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HIGH-DIMENSIONAL EIGENVALUE PROBLEMS ∗

Virginie Ehrlacher
1

Abstract. In this paper, we present two greedy algorithms for the computation of the lowest eigen-
value (and an associated eigenvector) of a high-dimensional eigenvalue problem, which have been intro-
duced and analyzed recently in a joint work with Eric Cancès and Tony Lelièvre [1]. The performance
of our algorithms is illustrated on toy numerical test cases, and compared with that of another greedy
algorithm for eigenvalue problems introduced by Ammar and Chinesta [13].

Résumé. Dans ce document, nous présentons deux algorithmes gloutons for le calcul de la plus
petite valeur propre (et d’un vecteur propre associé) d’un problème aux valeurs propres en grande
dimension, qui ont été récemment introduits et analysés dans un travail commun avec Eric Cancès et
Tony Lelièvre [1]. Le comportement numérique de ces algorithmes est illustré sur de petits cas tests,
et comparé à celui d’un autre algorithme glouton proposé antérieurement par Ammar et Chinesta [13].

Introduction

High dimensional problems are encountered in many application fields, among which electronic structure
calculations, molecular dynamics, uncertainty quantification, multiscale homogenization, and mathematical
finance. The numerical simulation of these problems, which requires specific approaches due to the so-called
curse of dimensionality [2], has fostered the development of a wide variety of new numerical methods and
algorithms, such as sparse grids [3, 4], reduced bases [5], sparse tensor products [6], and adaptive polynomial
approximations [7].

In this article, we focus on an approach introduced by Ladevèze [8], Chinesta [9], Nouy [10] and coauthors in
different contexts, relying on the use of greedy algorithms [11]. This class of methods is also called Progressive
Generalized Decomposition [12] in the literature.

The idea of these methods consist in approximating a function u(x1, · · · , xd) depending on a possibly very
large number of variables x1, · · · , xd as a sum of so-called tensor product functions,

u(x1, · · · , xd) ≈
∑

k≥1

r
(1)
k (x1) · · · r

(d)
k (xd),

where each of these tensor product functions appearing in the above sum is computed in an iterative way as the
best next tensor product in a sense which depends on the nature of the problem u is solution of .
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Greedy algorithms have been extensively studied in the framework of convex unconstrained minimization
problems, in other words when u is the solution of a problem of the form

u = argmin
v∈V

E(v), (1)

where V is a Hilbert space of functions depending on the d variables x1, · · · , xd, and E is a convex energy
functional [14–16]. However, the analysis of such algorithms for other kinds of problems is less advanced [12].
We refer to [17] for a review of the mathematical issues arising in the application of greedy algorithms to non-
symmetric linear problems. To our knowledge, the literature on greedy algorithms for eigenvalue problems is
very limited. Penalized formulations of constrained minimization problems enable one to recover the structure
of unconstrained minimization problems and to benefit from the sound theoretical framework existing in this
case [14, 22]. The only reference we are aware of about greedy algorithms for eigenvalue problems without
the use of a penalized formulation is an article by Ammar and Chinesta [13], in which the authors propose a
greedy algorithm to compute the lowest eigenstate of a bounded from below self-adjoint operator, and apply it
to electronic structure calculation. No analysis for this algorithm is given though.

In this paper, we present two new greedy algorithms for the computation of the lowest eigenstate of high-
dimensional eigenvalue problems which were introduced and analyzed recently in [1]. We present the main
theoretical results proved in the latter paper and illustrate the numerical behaviour of the algorithms on some
toy numerical test cases. The outline of the paper is the following: we first introduce some notation and
assumptions in Section 1; the description of the greedy algorithms and the associated theoretical convergence
results are detailed in Section 2. We refer the reader to [1] for the detailed proofs of these results and an
exhaustive description of the implementation of these algorithms in practice. The last section 3 contains some
toy numerical tests for illustration.

1. Preliminaries

1.1. Notation and main assumptions

Let us consider two Hilbert spaces V and H, endowed respectively with the scalar products 〈·, ·〉V and 〈·, ·〉,
such that, unless it is otherwise stated,

(HV) the embedding V →֒ H is dense and compact.

