CS8903 Special Problem : Mesh Networks for
robotic teleoperation
-State of the Art and Implementation for Robotics-

Sylvain Chatel under the supervision of Pr. Cedric Pradalier
Georgia Institute of Technology
Email : sylvain.chatel @gatech.edu

Résumé—1In this small paper, we explore the different kind of
Mesh network protocols as of today. The objective is to give to
the reader an overview of the different existing techniques and
to decide which one would be the most efficient for a robotic
application. Indeed the final goal is to realize a Mesh network
that would enable several robots to communicate. This paper
is a state of the art of Mesh application for robotics as well as
a experiment review of the use of mesh network for robotics.

I. INTRODUCTION

Wireless Mesh Networks (WMNs) are an evolution of
wireless technologies. They are made of mesh clients and
mesh routers with the particularity that each node is both
client and router. The idea is that even if a node is not in
range, one can communicate with another node not in range
by using other nodes as relays. According to Akyildiz in
[1], Mesh networks offer many advantages among which
reliability of the service, low cost, easy maintenance and ro-
bustness. He also states that Mesh networks can be build on
various kind of computer systems including laptop/desktop
PCs. Since its development, WMNs have evolved and several
communication protocols have emerged. for instance OLSR,
B.A.T.M.A.N. or Babel. Murray et al in [2] and Abolhasan
et al in [3] both present the existing mesh protocols and
their performances. Those results will be summarised in the
following sections.

In [4], Li et al studied the constraint and specification a
robot swarm communication network would need. And in
[5], Hart et al explored and implemented mesh network for
robots to be able to communicate among themselves. They
also implemented the three main mesh protocols previously
stated in order to point out which is the most appropriate
for robots communication.

The paper is structured as follows. In Section II, we
present the basics of Mesh Networks and the requirements
for robotic applications. Then, in Section III, we present
the different protocols and their characteristics and finally in
Section IV, we will present a few implementation systems
as found on the internet as of today. In section V we will
present our own implementation on a turtlebot.

II. MESH NETWORKS

A. Quick overview

In this section, we present the main aspects of WMNs.
Those results are mainly based on Akyildiz in [1].

Mesh Networks are a kind of Ad Hoc Networks but
offering multi hop. In other words, each node acts like a
client and a router and is able to retransmit an incoming
message so that nodes can communicate without a direct
line of sight. Application for WMNs are numerous from
creating a LAN to a swarm robots ([1], [4]).

We now can focus on the technical aspects of a WMN. We
remind the reader that the OSI model is made of seven layer :
Application, Presentation, Session, Transport, Network, Link
and Physical. According to [1], the physical layer doesn’t
really differ from other classical networks. However, the
following show differences.

First, the Link layer. According to Akyildiz, the MAC
protocol for WMNSs have some difference with other wireless
networks. Indeed, MAC for WMNSs have to take into account
that multi hop communication is used, that this distributed
problem needs to be dealt with in a cooperative multipoint-
to-multipoint communication, that mobility affects the per-
formance of MAC and finally that Network self-organisation
is a requirement. In order to meet those requirements, Akyil-
diz presents several solutions : improving existing MAC
protocol or innovate MAC protocols. All the detail of that
can be found in [1].

Second, even though WMNs will be based on IP, they
have a very different routing protocol than wired networks.
Because WMNs and Ad Hoc networks share similar features,
protocols from the latest can be applied to WMNs. An
optimal routing protocol will deal with the following :
Performance metrics, Fault tolerance with link failures, Load
balancing, Scalability and Adaptive Support of Both Mesh
Routers and Clients. The main three routing protocols are
presented in Section III.

Finally, the Transport Layer. According to Akyildiz, no
transport protocol has been implemented especially for
WMNs. At the time of [1], WMNSs used variants of TCP
or new ones such as Ad Hoc Transport Protocol (ATP) (but
although presenting advantages, those kind of protocols lack
compatibility with other systems).

This section was a mere summary of the WMNs technical
aspects from [1].

