N

HAL

open science

Hadoop for Roboticists

Olivier Deiss, Cedric Pradalier

» To cite this version:

Olivier Deiss, Cedric Pradalier. Hadoop for Roboticists. [Research Report] UMI 2958 GeorgiaTech-

CNRS. 2016. hal-01435882

HAL Id: hal-01435882
https://hal.science/hal-01435882
Submitted on 20 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-01435882
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Hadoop for Roboticists

Olivier Deiss
Supervised by Prof. C. Pradalier
UMI 2958 - GeorgiaTech Lorraine

Metz, France

January 1, 2017

Contents

1 Introduction 2
2 About Hadoop 2
2.1 What is it? 2
2.2 How does it work? L, 2
2.2.1 Components 3

2.2.2 Writing jobs 3

2.2.3 Cluster Architecture 4

3 Setting Up a Hadoop Cluster 4
3.1 Imstalling Hadoop 5
3.1.1 Master Node 6

3.1.2 Slave Nodes 7

3.2 Hostnames, SSH 8
3.2.1 Slave Nodes s, 8

3.2.2 Master Node 8

3.3 Starting the Cluster 9
3.4 MapReduce Example 10

4 Writing Jobs in C++4 using Hadoop Pipes 11
4.1 Running a Hadoop Pipesjob 11
4.1.1 Compiling and Launching the Job 11

4.1.2 How Does This Job Work? 12

4.2 Using Hadoop Pipes with ROS 12
4.2.1 Creating New Libraries 13

4.2.2 A Job with ROS and Hadoop Pipes 13

4.2.3 Using Hadoop, ROS and Catkin 13

4.3 An Example of Job to Analyze rosbags 15

5 Troubleshooting 15
5.1 Starting Hadoop 15
5.2 MapReduce 16
5.3 Monitoring 16
54 Writing Jobs 16

6 Conclusion 17
A WordCount.cpp 18
B WordCount-NoPipe.cc 19
C ros_example.cpp 22
References 23

1 Introduction

The objective of this tutorial is to give an overview of Hadoop, its possibilities and its
use in Robotics, as well as to provide explanations about the setup, design of mapreduce
jobs and troubleshooting. Hadoop is a powerful software: while this tutorial is enough
to get an overview and a better understanding of the framework and how to use it, we
won’t be covering here all the possibilities that Hadoop offers.

This tutorial is based on my experience while working on a Special Problem. I included
all the information I have been looking for and everything I think can be useful when
learning how to use Hadoop. Finally, while reading this tutorial, be aware that I am far
from being a Hadoop expert and that I just started to learn about Hadoop. This is just
a summary of the best of my knowledge at the time of writing.

After presenting Hadoop and how to set up a cluster, we will mainly focus on developing
jobs in C++. Although jobs are usually written in Java, there are applications for which
we need to be able to use C++. One of such situations is for being able to use the ROS
API in our jobs. This will allow us to analyze datasets stored as rosbags as one possible
application.

2 About Hadoop

2.1 What is it?

In short, Apache™ Hadoop® is an open-source software framework for distributed stor-
age and distributed processing of very large datasets on computer clusters built from
commodity hardware. The true advantage of Hadoop is how it handles scalability and
insane amounts of unstructured data. Hadoop works well on clusters of thousands of
nodes. Here is a definition of the software from Apache’s Hadoop page:

It is designed to scale up from single servers to thousands of machines, each
offering local computation and storage. Rather than rely on hardware to
deliver high-availability, the library itself is designed to detect and handle
failures at the application layer, so delivering a highly-available service on top
of a cluster of computers, each of which may be prone to failures.

Hadoop is supported by Hortonworks and Cloudera. Facebook and Yahoo! have been
the first companies to massively use Hadoop; the software is now used by a majority of
companies. Google’s research papers [3]| [2]| inspired the Hadoop File System and the
MapReduce implementation.

2.2 How does it work?

Before jumping into the technical part of the tutorial, this section will introduce the main
components of Hadoop as well as an overview of what is a job. We will also introduce
the architecture of Hadoop clusters and what processes need to run on the machines.

2.2.1 Components

Hadoop is the union of base modules and lots of other modules built on top of Hadoop.
We will only focus on the base modules here. The base modules are the following ones:

e Hadoop Common: this is a core module that provides libraries to the other modules.

e Hadoop Distributed File System (HDFS): HDFS is a distributed file system on
which we will be storing the data we want to analyze using Hadoop. Alternatives to
HDF'S exist, but HDFS remains a good choice for the following reasons [13]: first the
cost of storing data on HDFS is really low compared to other solutions that might
not be open-source. HDFS is also tailored for MapReduce and allows a very high
bandwidth even on very low-cost shared networks. Last, HDF'S is designed to work
on commodity hardware, and thus can handle failures and lost data autonomously.

e Hadoop YARN: YARN is used for the scheduling of the applications and the re-
source management.

o Hadoop MapReduce: MapReduce is an implementation of the MapReduce program-
ming model. This is the framework we will use while writing jobs.

If you want to work with data, the first step is to upload it on HDFS. The next step is
to write a MapReduce job that will be later run on the cluster. The scheduling will be
taken care of by YARN.