The associated norms are denoted respectively by ‖ · ‖V and ‖ · ‖. Let us recall that it follows from (HV) that
the weak convergence in V implies the strong convergence in H.

Let a : V × V → R be a symmetric continuous bilinear form on V × V such that

(HA) ∃γ, ν > 0, such that ∀v ∈ V, a(v, v) ≥ γ‖v‖2V − ν‖v‖2.

The bilinear form 〈·, ·〉a, defined by

∀v, w ∈ V, 〈v, w〉a := a(v, w) + ν〈v, w〉, (2)

is a scalar product on V , whose associated norm, denoted by ‖ · ‖a, is equivalent to the norm ‖ · ‖V . Besides,
we can also assume without loss of generality that the constant ν is chosen so that for all v ∈ V , ‖v‖a ≥ ‖v‖.

It is well-known (see e.g. [18]) that, under the above assumptions (namely (HA) and (HV)), there exists a
sequence (ψp, µp)p∈N∗ of solutions to the elliptic eigenvalue problem

{

find (ψ, µ) ∈ V × R such that ‖ψ‖ = 1 and
∀v ∈ V, a(ψ, v) = µ〈ψ, v〉

(3)

such that (µp)p∈N∗ forms a non-decreasing sequence of real numbers going to infinity and (ψp)p∈N∗ is an or-
thonormal basis of H. We focus here on the computation of µ1, the lowest eigenvalue of a(·, ·), and of an
associated H-normalized eigenvector. Let us note that, from (HA), for all p ∈ N

∗, µp + ν > 0.
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In the case when the embedding V →֒ H is dense but not compact (i.e. when (HV) does not hold), the
spectrum of the unique self-adjoint operator A on H with form domain V associated with the quadratic form
a(·, ·) can be purely continuous; in this case, (3) has no solution. However, if A has at least one discrete
eigenvalue located below the minimum of its essential spectrum, convergence results for the second algorithm
we propose can be established. This is the object of Proposition 2.1.

Definition 1.1. A set Σ ⊂ V is called a dictionary of V if Σ satisfies the following three conditions:

(HΣ1): Σ is a non-empty cone, i.e. 0 ∈ Σ and for all (z, t) ∈ Σ× R, tz ∈ Σ;
(HΣ2): Σ is weakly closed in V ;
(HΣ3): Span(Σ) is dense in V .

In practical applications for high-dimensional eigenvalue problems, the set Σ is typically an appropriate set
of tensor formats used to perform the greedy algorithms presented in Section 2.1. We also denote by

Σ∗ := Σ \ {0}. (4)

1.2. Prototypical example

Let us present a prototypical example of the high-dimensional eigenvalue problems we have in mind, along
with possible dictionaries.

Let X1, . . . , Xd be bounded regular domains of Rm1 , . . . , Rmd respectively. Let V = H1
0 (X1×· · ·×Xd) and

H = L2(X1 × · · · × Xd). It follows from the Rellich-Kondrachov theorem that these spaces satisfy assumption
(HV). Let b : X1 × · · · × Xd → R be a measurable real-valued function such that

∃β,B > 0, such that β ≤ b(x1, . . . , xd) ≤ B, for a.e. (x1, . . . , xd) ∈ X1 × · · · × Xd.

Besides, let W ∈ Lq(X1 × · · · × Xd) with q = 2 if m ≤ 3, and q > m/2 for m ≥ 4 where m := m1 + · · ·+md. A
prototypical example of a continuous symmetric bilinear form a : V × V → R satisfying (HA) is

∀v, w ∈ V, a(v, w) :=

∫

X1×···×Xd

(b∇v · ∇w +Wvw) . (5)

In this particular case, the eigenvalue problem (3) also reads

{

find (ψ, µ) ∈ H1
0 (X1 × · · · × Xd)× R such that ‖ψ‖L2(X1×···×Xd) = 1 and

−div (b∇ψ) +Wψ = µψ in D′(X1 × · · · × Xd).