B. Requirements

In [6], Yang et al present the requirements for routing
metrics in order to satisfy good performances : route stabi-
lity, good performance for minimum weight paths, efficient
algorithm to calculate minimum weight path and loop-free
routing.

In [5], Hart et al want to establish a mesh network
connection between robots in order to proceed to robotic te-
leoperation. This suppose a high quality video streaming i.e.
without pixelated video (appearance of artefacts), smearing
video (appearance of a smeared ghosting image), choppy
video. Even more this suppose no intermittent and delayed
control of the robot.

III. ROUTING PROTOCOLS

In this section, we will present the three main kind of
routing protocols for multi hop ad hoc networks. The reader
must be aware that WMNs are a kind of Mobile Ad Hoc
Networks (MANETS) and such networks have different kind
of routing protocols categories : reactive, proactive and
hybrid. The first one means that the routing table is set only
when a message needs to be sent. The second one means
that the protocol actively establishes routing tables in order
to reduce the latency in sending a message. Finally the third
one tends to combine the first two. All three of the following
protocols are proactive routing protocols.

A. Optimized Link State Routing (OLSR)

OLSR was a first attempt to use proactive link-state
algorithm to determine the most efficient path between
nodes. It is currently one of the most used routing protocols
for ad hoc networks.

OLSR uses the concept of Multi-Point Relays (MPRs)
which are designated nodes that actually retransmit the
data. These MPRs are dynamically selected and are the
backbone of the OLSR protocol. The selection process is
as follows : first a node A broadcasts a first message in
order to detect its one hop neighbours with whom it shares
a bidirectional path. Then A broadcasts a Hello message
containing its heard neighbours, its connected neighbours
(bidirectional path established) and the designated MPRs
node by node A. When enough MPRs are selected, MPRs
send Topology Control messages (TC) which allow to build
a routing table of the whole topology for each node. This
process is dynamically modified in order to take into account
the changes in the topology. Using this method, MPRs have
a complete routing table while minimising the number of
TC messages.

On Figure 1, we can see an example from [2] of the MPRs
repartition in a network.

®
® & ¢ ©
@
® &® ® &
® &% ® ®
® © ® ® ©
® ®
® © ® o
& © ® ®
@
® ® ® ®
Fig. 1. Routing information must be broadcast to all nodes
®
® @ Y ©
® ® = ®, ® ¢
® ® R ® ® _
/@ ®
® ® ® g
® I® © % ®
® ® ® @

Fig. 2. The election of MPRs allows efficient dissemination

FIGURE 1. Presentation of the MPRs in a network topology as seen in [2]

B. Better Approach To Mobile Ad hoc Networking

(BA.TM.A.N.)

BATMAN is also a proactive protocol but has a very
different approach on the routing problem. Indeed, its modus
operandi is to discover which neighbour offers the best path
to other nodes. This decentralized method enables each node
to send the desired message not to a particular node but in
a certain direction. In this protocol, each node broadcasts
a message called Originator Messages (OMs) periodically.
When received by another node, the latest re-broadcasts the
OMs. Then, a particular route to a destination is determined
based on nodes who received the more OMs from the
destination. In other words, the route is determined based
on the most reliable link. In order to work, this protocol lies
on the packet’s ability to get lost. In order to proceed that
way, UDP datagram are used for the OMs : if a packet
gets lost, it means that the link is not fast and reliable.
This method is acccording to [3] less complex and has less
hardware requirements than OLSR for instance.

C. BABEL

BABEL is another proactive protocol which lies on ad-
vanced distance vector routing algorithm. This means that
routers don’t have full knowledge of the network’s topology.
Instead, they use the direction in which the destination is and

the distance to it to calculate the best route. The technique of
distance counting used is an evolution of the called Expected
Transmission Count (ETX) algorithm. BABEL operates both
with IPv4 and IPv6 networks.

