering Languages and Systems. pp. 198–213.
Springer, Innsbruck, Austria (2012)

10. Büttner, F., Egea, M., Cabot, J., Gogolla, M.: Verification of ATL transformations using transformation
models and model finders. In: 14th International Conference on Formal Engineering Methods. pp. 198–
213. Springer, Kyoto, Japan (2012)

11. Calegari, D., Luna, C., Szasz, N., Tasistro, Á.: A type-theoretic framework for certified model trans-
formations. In: 13th Brazilian Symposium on Formal Methods. pp. 112–127. Springer, Natal, Brazil
(2011)

12. Cheng, Z., Monahan, R., Power, J.F.: A sound execution semantics for ATL via translation validation.
In: 8th International Conference on Model Transformation. pp. 133–148. Springer, L’Aquila, Italy (2015)

13. Combemale, B., Crégut, X., Garoche, P., Thirioux, X.: Essay on semantics definition in MDE - an
instrumented approach for model verification. Journal of Software 4(9), 943–958 (2009)

14. Cuadrado, J.S., Guerra, E., de Lara, J.: Uncovering errors in ATL model transformations using static
analysis and constraint solving. In: 25th IEEE International Symposium on Software Reliability Engi-
neering. pp. 34–44. IEEE, Naples, Italy (2014)

15. Filliâtre, J.C., Paskevich, A.: Why3 — where programs meet provers. In: 22nd European Symposium
on Programming. pp. 125–128. Springer, Rome, Italy (2013)

16. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning About Systems. Cambridge
University Press (2004)

17. Jia, Y., Harman, M.: An analysis and survey of the development of mutation testing. IEEE Transactions
on Software Engineering 37(5), 649–678 (2011)

18. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool. Science of Computer
Programming 72(1-2), 31–39 (2008)

19. Lano, K., Clark, T., Kolahdouz-Rahimi, S.: A framework for model transformation verification. Formal
Aspects of Computing 27(1), 193–235 (2014)

20. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. pp. 337–340. Springer, Budapest, Hungary
(2008)

16

https://goo.gl/xssbpn
https://goo.gl/xssbpn

21. Oakes, B.J., Troya, J., Lúcio, L., Wimmer, M.: Fully verifying transformation contracts for declarative
ATL. In: 18th ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems. pp. 256–265. IEEE, Ottawa, ON (2015)

22. Object Management Group: The Object Constraint Language Specification (ver. 2.0). http://www.

omg.org/spec/OCL/2.0/ (2006)
23. Poernomo, I., Terrell, J.: Correct-by-construction model transformations from partially ordered specifi-

cations in Coq. In: 12th International Conference on Formal Engineering Methods. pp. 56–73. Springer,
Shanghai, China (2010)

24. Roychoudhury, A., Chandra, S.: Formula-based software debugging. Communications of the ACM
(2016)

25. Selim, G., Wang, S., Cordy, J., Dingel, J.: Model transformations for migrating legacy models: An
industrial case study. In: 8th European Conference on Modelling Foundations and Applications. pp.
90–101. Springer, Lyngby, Denmark (2012)

26. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: Eclipse modeling framework. Pearson
Education, 2nd edn. (2008)

27. Tip, F.: A survey of program slicing techniques. Tech. rep., Centrum Wiskunde & Informatica (1994)
28. Tisi, M., Perez, S.M., Choura, H.: Parallel execution of ATL transformation rules. In: 16th International

Conference on Model-Driven Engineering Languages and Systems. pp. 656–672. Springer, Miami, FL,
USA (2013)

29. Wagelaar, D.: Using ATL/EMFTVM for import/export of medical data. In: 2nd Software Development
Automation Conference. Amsterdam, Netherlands (2014)

30. Weiser, M.: Program slicing. In: 5th International Conference on Software Engineering. pp. 439–449.
IEEE, NJ, USA (1981)

31. Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on software fault localization. IEEE
Transactions on Software Engineering Pre-Print(99), 1–41 (2016)

17

http://www.omg.org/spec/OCL/2.0/
http://www.omg.org/spec/OCL/2.0/

	A Deductive Approach for Fault Localization in ATL Model Transformations