For all 1 ≤ j ≤ d, we denote by Vj := H1
0 (Xj). Some examples of dictionaries Σ based on different tensor

formats satisfying (HΣ1), (HΣ2) and (HΣ3) are the set of rank-1 tensor-product functions

Σ⊗ :=
{

r(1) ⊗ · · · ⊗ r(d) | ∀1 ≤ j ≤ d, r(j) ∈ Vj

}

, (6)

as well as other tensor formats [6, 19], for instance the sets of rank-R Tucker, rank-R Tensor Train, or rank-R
Tensor Chain functions, with R ∈ N

∗.

2. Greedy algorithms for eigenvalue problems

In the rest of the paper, we present two different greedy algorithms to compute an eigenpair associated to
the lowest eigenvalue of the elliptic eigenvalue problem (3).

The first one relies on the minimization of the Rayleigh quotient of a(·, ·) and is introduced in Section 2.1.1.
The second one, presented in Section 2.1.2, is based on the use of a residual for problem (3). We recall the
algorithm introduced in [13] in Section 2.1.3. Orthogonal versions of these algorithms are defined in Section 2.1.4.
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Section 2.2 contains our main convergence results. The choice of a good initial guess for all these algorithms is
discussed in [1] and is not detailed here for the sake of brevity. For a detailed proof of the results stated in this
section, we refer the reader to [1].

For all v ∈ V , we denote by

J (v) :=

{

a(v,v)
‖v‖2 if v 6= 0,

+∞ if v = 0,

the Rayleigh quotient associated to (3), and

λΣ := inf
z∈Σ

J (z) = inf
z∈Σ∗

a(z, z)

‖z‖2
.

Note that, since Σ ⊂ V , λΣ ≥ µ1 = inf
v∈V

J (v).

2.1. Description of the algorithms

2.1.1. Pure Rayleigh Greedy Algorithm

The following algorithm, called hereafter the Pure Rayleigh Greedy Algorithm (PRaGA) algorithm, is inspired
from the Pure Greegy Algorithm for convex minimization problems (see [14,15] for instance).

Pure Rayleigh Greedy Algorithm (PRaGA):

• Initialization: choose an initial guess u0 ∈ V such that ‖u0‖ = 1 and such that λ0 := a(u0, u0) < λΣ;
• Iterate on n ≥ 1: find zn ∈ Σ such that

zn ∈ argmin
z∈Σ

J (un−1 + z), (7)

and set un := un−1+zn
‖un−1+zn‖

and λn := a(un, un).

The choice of an initial guess u0 ∈ V satisfying ‖u0‖ = 1 and a(u0, u0) ≤ λΣ is discussed [1].

The following lemma holds, stating that the iterations of the PRaGA are well-defined:

Lemma 2.1. Let V and H be separable Hilbert spaces satisfying (HV), Σ a dictionary of V and a : V ×V → R

a symmetric continuous bilinear form satisfying (HA). Then, all the iterations of the PRaGA algorithm are
well-defined in the sense that for all n ∈ N

∗, there exists at least one solution to the minimization problem (7).
Besides, the sequence (λn)n∈N∗ is non-increasing.

2.1.2. Pure Residual Greedy Algorithm

The Pure Residual Greedy Algorithm (PReGA) we propose is based on the use of a residual for problem (3).

Pure Residual Greedy Algorithm (PReGA):

• Initialization: choose an initial guess u0 ∈ V such that ‖u0‖ = 1 and let λ0 := a(u0, u0);
• Iterate on n ≥ 1: find zn ∈ Σ such that

zn ∈ argmin
z∈Σ

1

2
‖un−1 + z‖2a − (λn−1 + ν)〈un−1, z〉, (8)

and set un := un−1+zn
‖un−1+zn‖

and λn := a(un, un).