Among the other available auxiliary projects built on top of Hadoop, Hive gives an SQL-
like interface to run queries on the data stored on HDFS. Another one, HBase, is a
distributed database based on Google’s BigTable for storing large quantities of sparse
data.

2.2.2 Writing jobs

Jobs are the applications that are run on the data stored on HDFS. Actually, Hadoop can
also be run as a standalone application, without HDFS, but we won’t be using Hadoop
this way. A simple application consists of two parts: a Mapper and a Reducer. The
framework reads the input data and provides pairs <key, value> to the Mapper. By
default, Hadoop provides pairs with the following format: <offset, line>. Applications
can provide their own Reader and Writers to customize these operations.

The Mapper receives these pairs and outputs another pair. This is all it does, and
yet allows any kind of computation — we will see examples later. The Mapper can put
whatever information is useful in these pairs. The Reducer receives the pairs from the
Mapper and outputs the final pairs <key, value> that will be the output of the job.

Hadoop is written in Java and as a result, most of the documentation and online support
is in Java. However, it is possible to write jobs in C++ using Hadoop Pipes. This is what
we will be doing since we are roboticists who want to be able to use the ROS API in our
jobs.

2.2.3 Cluster Architecture

Hadoop runs on clusters of — often thousands of — computers. For huge datasets that
span over multiple racks, HDFS provides location awareness: the processing happens on
nodes that are close to the requested data: this reduces network traffic and is one of the
key advantages of using HDFS. The setup we will describe here is a much smaller one,
using a cluster one master node and five slave nodes.

A typical Hadoop setup has the following structure:

e Master node: this node stores information about where is stored a specific infor-
mation on the cluster. If this node becomes unavailable, the cluster as a whole
becomes unavailable. For this reason, it is possible to run a second process on the
same machine, which will handle the requests if the main process crashes.

e Slave nodes: these nodes are the workers. They store the data and execute the jobs

when requested.

In this tutorial, we will use the cluster as a model the cluster I have been using which
has the following structure:

192.93.8.192
’ Master ‘
192.168.0.1
192.168.0.101 192.168.0.102 192.168.0.105

Here is a list of the processes that run on the nodes. Some processes are used for HDF'S
while the other category is used during the MapReduce phase:

e NameNode, JobTracker: these processes run on the Master node. The NameNode
is used as a registry of the data in the cluster, and the JobTracker is used during
the MapReduce phase. A SecondaryNameNode can be run for the safety reasons
discussed just above.

e DataNode, TaskTracker: these processes belong to the slaves. Note that it is also
possible to run these processes on the Master node in small clusters. The DataNode
handles the storage and the TaskTracker becomes useful during the MapReduce
phase.

3 Setting Up a Hadoop Cluster

Now that we have scratched the surface of Hadoop in the previous introduction, we are
ready for the first step in using Hadoop. Before writing jobs, we need to set up the
structure on which we will launch these jobs. This step is about setting up a Hadoop
cluster.

Hadoop can be run on one single node, and it might be useful to start from there to get
familiar with the tools. The single node setup is well explained on the Apache tutorial
[6]. Here, we will directly go to the setup of a cluster of multiple nodes. We will then
run the example mapreduce jobs, before we can start developing jobs in C++-.

We will start by installing Hadoop on all our machines and setting up all the tools that
it needs. Then, we will configure our Hadoop installation.

3.1 Installing Hadoop

Here, we will almost be following the Apache tutorial [6]. The first step is to create a
Hadoop user: let’s call it hadoop, and everything Hadoop-related we will do will be done
with this user. I have been using Hadoop 2.7.3 while working on this tutorial, you can get
it here: http://hadoop.apache.org/releases.html. Install it wherever you find convenient,
I chose /home/hadoop/bin. We will also need to install Java if it is not already installed.
Hadoop 2.7 and later versions require Java 7 [5].

Assuming Java and Hadoop are correctly installed, update your .bashrc as follows, in
order to give Hadoop everything it needs to work properly. Here is what I have been
using on my setup:

export HADOOP_HOME=/home/hadoop/bin/hadoop-2.7.3
export JAVA_HOME=/home/hadoop/bin/jdk1.8.0_102
export PATH=${JAVA_HOME}/bin:${PATH}

export HADOOP_CLASSPATH=${JAVA_HOME}/lib/tools. jar

Note that HADOOP_HOME is not required, but it will make it easier for us to use this
variable to refer to where Hadoop is installed. In the same file, I also decided to add
bin folders to my path. We will be using tools in HADOOP_HOME/sbin, which contains
useful scripts, and in HADOOP_HOME /bin, which contains the hadoop and hdfs binaries:

export PATH=${HADOOP_HOME}/sbin/:${HADOOP_HOME}/bin/:${PATH}

We now jump to the configuration of Hadoop. Four files, on each machine, need to be
correctly updated. There is one file for each base module. The read-only versions, with
the default values, have names base-module-default.xml. The files that will need to be
updated on the machines have the -site.xml suffix instead. They are listed below:

o HADOOP_HOME/etc/hadoop/core-site.xml: this file contains the core configura-
tion. One important setting we will put in there is how to reach the file system.

o HADOOP_HOME/etc/hadoop/hdfs-site.xml: this is the configuration of the file
system: the replication level, where to store the data, and the different types of
nodes.

o HADOOP_HOME/etc/hadoop/yarn-site.xml: configuration for YARN; like how to
reach the ResourceManager.

o HADOOP_HOME/etc/hadoop/mapred-site.xml: this file contains the configuration
for the MapReduce jobs: they need to know how to reach the JobTracker.