D. Comparison between the different protocols

Both [2] and [3], researchers carried out a complementary
study on the performance of each protocols. In this section,
we aim to present those results. In both cases, a small
network was implemented on hardware running on Linux.
They then used the three protocols in different cases and
analysed the results. To our point of view, [3] presents a
more complete analysis than [2] which validates the previous
study. They analysed the bandwidth, the packet delivery
ratio and route convergence latency. In [3], they concluded
that BATMAN offers the highest level of stability and
packet delivery whereas BABEL offers the highest multi
hop bandwidth and the fastest route repair time. However,
in [2], they attenuate those results presenting more mixed
performance results showing that OLSR is not completely
outperformed by the other two.

In [5], Abraham Hart et al explored the use of the different
protocols for robotic teleoperation use. They decided to
focus their work on OLSR and BABEL since BATMAN
wasn’t developed enough at the time. They succeeded in
implementing a robust mesh communication network which
allows video streaming and roaming by modifying the ba-
beld package. According to their report, they had to add an
ETX threshold (in order to avoid route-flapping) and increase
the "hello” packet rate.

IV. IMPLEMENTATION SYSTEMS

In this section we aim to present the different existing
implementation solution for WMNs as of today.

e Open-Mesh [7] : Based on the BATMAN protocol. A
list of compatible hardware is available online.

e Commotion : Based on OLSR. Fully developed. A list
of supported hardware can be found online.

e Byzantium : A fully working OLSR implementation.

e BABELd : Implementation of the BABEL routing
protocol. A git depository is available. No hardware
requirements are specified.

e OLSRd : Another OLSR implementation fully develo-
ped as well.

V. IMPLEMENTATION EXPERIMENT

In this section, we present how we used a mesh network
to proceed to robotics teleoperations. Our objective is, in a
first approach, to be able to remotely control a small robot
called a turtlebot. In a second approach, we will create fail-
safe mode and network analysis based communications.

A. The mesh protocol

The first step is to determine the protocol we will use to
create the mesh network. Thanks to the previous state of
the art and the analysis of our needs, our choice was set
on Open Link State Routing and its implementation called
olsrd. OLSRd was developed as an open source module
that works on any Wifi card that support Ad-Hoc mode and
Ethernet devices. In our implementation, we use the latest
version of olsrd : v0.9.0.3. Our turtlebot runs on a linux
3.7.8 porteus 186 platform.

First, we logged as root and installed olsrd. We downloa-
ded it in a source folder.

> c¢d /home/turtlebot/source
> tar jxvf olsrd -0.9.0.3.tar.bz2
> ¢d olsrd -0.9.0.3/

Console 1. Get OLSRd

Next, we installed the necessary packages to compile :

install bison
install flux
install checkinstall

> sudo
sudo
> sudo

apt—get
apt—get
apt—get

\%

Console 2. Get useful modules

In order to compile, we executed the following com-
mands :

> make

> sudo checkinstall

> c¢d /home/turtlebot/source/olsrd -0.9.0.3 »
& /lib/httpinfo/

> make

> sudo make install

> c¢d /home/turtlebot/source/olsrd -0.9.0.3 »
& /1lib/jsinfo/

> make

> sudo make install

Console 3. Install OLSRd

Now we have an installed olsrd module on the machines.
In order to create a mesh network, we implement this module
on several laptops. In our experiment we used five identical
laptops. Then the mesh network can be set by configuring
in a right way each node. First, we have to determine the
interface the wireless module uses.

> ifconfig
> iwconfig

Console 4. Get the initial netork status

The first output gives us the gives us all the information
of the networking configuration on the node. The second
informs us about the wireless interface. Let us assume that
the wireless interface in use is wlanl. We still have to disable
the network manager and configure the parameters.

> sudo stop network-manager
> sudo iwconfig wlanl mode Ad-Hoc
> sudo iwconfig wlanl essid "NetworkName"

> sudo ifconfig wlanl <IPaddress> netmask v
& 255.255.255.0 up

Console 5. Configure the network parameters

Note : Please note that at reboot all those parameters
will be reset to default. To avoid that we could suggest one
to modify the /etc/network/interfaces file.

In our experiment, we used addresses IPv4 from the sub-
net 10.17.6.0/24. In other words, our IP addresses were for
instance 10.17.6.102 or 10.17.6.110 depending on the serial
number of the turtlebot (here 2 and 10). The "NetworkName"
is just the name of the network, we used "mesh22".