The denomination Residual can be justified as follows: it is easy to check that for all n ∈ N
∗, the minimization

problem (8) is equivalent to the minimization problem

find zn ∈ Σ such that zn ∈ argmin
z∈Σ

1

2
‖Rn−1 − z‖2a, (9)



152 ESAIM: PROCEEDINGS AND SURVEYS

where Rn−1 ∈ V is the Riesz representant in V of the linear form ln−1 : v ∈ V 7→ λn−1〈un−1, v〉 − a(un−1, v).
In other words, Rn−1 is the unique element in V such that

∀v ∈ V, 〈Rn−1, v〉a = λn−1〈un−1, v〉 − a(un−1, v).

The linear form ln−1 can indeed be seen as a residual for (3) since ln−1 = 0 if and only if λn−1 is an eigenvalue
of a(·, ·) and un−1 an associated H-normalized eigenvector.

Let us point out that, in order to carry out the PReGA in practice, one needs to know the value of a constant
ν ensuring (HA), whereas this is not needed for the PRaGA, neither for the algorithm (PEGA) introduced
in [13] and considered in the next section.

Lemma 2.2. Let V and H be separable Hilbert spaces such that the embedding V →֒ H is dense, Σ a dictionary
of V and a : V × V → R a symmetric continuous bilinear form satisfying (HA). Then, all the iterations of
the PReGA algorithm are well-defined in the sense that for all n ∈ N

∗, there exists at least one solution to the
minimization problem (8).

2.1.3. Pure Explicit Greedy Algorithm

The above two algorithms are new, at least to our knowledge. In this section, we describe the algorithm
already proposed in [13], which we call in the rest of the paper the Pure Explicit Greedy Algorithm (PEGA).

Unlike the above two algorithms, the PEGA is not defined for general dictionaries Σ satisfying (HΣ1), (HΣ2)
and (HΣ3). We need to assume in addition that Σ is an embedded manifold in V . In this case, for all z ∈ Σ,
we denote by TΣ(z) the tangent subspace to Σ at the point z in V .

Let us point out that, if Σ is an embedded manifold in V , for all n ∈ N
∗, the Euler equations associated to

the minimization problems (7) and (8) respectively read:

∀δz ∈ TΣ(zn), a (un−1 + zn, δz) = λn〈un−1 + zn, δz〉, (10)

and

∀δz ∈ TΣ(zn), a (un−1 + zn, δz) + ν〈zn, δz〉 = λn−1〈un−1, δz〉. (11)

The PEGA consists in solving at each iteration n ∈ N
∗ of the greedy algorithm the following equation, which

is of a similar form as the Euler equations (10) and (11) above,

∀δz ∈ TΣ(zn), a (un−1 + zn, δz) = λn−1〈un−1 + zn, δz〉. (12)

More precisely, the PEGA algorithm reads:

Pure Explicit Greedy Algorithm (PEGA):

• Initialization: choose an initial guess u0 ∈ V such that ‖u0‖ = 1 and let λ0 := a(u0, u0);
• Iterate for n ≥ 1: find zn ∈ Σ such that

∀δz ∈ TΣ(zn), a (un−1 + zn, δz)− λn−1〈un−1 + zn, δz〉 = 0, (13)

and set un := un−1+zn
‖un−1+zn‖

and λn := a(un, un).

Notice that (13) is very similar to (10) except that λn−1 is used instead of λn. It can be seen as an explicit
version of the PRaGA, hence the name Pure Explicit Greedy Algorithm .

Note that it is not clear whether there always exists a solution zn to (13), since (13) does not derive from
a minimization problem, unlike the other two algorithms. We were unable to prove convergence results for the
PEGA.
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2.1.4. Orthogonal algorithms

We introduce here slightly modified versions of the PRaGA, PReGA and PEGA, inspired from the Orthogonal
Greedy Algorithm for convex minimization problems (see for instance [15,16]).

Orthogonal (Rayleigh, Residual or Explicit) Greedy Algorithm (ORaGA, OReGA and OEGA):

• Initialization: choose an initial guess u0 ∈ V such that ‖u0‖ = 1 and let λ0 := a(u0, u0). For the
ORaGA, we need to assume that λ0 := a(u0, u0) < λΣ.