5

The entire configuration goes into these four files. The parameters will influence the way
Hadoop performs the tasks and you should have a look at the read-only versions of these
files for a detailed explanation of the different parameters [1] [8] [14] [10].

Here I give the set of parameters that I have been using with my Hadoop setup. This
configuration works well for simple tasks but you will likely need to tune the parameters
if you plan to make extensive use of Hadoop.

3.1.1 Master Node

The configuration differs from master and slave nodes. We will be listing here the mini-
mum set of parameters that need to be set on the master node’s configuration files. All
we need to do is put the following <property> tags between the <configuration> and
</configuration> tags:

e core-site.xml: here we will be telling hadoop how to reach the NameNode. Since
our NameNode is the Master node, this parameter should link to the Master node:

<property>
<name>fs.defaultFS</name>
<value>hdfs://192.93.8.197:9000</value>
</property>

o hdfs-site.xml: in this file we can set the replication level and where to store the files
on the machine. We choose a replication level of 3, note that this replication level
should approximately be equal to the square root of the number of nodes in your
cluster [10]:

<property>
<name>dfs.replication</name>
<value>3</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>file:///home/hadoop/hadoop_data/namenode</value>
</property>

e yarn-site.xml: this is the configuration for YARN. Here, we tell YARN how to reach
the ResourceManager, and that we want to perform MapReduce operations:

<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>

</property>

<property>
<name>yarn.resourcemanager .hostname</name>
<value>192.93.8.197</value>

</property>

o mapred-site.xml: last, we need to give the address of the JobTracker to MapReduce,
and we can also set the replication level for the submitted jobs. By default, the
value for mapreduce.client.submit.file.replication is set to 10, which will
lead to under-replicated blocks in your setup if not changed.

<property>
<name>mapreduce. jobtracker.address<name>
<value>192.93.8.197:54311</value>

</property>

<property>
<name>mapreduce.client.submit.file.replication</name>
<value>2<value>

</property>

3.1.2 Slave Nodes

Now let’s see the configuration of the slave nodes. Here again we need to configure the
four files listed above, but the configuration is exactly the same for core-site.xml and
yarn-site.zml.

o hdfs-site.xml: the configuration of HDFS will now require us to specify where to
store the data, hence we will be using the property dfs.datanode.data.dir instead
of dfs.namenode.name.dir:

<property>
<name>dfs.replication</name>
<value>3</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>file:///home/hadoop/hadoop_data/datanode</value>
</property>

e mapred-site.xml: in this file we will be adding one more property compared to the
configuration for the Master node, in order to tell the worker nodes to use YARN
as their MapReduce framework:

<property>
<name>mapreduce. jobtracker.address<name>
<value>192.93.8.197:54311</value>

</property>

<property>
<name>mapreduce.client.submit.file.replication</name>
<value>2<value>

</property>

<property>
<name>mapreduce.framework.name</name>
<value>yarn<value>

</property>

3.2 Hostnames, SSH

Now Hadoop should be correctly configured. But before we can start the nodes, we
need to setup ssh on all the machines and set the hostnames of each as well. This is
really important, and can be the source of lots of errors if not set right at first. Hadoop
communicates over ssh between different nodes. It also uses the machines hostnames
rather than their IP addresses.

Therefore we need to set up these two things. First, let’s get ssh working. Hadoop
requires that each node can reach any other node over ssh, without a passphrase [6]. If
you cannot do so, running the following commands should solve the issue:

$ ssh-keygen -t dsa -P ’’ -f /home/hadoop/.ssh/id_dsa
$ cat /home/hadoop/.ssh/id_dsa.pub >> /home/hadoop/.ssh/authorized keys
$ chmod 0600 /home/hadoop/.ssh/authorized_keys

If ssh is correctly configured, we can set the hostnames of our machines. On each machine,
we need to update /etc/hosts as well as /etc/hostname.

3.2.1 Slave Nodes

On the Slave nodes, let’s start by setting the hostname of each machine. On my setup,
I have the hostnames slavel to slaveb. In the /etc/hosts file, each worker node should
have access to all the other nodes. Each of my slave nodes has the following file:

127.0.0.1 localhost
192.168.0.101 slavel
192.168.0.102 slave2
192.168.0.103 slave3
192.168.0.104 slaved
192.168.0.105 slaveb
192.168.0.1 cluster3

3.2.2 Master Node

On the Master node, we will need to have a list of all the available workers, in addition to
correctly setting up the files /etc/hostname and /etc/hosts. The hostname of my master
node is cluster3, and its hosts file looks like the following:

128.0.0.1 localhost localhost
127.0.1.1 cluster3.domain.fr cluster3
192.168.0.101 slavel slavel

192.168.0.102 slave2 slave2

192.168.0.103 slave3 slave3

192.168.0.104 slave4 slave4d

192.168.0.105 slaveb slaveb

As stated above, we will also need to indicate what machines are available as masters
or slaves in the Hadoop configuration. This is done in the files masters and slaves in
HADOOP_HOME/etc/hadoop. 1f these files don’t exist on your setup, just create them
with this name.