Once this configuration is done, we can create/join the
network by using :

> sudo olsrd -i wlan2

Console 6. Launch OLSRd on interface wlan2

We then get the output on Figure 2.

turtlebot@turtlebot01: ~

IP address hyst LQ ETX
10.17.6.108 0.000 1.000/1.000 1.000
10.17.6.105 0.000 1.000/1.000 1.000
10.17.6.107 0.000 1.000/1.000 1.000
10.17.6.110 0.000 1.000/1.000 1.000
- 12:06:51.243980 ---------s-ssrmscssssese oo oo NEIGHBORS
IP address Hyst LQ ETX SYM MPR MPRS will
192.168.32.5 0.000 1.000/1.000 1.000 YES NO YES 3
10.17.6.107 0.000 1.600/1.000 1.000 YES NO NO 3
10.17.6.108 0.000 1.600/1.000 1.000 YES NO YES 3
10.17.6.110 0.000 1.600/1.000 1.000 YES NO YES 3
= 12:86:51.244818 --------=-============== TWO-HOP NEIGHBORS
IP addr (2-hop) IP addr (1-hop) Total cost
192.168.32.5 10.17.6.108 2.008
10.17.6.107 2.000
10.17.6.107 10.17.6.110 2.000
192.168.32.5 2.000
10.17.6.108 2.0008
10.17.6.108 10.17.6.107 2.000
192.168.32.5 2.000
10.17.6.110 10.17.6.107 2.000

FIGURE 2. olsrd output

Now we have a properly working mesh network running
on a OLSR routing protocol. On the output, we can see all
nodes in the network, the next hop, the second hops and the
metrics. In order to get a more comprehensive view of the
network, we use the following :

> watch ’ifconfig wlan2,
> ping 10.17.6.110

> route -n

> traceroute

iwconfig wlan2’

10.17.6.110

Console 7. control the network status

Note : Please note that you might need to install
traceroute since it is not a default module.

B. The first experiment

Once this was done, we conducted a series of test in order
to get a idea of the network performances. We designed
a experiment involving five nodes we called the pyramidal
experiment. We set the nodes as showed on Figure 4.

(@)

10.17.6.108

(tp) y

FIGURE 3. Presentation of the pyramidal experiment

We set four static nodes in a pyramidal way

(10.17.6.101/102/108/110) and we keep one mobile
node 10.17.6.107. Using the upper node 10.17.6.108, we
create a video streaming from this node to the mobile node.
The distance between consecutive static nodes was about
10 to 25 meters but in a non-line of sight environment and
with other Wifi interferences.
The objective of the experiment is to try the performances
of the network for high QoS applications. In order to
generate the streaming, we used a video software called
VLC.

Then moving around with the mobile node, we were
able to witness the dynamic reconfiguration induced by the
routing protocol and for low speed, the QoS of the video
streaming is unimpacted by the network reconfiguration.

In the protocol, the hello messages were set to be sent
every two seconds. In order to get better performances with
higher speed, we could reduce the validity time and the
frequency of those hello messages to have a more reactive
network.

C. The use of ROS

After those successful tests, we wanted to try the teleo-
peration of the robots using the mesh network. In order to
do so, we used ROS, an operating system design for robotic
applications. The platform we used is a turtlebot controlled
by the laptops previously mentioned. Our version of the
turtlebot was indigo.

Using ROS, it was straightforward to create a
teleoperation using the keyboard of the control station
or a joystick. Tutorials to achieve this can be found on
wiki.ros.org/turtlebot/Tutorials/indigo/.

Using the mesh network previously created and ROS, we
were able to remotely control the turtlebot in an Ad-Hoc

mode.