• Iterate on n ≥ 1:
– for the ORaGA: find zn ∈ Σ satisfying (7);
– for the OReGA: find zn ∈ Σ satisfying (8);
– for the OEGA: find zn ∈ Σ satisfying (13);

find
(

c
(n)
0 , . . . , c

(n)
n

)

∈ R
n+1 such that

(

c
(n)
0 , . . . , c(n)n

)

∈ argmin
(c0,...,cn)∈Rn+1

J (c0u0 + c1z1 + · · ·+ cnzn) , (14)

and set un :=
c
(n)
0 u0+c

(n)
1 z1+···+c(n)

n zn

‖c
(n)
0 u0+c

(n)
1 z1+···+c

(n)
n zn‖

; if 〈un−1, un〉 ≤ 0, set un := −un; set λn := a(un, un).

Let us point out that the original algorithm proposed in [13] is the OEGA. Besides, for the three algorithms
and all n ∈ N

∗, there always exists at least one solution to the minimization problems (14).
For the sake of brevity, we do not detail here how the problems (7), (8) and (13) are solved in practice and

refer the reader to [1] for further details in the case when the dictionary Σ is the set of rank-1 tensor product
functions.

The orthogonal versions of the greedy algorithms can be easily implemented from the pure versions: at any
iteration n ∈ N

∗, only an additional step is performed, which consists in choosing an approximate eigenvector un
as a linear combination of the elements u0, z1, . . . , zn minimizing the Rayleigh quotient associated to the bilinear
form a(·, ·). Since un is called to be the approximation of an eigenvector associated to the lowest eigenvalue of
a(·, ·), which is a minimizer of the Rayleigh quotient on the Hilbert space V , this additional step is a natural
extension of the Orthogonal Greedy Algorithm for the minimization of convex energy functionals [15].

2.2. Convergence results

2.2.1. The infinite-dimensional case

Theorem 2.1. Let V and H be separable Hilbert spaces satisfying (HV), Σ a dictionary of V and a : V ×V → R

a symmetric continuous bilinear form satisfying (HA). The following properties hold for the PRaGA, ORaGA,
PReGA and OReGA:

(1) All the iterations of the algorithms are well-defined.
(2) The sequence (λn)n∈N is non-increasing and converges towards a limit λ which is an eigenvalue of a(·, ·)

for the scalar product 〈·, ·〉.
(3) The sequence (un)n∈N is bounded in V and any subsequence of (un)n∈N which weakly converges in V

also strongly converges in V towards an H-normalized eigenvector associated with λ. This implies in
particular that

da(un, Fλ) := inf
w∈Fλ

‖w − un‖a −→
n→∞

0,

where Fλ denotes the set of the H-normalized eigenvectors of a(·, ·) associated with λ.
(4) If λ is a simple eigenvalue, then there exists an H-normalized eigenvector wλ associated with λ such

that the whole sequence (un)n∈N converges to wλ strongly in V .

It may happen that λ > µ1, if the initial guess u0 is not properly chosen. This point is discussed in more
details in [1]. If λ is degenerate, it is not clear whether the whole sequence (un)n∈N converges. We will see
in Section 2.2.2 that in finite dimension, at least for the pure versions of these algorithms, the whole sequence
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(un)n∈N always converges towards an element wλ ∈ V which is an eigenvector of a(·, ·) associated with λ.
However, λ may still be strictly greater than µ1, even in this case. However, if the initial guess u0 is chosen
such that λ0 is strictly lower any eigenvalue of a(·, ·) except µ1, then (λn)n∈N necessarily converges to µ1.

In addition, for the PReGA and the OReGA, we can prove similar convergence results without assuming that
the Hilbert space V is compactly embedded in H, provided that the self-adjoint operator A associated with the
quadratic form a(·, ·) has at least one eigenvalue below the minimum of its essential spectrum.