For HADOOP-HOME/etc/hadoop/masters, we only have one master node so the file has
just one entry:

cluster3

For HADOOP_HOME/etc/hadoop/slaves, I have listed the hostnames of the five available
worker nodes:

slavel
slave?2
slave3
slaved
slaveb

3.3 Starting the Cluster

Everything should now be correctly set up and we should be able to run the cluster. We
first need to format the file system:

$ hdfs namenode -format

Now that the file system is formatted, we can create our home folder where we will later
upload our input files:

$ hdfs dfs -mkdir -p /user/hadoop

Note that a lot of basic commands are available on HDFS. We have just used mkdir,
but likewise, 1s, cat, mv are also available. We can now start HDFS, then YARN. The
scripts are located in HADOOP_HOME/sbin:

HADOOP_HOME $ sbin/start-dfs.sh
HADOOP_HOME $ sbin/start-yarn.sh

If you have added this folder to your PATH, you should be able to run them without
specifying the folder. Alternatively, you can run start-all.sh, which works well and
starts both at once, even though it is deprecated. If you run jps, you should see this list
on the master node:

NameNode
SecondaryNameNode
ResourceManager

If you run the same command on one of the slaves, you should see this list instead:

DataNode
NodeManager

Anytime, you can go to http://IP:50070 — with the IP address of the master node — to
see the nodes usage in real-time. You can monitor all the applications at http://IP:8088.
Useful tools are also available in command line:

$ hdfs dfsadmin -printTopology # displays a topology of the setup
$ hdfs dfsadmin -report # creates a complete report

3.4 MapReduce Example

To make sure our cluster is correctly set up, let’s try to run a first MapReduce job. A
job is provided in the Hadoop installation. It just counts the words in the input files and
displays them with the associated count.

To run this example we first need to create our input. An input is a folder containing files
we want to work on. You can just copy all the xml files in HADOOP_HOME/etc/hadoop
in a folder input, and upload this folder on HDFS:

HADOOP_HOME $ mkdir input
HADOOP_HOME $ cp etc/hadoop/*.xml input
HADOOP_HOME $ hdfs dfs -put input .

You can make sure the folder has been correctly uploaded by running hdfs dfs -1s. We
are now ready to launch the job:

$ hadoop jar \
share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.3.jar \
grep input output ’dfs[a-z.]+’

This command tells Hadoop to launch a jar, located in HADOOP_HOME/share/.... In
this jar, we are interested in launching the class grep — not the command-line grep tool —
to perform the job. Hadoop will use input as its input folder and will output the results
in output. Finally, the results will contain all the words that match the regular expression
dfsla-z.]+.

After a few seconds, the job should — successfully — complete. If the job failed, maybe
you can find some help in the troubleshooting section at the end of this tutorial. You
can also check the GUI anytime to check if everything is working properly. The output
is available in output. We can read it from the file system, or download it and then read
it:

$ hdfs dfs -cat output/* # read from HDFS
$ hdfs dfs -get output output && cat output/* # download then read

If everything worked as expected, we are ready to go to the next step, where we will
be using both ROS and Hadoop Pipes in a C++ mapreduce job. You can find more
information about writing jobs in Java, and tutorials on the Apache website [11].

10

4 Writing Jobs in C++ using Hadoop Pipes

We now have a working installation of Hadoop, but we can only work with Java. Our goal
is to be able to write jobs in C++, combining ROS and Hadoop in the same job. Hadoop
provides Hadoop Pipes, which allows us to write jobs in C++. We will first see how to
get Hadoop Pipes working, and then we will need to work a bit more to get Hadoop Pipes
and ROS working together.

4.1 Running a Hadoop Pipes job
4.1.1 Compiling and Launching the Job

We will start with a simple example, following [7]. The code we are going to use in our
first example is available in appendix A. We will need a Makefile in order to compile this
program. This one will work, assuming you are on a 64-bit version:

CC = g++

HADOOP_INSTALL = /home/hadoop/bin/hadoop-2.7.3

CPPFLAGS -m64 -std=c++00x -I$(HADOOP_INSTALL)/include

LIBS = -L$(HADOOP_INSTALL)/1ib -lhadooppipes -lhadoop
-lhadooputils -lcrypto —-lpthread -lssl

word_count: word_count.cpp
$(CC) $(CPPFLAGS) $< -o $@ -Wall $(LIBS) -g -02

You might need to install additional packages like 1ibssl-dev to be able to link without
errors. Compile using make word _count. If you are getting errors, make sure you have
correctly set HADOOP_INSTALL and that all the libraries are installed.

If you managed to compile the program, we will first need to upload it on the file system
before we can run it:

$ hdfs dfs -put word_count .