The protocol to create a teleoperation is as follows :

e On the turtlebot 10.17.6.108 :

FIGURE 4. A turtlebot

To access this information we use the following command
line :

> curl http ://localhost :9090/routes/links

> roscore

> echo export ROS_MASTER _URI = v

& http ://localhost :11311>> ~/.bashrc
> echo export ROS_HOSTNAME = v~

& 10.17.6.108 >> ~/.bashrc

Turn on the robot

> gnome-terminal &

1> roslaunch turtlebot_bringup v
 minimal.launch

2> roslaunch turtlebot_dashboard v~
& turtlebot_dashboard.launch

3> rqt_remocon

4> roslaunch turtlebot_rviz_launcher
& view_robot.launch

5> roslaunch turtlebot_bringup v

& 3dsensor.launch

Console 8. teleoperation setup form the robot 10.17.6.108

e On the Control Station 10.17.6.107 :

> echo export ROS_MASTER URI = »

& http ://10.17.6.108 :11311>> ~/.bashrc
> echo export ROS_HOSTNAME = v

& 10.17.6.107 >> ~/.bashrc

> roslaunch turtlebot_teleop v

& logitech .launch

Console 10. fetch the network json information

D. Towards better control

Now that the system was working properly, the objective
was to create ROS packages to use the network data and
take the adequate decision. Indeed, the mesh network
might sometimes be weak and do not offer a sufficient
connection for teleoperation. In that case, we want the
turtlebot to switch to a safe mode and wait for the connection
to be re-established with a good QoS o prevent any accident.

In order to achieve this goal, we built three ROS packages
called nodes.

The first one is called OLSR_MONITOR. Its goal is to
fetch the OLSR json information from the http interface.
This node was developed in python and publishes a ROS
message containing the source IP (the mobile robot), the
destination IP (the control station), the gateway (next hop
neighbour to the station), the link quality to the destination,
the link quality of the destination, the expected transmission
count (etx) and the time.

The second node is called MESH_SAFETY. Its
goal is to decide based on the ROS message sent
by OLSR_MONITOR whether or not to forward the
/joy_input sent by the control station to the teleoperation
node in the mobile robot. Based on several threshold we
determined experimentally, the node forwards the command
if it judges that the network offers sufficient QoS to ensure
a proper teleoperation. This structure is illustrated on Figure
5.

To create those nodes and use ROS, we followed the lines
stated below :

Console 9. teleoperation setup form the control station 10.17.6.107

Those command lines enable the user form the control
station (10.17.6.107) to control the robot (10.17.6.108)
via a LOGITECH joystick. The rviz and 3dsensor launches
enable the video streaming form the robot to the station.

To get the network information, we can use the http
interface available by OLSRd module jsoninfo . Several
information get be fetch : neighbors, links, routes, hna, mid,
topology, gateways, interfaces, status. In our experiment,
we decided to only use links and route since they offer all
the necessary information we want.

ROS
> source /opt/ros/indigo/setup.bash
> source /home/turtlebot

Create a catkin workspace
mkdir —-p ~/catkin_ws/src
cd ~/catkin_ws/src
catkin_init_workspace

cd ~/catkin_ws/
catkin_make

source devel/steup.bash
echp $ROS_PACKAGE_PATH

VVVVVYVYVH®

Creation of MESH_SAFETY

cd catkin_ws/src
catkin_create_pkg mesh_safety
cd ~/catkin_ws/src/mesh_safety
mkdir src

vim mesh_safety_node.cpp

V VVVYV#

H*

Creation of OLSR_MONITOR and message
cd catkin_ws/src

\%

Controller

Robot

teleoperation minimal launch
fjoy
Joy oo *» | Teleop |...| motor
/joy_cmd
fjoy_input

» MESH_SAFETY

T /olsr_state

OLSR_MONITOR | ¢—— O LS R d /

http jsonv

FIGURE 5. ROS hierarchical architecture

> catkin_create_pkg olsr_monitor
> c¢d ~/catkin_ws/src/olsr_monitor
> mkdir script

> vim olsrd_monitor_node.py

> cd ~/catkin_ws/src/olsr_monitor
> mkdir msg

> vim OLSR_state_msg.msg

compile

> c¢d ~/catkin_ws

> catkin make

Console 11. ROS setup

Now that we have created empty nodes, we still have to
build them accordingly with our goals.

The following code is the script code of the
OLSR_MONITOR python node. As previously stated,
its objective is to fetch the network information and send a
olsr_state_msg.