Proposition 2.1. Let V and H be separable Hilbert spaces such that the embedding V →֒ H is dense (but not
necessarily compact), Σ a dictionary of V , a : V ×V → R a symmetric continuous bilinear form satisfying (HA),
and A the self-adjoint operator on H associated to a(·, ·). Let us assume also that minσ(A) < minσess(A), where
σ(A) and σess(A) respectively denote the spectrum and the essential spectrum of A, and that the initial guess u0
satisfies minσ(A) ≤ λ0 := a(u0, u0) < minσess(A). Then, the following properties hold for the PReGA and the
OReGA:

(1) All the iterations of the algorithms are well-defined.
(2) The sequence (λn)n∈N is non-increasing and converges towards a limit λ which is an eigenvalue of a(·, ·)

for the scalar product 〈·, ·〉 such that λ < minσess(A).
(3) The sequence (un)n∈N is bounded in V and any subsequence of (un)n∈N which weakly converges in V

also strongly converges in V towards an H-normalized eigenvector associated with λ. This implies in
particular that

da(un, Fλ) := inf
w∈Fλ

‖w − un‖a −→
n→∞

0,

where Fλ denotes the set of H-normalized eigenvectors of a(·, ·) associated with λ.
(4) If λ is a simple eigenvalue, then there exists an H-normalized eigenvector wλ associated with λ such

that the whole sequence (un)n∈N converges to wλ strongly in V .

2.2.2. The finite-dimensional case

From now on, for any differentiable function f : V → R, and all v0 ∈ V , we denote by f ′(v0) the derivative
of the function f at the point v0 ∈ V . More precisely, f ′(v0) ∈ V ′ is the unique continuous linear form on V
such that for all v ∈ V ,

f(v) = f(v0) + 〈f ′(v0), v − v0〉V ′,V + r(v), with lim
‖v‖a→0

r(v)

‖v‖a
= 0.

Besides, we define the injective norm on V ′ associated to Σ as follows:

∀l ∈ V ′, ‖l‖∗ = sup
z∈Σ∗

〈l, z〉V ′,V

‖z‖a
.

In the rest of this section, we assume that V , hence H (since the embedding V →֒ H is dense), are finite
dimensional vector spaces. The convergence results below heavily rely on the Łojasiewicz inequality [20] and the
ideas presented in [21] for the proof of convergence of gradient-based algorithms for the Hartree-Fock equations.

The Łojasiewicz inequality [20] reads as follows:

Lemma 2.3. Let Ω be an open subset of the finite-dimensional Euclidean space V , and f an analytic real-valued
function defined on Ω. Then, for each v0 ∈ Ω, there is a neighborhood U ⊂ Ω of v0 and two constants K ∈ R+

and θ ∈ (0, 1/2] such that for all v ∈ U ,

|f(v)− f(v0)|
1−θ ≤ K‖f ′(v)‖∗. (15)

This inequality can be understood in this way: it can be easily proved in the case when v0 is not a critical
point of f . When v0 is a non-degenerate critical point, i.e. when the Hessian of f at v0 is invertible, then it
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is easy to see that θ can be chosen to be equal to 1
2 by using a simple Taylor expansion. Moreover, when v0

is a degenerate critical point of f , the analyticity assumption ensures that there exists N ∈ N
∗ such that the

N th-order derivatives cannot vanish simultaneously, and the exponent θ can be chosen to be equal to 1
N

.

In our context, the following lemma can be proved [1].

Lemma 2.4. Let V and H be finite-dimensional Euclidean spaces, Ω := {v ∈ V, 1/2 < ‖v‖ < 3/2}, λ be an
eigenvalue of the bilinear form a(·, ·) and Fλ be the set of the H-normalized eigenvectors of a(·, ·) associated to
λ. Then, J : Ω → R is analytic, and there exists K ∈ R+, θ ∈ (0, 1/2] and ε > 0 such that

for all v ∈ Ω such that d(v, Fλ) := inf
w∈Fλ

‖v − w‖ ≤ ε, |J (v)− λ|
1−θ

≤ K‖J ′(v)‖∗. (16)

Using this lemma, the following convergence rates in finite dimension can be obtained:

Theorem 2.2. Let V and H be finite dimensional Euclidian spaces and a : V ×V → R be a symmetric bilinear
form. The following properties hold for both PRaGA and PReGA:

(1) the whole sequence (un)n∈N strongly converges in V to some wλ ∈ Fλ;
(2) the convergence rates are as follows, depending on the value of the parameter θ in (16):

• if θ = 1/2, there exists C ∈ R+ and 0 < σ < 1 such that for all n ∈ N,

‖un − wλ‖a ≤ Cσn; (17)

• if θ ∈ (0, 1/2), there exists C ∈ R+ such that for all n ∈ N
∗,

‖un − wλ‖a ≤ Cn−
θ

1−2θ . (18)

3. Numerical results

We present here some numerical results obtained with these algorithms (PRaGA, PReGA, PEGA and their
orthogonal versions) on toy examples involving only two Hilbert spaces (d = 2). We refer the reader to [13]
for numerical examples involving a larger number of variables. These basic numerical tests performed with
small-dimensional matrices lead us to think that the greedy algorithms presented above converge in general
towards the lowest eigenvalue of the bilinear form under consideration, except in pathological situations which
are not likely to be encountered in practice.

In this simple example, we take V = H = R
Nx×Ny , Vx = R

Nx and Vy = R
Ny for some Nx, Ny ∈ N

∗ (here
typically Nx = Ny = 51). Let D1x, D2x ∈ R

Nx×Nx and D1y, D2y ∈ R
Ny×Ny be (randomly chosen) symmetric

definite positive matrices. We aim at computing the lowest eigenstate of the symmetric bilinear form

a(U, V ) = Tr
(

UT (D1xV D1y +D2xV D2y)
)

,

or, in other words, of the symmetric fourth order tensor A defined by

∀1 ≤ i, k ≤ Nx, 1 ≤ j, l ≤ Ny, Aij,kl = D1x
ikD

1y
jl +D2x

ikD
2y
jl .

Let us denote by µ1 the lowest eigenvalue of the tensor A, by I the identity operator, and by Pµ1
∈ L(RNx×Ny )

the orthogonal projector onto the eigenspace of A associated with µ1. Figure 1 shows the decay of the error on
the eigenvalues log10(|µ1−λn|) and of the error on the eigenvectors log10(‖(I−Pµ1

)Un‖F ), where ‖ · ‖F denotes
the Frobenius norm of RNx×Ny , as a function of n for the three algorithms and their orthogonal versions.

These tests were performed with several matrices D1x, D1y, D2x, D2y, either drawn randomly or chosen such
that the eigenspace associated with the lowest eigenvalue is of dimension greater than 1. In any case, the three
greedy algorithms converge towards a particular eigenstate associated with the lowest eigenvalue of the tensor A.
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Besides, the rate of convergence always seems to be exponential with respect to n. The error on the eigenvalues
decays twice as fast as the error on the eigenvectors, as usual when dealing with the approximation of linear
eigenvalue problems.

We observe that the PRaGA and PEGA have similar convergence properties with respect to the number of
iterations n. The behaviour of the PReGA strongly depends on the value ν chosen in (HA): the larger ν, the
slower the convergence of the PReGA. To ensure the efficiency of this method, it is important to choose the
numerical parameter ν ∈ R appearing in (2) as small as possible so that (HA) remains true. If the value of
ν is well-chosen, the PReGA may converge as fast as the PRaGA or the PEGA. In the example presented in
Figure 1 where ν is chosen to be 0 and µ1 ≈ 116, we can clearly see that the rate of convergence of the PReGA
is poorer than the rates of the PRaGA and PEGA.

We also observe that the use of the ORaGA, OReGA and OEGA, instead of the pure versions of the
algorithms, improves the convergence rate with respect to the number of iterations n ∈ N

∗. However, as n
increases, the cost of the n-dimensional optimization problems (14) becomes more and more significant.
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Figure 1. Decay of the error of the three algorithms and their orthogonal versions: eigenvalues
(left) and eigenvectors (right).
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