Assuming you still have the input folder from the previous example, we can now run the
job. If you did not previously delete the old output folder, you will get an error. To
delete the old output folder:

$ hdfs dfs -rm -r -f output
We can now run the job:
$ hadoop pipes -D hadoop.pipes.java.recordreader=true \
-D hadoop.pipes.java.recordwriter=true \

-input input -output output \
-program word_count

11

The first two options tell Hadoop to use the default Java RecordReader and Record Writer
classes. It is possible to implement these classes to get a custom behavior, but I could
not find much documentation about this. There exists an example, wordcount-nopipe.cc,
in appendix B, which shows how to do that. Be aware that this only works with local
file reads though.

If everything ran successfully, we can print the output:

$ hdfs dfs -cat output/*

4.1.2 How Does This Job Work?

Let’s quickly go through the code of this job and see what it does. This simple MapReduce
job has two classes: a Mapper and a Reducer. Pretty straightforward.

Let’s first focus on the Mapper. Its constructor takes one parameter, context that we
are not using here. The interesting part is the map function, which takes a MapContext
as its only parameter. This object contains all the pairs provided to this mapper from
one partition of the input. The key and values are accessible via getInputKey() and
getInputValue () respectively. For each word, the Mapper outputs a pair <word, 1>.
Note that everything needs to be a string. This is all that it does.

We can now study the Reducer. The reduce function is called with a context that contains
all the pairs with the same key. In order to count the words, we therefore need to initialize
a counter to 0 and increment it for each pair in the context. This is done in the while
loop. After what we can simply output a pair with the same key as the input key, and
the value of the counter as the output value. If you wonder why we emitted ones in the
Mapper, yes, this was absolutely useless, but we still needed to output some values.

This really is how this job works. If you want to familiarize yourself with the MapReduce
framework, you can find lots of examples of jobs online. Even though they are in Java,
it is a good start to get an intuition of how jobs should be written. You can follow the
Apache tutorial on MapReduce [11], or this great tutorial [9].

So we managed to get Hadoop Pipes working and we — almost — wrote our first job. In
the next section, we will see how to use Hadoop Pipes and ROS for writing our jobs.

4.2 Using Hadoop Pipes with ROS

We finally get to the section that initiated the writing of this tutorial: how to use Hadoop
to write jobs that use ROS. Hadoop and Java are great for lots of domains, and jobs
should be written in Java if possible. Using Pipes should only be used when there is no
alternative. The fact that we want to use ROS in our jobs is one great reason to do so.
The following will help you understand how to write jobs using the C++ ROS API. If
you do not want to use ROS, you can skip this section.

12

4.2.1 Creating New Libraries

Unfortunately, the provided Hadoop libraries don’t work well with the ROS libraries.
This is related to the compiler Application Binary Interface (ABI). ROS and the Hadoop
library don’t use the same ABI, hence they work poorly together.

To get them working, you will need to recompile Hadoop from source. After downloading,
following the steps on the Apache guide [12], run the following commands:

mvn package -Pdist,native -DskipTests -Dtar

In order to compile Hadoop successfully, you will need to install protoc — Protocol Buffers
— version 2.5.0 and this version only. You can get it on Google’s github [4]. The archive
should be available at: https://github.com/google/protobuf/archive/v2.5.0.tar.gz.

You will get the newly-bilt library in hadoop-dist/target/hadoop-2.7.3/lib/native. From
now on, use these libraries instead of the ones in HADOOP_HOME/lib and everything
should work fine.

4.2.2 A Job with ROS and Hadoop Pipes

We can now go back to our initial goal of compiling a job with Hadoop Pipes that makes
use of the ROS API. We will first see how to update our Makefile, them we will show
how to use Catkin to do all the work for us.

We will need to update our Makefile to link the ROS libraries. Note that ['ve put the
newly-built libraries in /home/hadoop /lib/hadoop /lib.

CcC = gt++

HADOOP_INSTALL = /home/hadoop/bin/hadoop-2.7.3

CPPFLAGS -m64 -std=c++00x -I$(HADOOP_INSTALL)/include
-I/opt/ros/kinetic/include

LIBS = -L/home/hadoop/lib/hadoop/lib -lhadooppipes -lhadoop
—-lhadooputils -lcrypto -lpthread -lssl
-L/opt/ros/kinetic/lib -lroscpp -lrosconsole -lrostime
-lrosbag -lrosbag_storage

ros_example: ros_example.cpp
$(CC) $(CPPFLAGS) $< -o $@ -Wall $(LIBS) -g -02

This new Makefile indicates where to find the right libraries. This is all we needed to
add. Using this, you should be able to compile jobs in C++, using Hadoop and ROS
libraries.

4.2.3 Using Hadoop, ROS and Catkin

For modern versions of ROS, compilation is made using Catkin. In order to keep using
it to compile our jobs, we just need to create a package with the right dependencies and

13

CMakeLists.tzt file. Let’s follow the procedure from the beginning: first we need to create
a new package:

$ catkin_create_pkg ros_example

We then need to edit the file package.xzml. In the dependencies section, add roscpp to
specify that we will be using C++, as well as all the other needed dependencies for your
project:

<buildtool_depend>catkin</buildtool_depend>
<build_depend>roscpp</build_depend>
<build_depend>rostime</build_depend>
<build_depend>rosbag</build_depend>
<build_depend>rosbag_storage</build_depend>
<build_depend>rosconsole</build_depend>
<build_depend>std_msgs</build_depend>
<run_depend>roscpp</run_depend>
<run_depend>rostime</run_depend>
<run_depend>rosbag</run_depend>
<run_depend>rosbag_storage</run_depend>
<run_depend>rosconsole</run_depend>
<run_depend>std_msgs</run_depend>