#!/usr/bin/env python

license removed for brevity

import rospy

from olsr_monitor.msg import OLSR_state_msg
import urllib, json

def talker () :
pub = rospy.Publisher(’olsr_state ’, ~
 OLSR_state_msg, queue_size=10)
rospy .init_node (’talker ’, anonymous=True)
rate = rospy.Rate(2) # 10hz

url_links = "http ://localhost :9090/1links"
url_routes = "http ://localhost :9090/routes”

while not rospy.is_shutdown() :
rsp_links = urllib.urlopen(url_links)
rsp_routes = urllib.urlopen(url_routes)

data_links = json.loads(rsp_links.read())
data_routes = json.loads(rsp_routes.read())

links = data_links[’links]

routes = data_routes [’ routes ']
dst_ip = ’10.17.6.107"
src_ip = ’10.17.6.101"
msg_link_q = links [0][’ linkQuality "]

msg_nbr_link_q = ©

& links[0][neighborLinkQuality ’]
msg_route_gtw = routes [0][" gateway ']
msg_route_etx = routes[0][rtpMetricCost "]

for i in range(len(links)) :
if links[i][remoteIP ’].encode(’latin -1") 2
G == dst_ip :
msg_link_q = links[i][linkQuality ’]
msg_nbr_link_q = 7
& links[i][neighborLinkQuality ’]

break
for i in range(len(links)) :
if v

& routes[i][’destination ’].encode(’latin -1") == 2

& dst_ip :
msg_route_gtw = /

& routes[i][’ gateway ’].encode(’latin —1")
msg_route_etx = routes[i][rtpMetricCost ']
break

msg_time = data_links[’systemTime]

msg = OLSR_state_msg ()
msg. header . frame_id =

msg. header.stamp = rospy.Time.now ()
msg.num = msg_time

msg.src_ip = src_ip

msg.dst_ip = dst_ip

msg.gateway = msg_route_gtw

msg.link_q = msg_link_q
msg.nbr_link_q = msg_nbr_link_q
msg.etx = msg_route_etx

hello_str = "hello world %s" % v
& rospy.get_time ()

rospy . loginfo (msg)

pub. publish (msg)

rate .sleep ()

5

if __name__ == ’__main__
try :
talker ()
except rospy.ROSInterruptException :
pass

Console 12. olsr_monitor_node.py

Let us now explain this code. First, we import all the
necessary packages such as urllib and json. Then, we define
the "talker" which is responsible for sending the message.
Using the urllib library we fetch the json data from olsrd. We
then extract the information we need (regarding the mobile
node to the control station). Finally, we assign the variables
in the ros message with the corresponding value and we
publish.

Now, we have to build the decision package : the node
that will take the decision to forward the /joy message (i.e.
forward the teleoperation command from the control station
to the mobile turtlebot) whether or not depending on the
state of the network. We already said that the network state
was determined by several metrics and parameters such as
the next hop to the destination (referred as gateway), the
estimated transmission count and the link quality (between
0 and 1, 1 being ideal). If the metrics reach some thresholds,
the node puts a hold on the forwarding and the robot is put
into a safe mode until the metrics get better. The code is as
follows :

#include "ros/ros.h"

#include "olsr_monitor/OLSR_state_msg.h"
#include "sensor_msgs/Joy.h"

#include "geometry_msgs/Twist.h"

#include <sstream>

class OLSR {
public :
OLSR ()
check (true), n("~")
{

// code constructeur

joy_pub = 7
& n.advertise <geometry_msgs : :Twist >("/joy_cmd", 2
S 1000);

joy_sub = n.subscribe ("/joy_input", 1000, »
 &OLSR: :joy_sub_callback , this);

olsr_state_sub = n.subscribe ("/olsr_state", ~
& 1000, &OLSR : :olsr_state_sub_callback , this);