More important, we need to edit the CMakeLists.txt file to include Pipes and link Hadoop
as well as ROS:

cmake_minimum_required (VERSION 2.8.3)
project (example)
find_package (catkin REQUIRED COMPONENTS
roscpp rosconsole rostime rosbag rosbag_storage
)
catkin_package (
CATKIN_DEPENDS roscpp
)
include_directories ("/bin/hadoop-2.7.3/include ${catkin_INCLUDE_DIRS})
add_definitions(-g -ggdb -std=c++14 -Wall -03)
link_directories (/home/hadoop/lib/hadoop/1lib)
add_executable (example ros_example.cpp)
target_link_libraries (example
hadooppipes hadoop hadooputils crypto pthread ssl
)
target_link_libraries (example ${catkin_LIBRARIES})
install (TARGETS example
ARCHIVE DESTINATION ${CATKIN_PACKAGE LIB _DESTINATION}
LIBRARY DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
RUNTIME DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
)

There is nothing really special about this file. It is a standard CMakeLists.txt file with
instructions to include and link everything required by Hadoop.

With this file, we should be able to compile our code using catkin make. The binary
will be in the directory build of your Catkin workspace.

14

4.3 An Example of Job to Analyze rosbags

To complete our introduction on using ROS with Hadoop we are going to write a job that
analyzes rosbags and counts the different values for a given topic in the file.

The structure is very similar to that of the first job we have studied. We will have one
class for the Mapper, one for the Reducer. This does not change. What changes is that
rosbags cannot be read directly by Hadoop. While looking for a more elegant solution,
we are going to store our rosbags on a shared folder that will be accessed by the nodes
through NFS. The job’s input will instead be a folder containing the paths of these files.
Therefore each entry of the Map task will be the path of a file that we can open using
the ROS APIL.

Once the file is open, we need to create a view of this file for the topic of our choice. The
view can provide us with iterators through the file. As for the word count, we now just
need to iterate through the values and output them as the key, with a value that will not
be used. After iterating through the values, we close the bag and return.

Now for the Reducer, we read all the values, and increment a counter for every value.
After iterating through all the keys, we output the key and its counter.

The code for this example is available in appendix C. You can compile it with the
command catkin make, upload the program on HDFS and run it with an input being a
folder of files containing paths to your actual rosbags

5 Troubleshooting

Before even being able to write this simple tutorial, I have come a long way and had to
face and solve lots of issues. [tried to list them all here with ways to solve them. They
were mostly due to configuration problems so you might not have as many errors as I
did. Otherwise this section is the right one.

5.1 Starting Hadoop
All the processes did not start

After running start-all.sh or start-dfs.sh and start-yarn.sh, you should always
check with jps if all the processes started successfully. If they did not, you will find why
in the logs. Most likely, you've been trying to restart them too quickly and the ports are
reserved. You can check what process is using your port with:

sudo netstat -ap | grep :50090

Then kill this process and try again.

15

Hadoop does not work after a restart

Make sure you have correctly set the folders for Hadoop in core-site.xml on all the ma-
chines. By default, Hadoop writes in /tmp.

5.2 MapReduce

Let’s start with issues when launching a job. First you should go have a look in the log
files. They are in HADOOP_HOME/logs/user and will always tell you the source of the
error. Alternatively, you can check if everything is ok from a configuration aspect with:

$ hdfs dfsadmin -report

Running a Job Fails

Hadoop will not overwrite an output folder. You should always make sure to delete the
previous output folders or to specify a different folder for later jobs. If Hadoop is trying
to reach a node and is having trouble, check if all the nodes are up. Sometimes some
nodes are decommissioned and you need to start the right processes again. Running
start-all.sh from the master should launch all the missing nodes.

Once again, checking the logs will most likely tell you the source of the error. Another
error related to the use of ROS is that some nodes could be missing libraries required by
your job. You need to make sure all your nodes are correctly configured before going on.

The job hangs at map 0%, reduce 0%

Make sure you have set the hostnames right, and that you can ssh to any node without a
passphrase. In any case, the logs should tell you what happened, but this issue happened
to me due to network issues. This can also be due to an error in your code that causes
an exception. Typically, if your Mapper is correct but your Reducer is wrong, you will
most likely see the task hang at map 100%, reduce 0%.

5.3 Monitoring
Positive amount of under-replicated blocks

You need to check if your settings for replication are correctly set. Also, make sure
mapreduce.client.submit.file.replication is set, otherwise its default value of 10
will lead to under-replicated blocks if your cluster has less than ten machines.

5.4 Writing Jobs

Finally, while writing jobs, make sure to never cut a stream, meaning that a Mapper or
Reducer should only return once it has extracted all the pairs that it was given. Also,
make sure your stream has pairs available to be read before extracting one.

16

6 Conclusion

In this tutorial, we have seen how to set up a cluster for Hadoop. We have also studied
how to compile jobs for Hadoop in C++, using Hadoop Pipes, and how to use ROS for
our jobs.

Regarding performances, during my work I have managed to interpolate three days of
data in 40 minutes, using the cluster described above in the tutorial. However the way [
have been using Hadoop, through shared files on NFS, would not scale properly to larger
structures where we could not benefit of the rack-awareness. Instead, with a preprocessing
step to extract the data in the rosbags in csv files, we should be able to use Hadoop the
way it is supposed to be used.

I hope you managed to set up your own cluster and that this document has been helpful.
Now that your Hadoop is working, it’s time to write jobs!

17

A WordCount.cpp

#include <algorithm>
#include <limits>
#include <string>

#include "stdint.h"

#include "hadoop/Pipes.hh"
#include "hadoop/TemplateFactory.hh"
#include "hadoop/StringUtils.hh"

class WordCountMapper : public HadoopPipes::Mapper {
public:
WordCountMapper (HadoopPipes:: TaskContext& context) {}
// map function: receives a line, outputs (word,"1") to reducer.
void map(HadoopPipes::MapContext& context) {
// get line of text
std::string line = context.getInputValue();
// split it into words

std::vector<string> words = HadoopUtils::splitString(line, " ");
// emit each word tuple (word, "1")
for (unsigned int i=0 ; i < words.size() ; i++) {
context.emit (words[i], HadoopUtils::toString(1l));
}
}
I
class WordCountReducer : public HadoopPipes::Reducer {
public:
WordCountReducer (HadoopPipes::TaskContext& context) {}
void reduce(HadoopPipes::ReduceContext& context) {
int count = O0;
// get all tuples with the same key, and count their numbers
while (context.nextValue()) {
count += HadoopUtils::toInt(context.getInputValue());
}
// emit (word, count)
context.emit(context.getInputKey (), HadoopUtils::toString(count));
}
+s

int main(int argc, char *xargv[]) {
return HadoopPipes::runTask(
HadoopPipes::TemplateFactory<WordCountMapper,
WordCountReducer >()
);
}

18

B WordCount-NoPipe.cc

~
*
*

¥ X X X K X X X X X X X X X ¥ *

Licensed to the Apache Software Foundation (ASF) under one

or more contributor license agreements. See the NOTICE file

distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing,
distributed under the License is distributed on an "AS IS"

software
BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing

permissions and limitations under the License.

#include "hadoop/Pipes.hh"

#include "hadoop/TemplateFactory.hh"
#include "hadoop/StringUtils.hh"
#include "hadoop/SerialUtils.hh"

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>

const std::string WORDCOUNT = "WORDCOUNT";
const std::string INPUT_WORDS = "INPUT_WORDS";
const std::string OUTPUT_WORDS = "OUTPUT_WORDS";

class WordCountMap: public HadoopPipes::Mapper {
public:
HadoopPipes::TaskContext::Counter* inputWords;

};

WordCountMap (HadoopPipes:: TaskContext& context) {

}

inputWords = context.getCounter (WORDCOUNT, INPUT_WORDS);

void map(HadoopPipes::MapContext& context) {

3

std::vector<std::string> words =

HadoopUtils::splitString(context.getInputValue(), " ");
for (unsigned int i=0 ; i < words.size() ; i++) {
context.emit (words[i], "1");

}

context.incrementCounter (inputWords, words.size());

class WordCountReduce: public HadoopPipes::Reducer {
public:
HadoopPipes::TaskContext::Counter* outputWords;

19

WordCountReduce (HadoopPipes:: TaskContext& context) {
outputWords = context.getCounter (WORDCOUNT, OUTPUT_WORDS);
}

void reduce(HadoopPipes::ReduceContext& context) {
int sum = 0;
while (context.nextValue()) {

sum += HadoopUtils::toInt(context.getInputValue());

}
context.emit (context.getInputKey (), HadoopUtils::toString(sum));
context.incrementCounter (outputWords, 1);

}

+s

class WordCountReader: public HadoopPipes::RecordReader {
private:
int64_t bytesTotal;
int64_t bytesRead;
FILEx file;
public:
WordCountReader (HadoopPipes::MapContext& context) {
std::string filename;
HadoopUtils::StringInStream stream(context.getInputSplit());
HadoopUtils::deserializeString(filename, stream);
struct stat statResult;
stat (filename.c_str(), &statResult);
bytesTotal = statResult.st_size;
bytesRead = 0;
file = fopen(filename.c_str(), "rt");
HADOOP_ASSERT(file != NULL, "failed to open " + filename);
}

“WordCountReader () {
fclose(file);
}

virtual bool next(std::string& key, std::string& value) {
key = HadoopUtils::toString(ftell(file));
int ch = getc(file);
bytesRead += 1;
value.clear ();
while (ch != -1 && ch != ’\n’) {
value += ch;
ch = getc(file);
bytesRead += 1;
}
return ch != -1;

3

/ % %
* The progress of the record reader through the split
* as a value between 0.0 and 1.0.
*/
virtual float getProgress() {
if (bytesTotal > 0) {