}

void olsr_state_sub_callback (const /
& olsr_monitor : :OLSR_state_msgConstPtr& »~
& olsr_msg) {
// here goes the code to decide if
 message should be forwarded
double threshold = 0.100;

the /joy v

int
std

num = olsr_msg->num;

pistring src_ip = olsr_msg->src_ip;
std ::string dst_ip = olsr_msg->dst_ip;
std ::string gateway = olsr_msg->gateway;
float link_q = olsr_msg->link_q;
float nbr_link_q = olsr_msg->nbr_link_q;
std ::string etx = olsr_msg->etx;

if ((link_q < threshold) Il
& "INFINITE")) {
check = false;
} else {
check =
}

(etx ==

true ;

}

void joy_sub_callback (const
& joy_sub_msg) {
// here we receive /joy_input and
& True
joy_msg = joy_sub_msg;
last_joy = ros ::Time :
if (check == true){
run () ;

}

sensor_msgs : :Joy& ~

if bool ==

mow () ;

}

void run() {
ros : :Rate
while (ros ::0k()) {
ros : :spinOnce () ;
if ((ros ::Time:
G > 1.0) {
}

rate (10);

mow () — last_joy).toSec() v

joy_pub.publish (joy_msg);
rate .sleep () ;

}

}
protected :
bool state;
bool check;
ros : :NodeHandle n;
ros : :Publisher joy_pub;
ros ::Subscriber joy_sub;
ros : :Subscriber olsr_state_sub;
ros : :Time last_joy;
sensor_msgs : :Joy joy_msg;
s
int main(int argc, char s=xargv) ({
// init ROS
ros ::init(argc, argv, "mesh_safety_node");
OLSR olsr;
/1l
// enter loop
ros ::spin();
return 0;

Console 13. mesh_safety_node.cpp

Again, allow us to explain the previous code. First, we
subscribe to the /joy_input, published by the control station,
and to the olsr state message sent by the OLSR_MONITOR
node. Then, we check if the values in the state message reach
the thresholds. If not then the node forwards the /joy_input
as /joy_cmd.

E. Results

Using the protool stated below, we managed to use the
mesh network and proceed to the teleoperation of a turtlebot
up to three hops away from the ontrol station. However,
even though commands were still reaching the robot, the
latency and the QoS of the network wasn’t sufficient enough

to get a proper real time teleoperation. Our analysis would
suggest that by modifying the update time and hello message
frequency in OLSRd we could ensure a better teleoperation.
To conclude, the mesh networks offers a decent solution to
teleoperation for the turtlebot but would benefit from some
modifications in order to make it better than a managed
network with well positioned Wifi routers.

VI. CONCLUSION

In this paper, we presented some distinctive features of

Wireless Mesh Networks. We presented as well the three
main routing protocols in order to make a choice before
implementing a Mesh Network for robotic teleoperations.
Through our research, we came by several hardware requi-
rements that we must check with the Turtle bots before going
any further.
In a second approach, we decided to experiment the use of
mesh networks for robotics teleoperations. After choosing
the OLSR routing protocol, we used one of its several
implementations OLSRd. Then using ROS we managed to
operate teleoperations via the mesh network with decent
performances.

REFERENCES

[1] 1. F. Akyildiz, X. Wang, and W. Wang, “Wireless mesh networks : A
survey,” Comput. Netw. ISDN Syst., vol. 47, pp. 445-487, Mar. 2005.

[2] D. Murray, M. Dixon, and T. Koziniec, “An experimental comparison
of routing protocols in multi hop ad hoc networks,” in in Telecom-
munication Networks and Applications Conference (ATNAC), 2010
Australasian, pp. 159-164.

[31 Real-world performance of current proactive multi-hop mesh protocols,
Oct. 2009.

[4] M. Li, H. Zhu, S. Mao, K. Lu, and M. Chen, “Robot swarm commu-
nication networks : Architectures, protocols, and applications,” 2008.

[5] A. Hart, N. Pezeshkian, and H. Nguyen, “Mesh networking optimized
for robotic teleoperation,” 2012.

[6] Y. Yang, “Designing routing metrics for mesh networks,” in In WiMesh,
2005.

[7]1 “Open-Mesh download.” https://www.open-mesh.org/projects/
open-mesh/wiki/Download. Accessed : 2016-09-08.