20

return (float)bytesRead / bytesTotal;
} else {
return 1.0f;
}
¥
}s

class WordCountWriter: public HadoopPipes::RecordWriter {
private:
FILEx file;
public:
WordCountWriter (HadoopPipes::ReduceContext& context) {
const HadoopPipes::JobConf* job = context.getJobConf ();
int part = job->getInt("mapred.task.partition");
std::string outDir = job->get("mapred.work.output.dir");
// remove the file: schema substring
std::string::size_type posn = outDir.find(":");
HADOOP_ASSERT (posn != std::string::npos,
"no schema found in output dir: " + outDir);
outDir.erase (0, posn+1);
mkdir (outDir.c_str (), 0777);
std::string outFile = outDir + "/part-" +
HadoopUtils::toString(part);
file = fopen(outFile.c_str(), "wt");
HADOOP_ASSERT(file != NULL, "can’t open file: " + outFile);
}

“WordCountWriter () {
fclose(file);
}

void emit(const std::string& key, const std::string& value) {
fprintf (file, "%s -> %s\n", key.c_str(), value.c_str());
}
3

int main(int argc, char *xargv[]) {
return HadoopPipes::runTask(
HadoopPipes::TemplateFactory<WordCountMap, WordCountReduce,
void, void, WordCountReader,
WordCountWriter >()

21

C ros_example.cpp

#include <vector>

#include "Pipes.hh"
#include "StringUtils.hh"
#include "SerialUtils.hh"

#include "ros/ros.h"

#include "rosbag/view.h"
#include "rosbag/structures.h"
#include "geometry_msgs/Twist.h"

class ExampleMap : public HadoopPipes::Mapper {
public:
ExampleMap (HadoopPipes::TaskContext& context) {}
void map(HadoopPipes::MapContext& context) {
// extract paths from input
std::vector<std::string> paths =
HadoopUtils::splitString(context.getInputValue(), " ");
for (unsigned int i=0; i < paths.size(); ++i) {
// open rosbag file, create a view and an iterator on this view
std::string path = "/mnt/nfs/" + paths[i];
rosbag::Bag bag(path);
rosbag::View topic_view(bag, rosbag::TopicQuery("/cmd_vel"));

rosbag::View::iterator j = topic_view.begin();
// iterate through the values
for (; j '= topic_view.end(); j++) {

// instantiate a message from the view
boost::shared_ptr<geometry_msgs::Twist> m =
j->instantiate<geometry_msgs::Twist>();
// emit linear.x as a key, with random value
context.emit("angular x " + std::to_string(m->angular.x), "1");
}
bag.close () ;

}
};

class ExampleReduce : public HadoopPipes::Reducer {
public:
ExampleReduce (HadoopPipes::TaskContext& context) {}
void reduce(HadoopPipes::ReduceContext& context) {
int count = O0;
while (context.nextValue()) count++;
// output the final result
context.emit (context.getInputKey (), std::to_string(count));
}
3

int main(int argc, char xargv[]) {
return HadoopPipes::runTask(
HadoopPipes::TemplateFactory<ExampleMap, ExampleReduce>()
)
}

22

References

[1] core-default.zml. URL: https://hadoop . apache . org/docs/r2.7.3/hadoop-
project-dist/hadoop-common/core-default.xml.

[2] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. 2004. URL: http://static . googleusercontent . com/media/
research.google.com/fr//archive/mapreduce-osdiO4.pdf.

[3] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System.
2003. URL: http://static.googleusercontent.com/media/research.google.
com/fr//archive/gfs-sosp2003.pdf.

[4] Google — protobuf. URL: https://github.com/google/protobuf.

[5] Hadoop Java Versions. Apache. URL: https : //wiki . apache . org /hadoop /
HadoopJavaVersions.

[6] Hadoop: Setting up a Single Node Cluster. Apache. URL: http://hadoop.apache.
org/docs/r2.7.3/hadoop-project-dist/hadoop-common/SingleCluster .
html.

(7] Hadoop Tutorial 2.2 — Running C++ Programs on Hadoop. Smith College. URL:
cs.smith.edu/dtfwiki/index.php/Hadoop_Tutorial_ 2.2_-_Running C++_
Programs_on_Hadoop.

[8] hdfs-default.cml. URL: http : //hadoop . apache . org/docs/r2 .7 .3/hadoop-
project-dist/hadoop-hdfs/hdfs-default.xml.

9] Andrea Iacono. MapReduce by Examples. SlideShare. URL: http://www.slideshare.
net/andreaiacono/mapreduce-34478449.

[10] mapred-default.zml. URL: https://hadoop.apache.org/docs/r2.7.3/hadoop-
mapreduce-client/hadoop-mapreduce-client-core/mapred-default.xml.

[11] MapReduce Tutorial. Apache. URL: http://hadoop.apache.org/docs/r2.7.3/
hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.
html.

[12] Native Libraries Guide. Apache. URL: https://hadoop.apache.org/docs/r2.7.
3/hadoop-project-dist/hadoop-common/NativeLibraries.html#Build.

[13] Thinking about the HDFS vs. other Storage Technologies. Apache. URL: http://
hortonworks . com/blog/thinking - about - the - hdfs - vs - other - storage -
technologies/.

[14] yarn-default.zml. URL: https://hadoop . apache . org/docs/r2.7.3/hadoop-
yarn/hadoop-yarn-common/yarn-default.xml.

23

