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The class of reduction-based algorithms was introduced recently as a new approach towards
creative telescoping . Starting with Hermite reduction of rational functions, various reduc-
tions have been introduced for increasingly large classes of holonomic functions. In this
paper we show how to construct reductions for general holonomic functions, in the purely
di�erential setting.
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1. Introduction

Let K be an e�ective �eld of characteristic zero and �2K[x] a non-zero polynomial. Consider
the system of di�erential equations

� y 0 = Ay; (1)

where A2K[x]r�r is an r� r matrix with entries in K[x] and y is a column vector of r unknown
functions. Notice that any system of di�erential equations y 0 = B y with B 2 K(x) can be
rewritten in this form by taking � to be a multiple of all denominators.

Let y be a formal solution to (1) and consider theK[x; �¡1]-moduleM of linear combinations
� y = �1;1 y1 + ��� + �1;r yr where � 2 K[x; �¡1]1�r is a row vector. Then M has the natural
structure of a D-module for the derivation @ de�ned by (� y)0 = (�0 + �¡1 � A) y. A K-linear
mapping [�]:M!M is said to be a reduction if [f ]¡ f 2 Im@ for all f 2M. Such a reduction is
said to be con�ned if its image is a �nite dimensional subspace of M and normal if [f 0] = 0 for
all f 2M.

In this paper, we will show how to construct con�ned reductions. Such reductions are inter-
esting for their application to creative telescoping [13, 7], as we brie�y recall in section 2. The
�rst reduction of this kind is Hermite reduction [2, 4], in which case A = 0. The existence of
normal con�ned reductions has also been shown in increasingly general cases [12, 6] and most
noticeably so for Fuchsian di�erential equations [5]. We refer to [4, 9] for more details and the
application to creative telescoping.

Our construction of con�ned reductions proceeds in two stages. In section 4, we �rst focus
on the K[x]-submodule M] of M of linear combinations � y with �2K[x]1�r. We will construct
a K-linear head reduction d�e:M]!M] such that df e¡ f 2 Im @ and deg df e is bounded from
above for all f 2M]. Here we understand that deg(� y) :=deg� :=max (deg�1;1; :::;deg�1;r) for
all �2K[x]1�r. The construction uses a variant of Gaussian elimination that will be described
in section 3.
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The head reduction may also be regarded as a way to reduce the valuation of f in x¡1, at
the point at in�nity. In section 5 we turn to tail reductions, with the aim to reduce the valuation
of f at all other points in K and its algebraic closure K̂. This is essentially similar to head
reduction via a change of variables, while allowing ourselves to work in algebraic extensions ofK.

In the last section 7, we show how to glue the head reduction and the tail reductions at each
of the roots of � together into a global con�ned reduction on M. Using straightforward linear
algebra and suitable valuation bounds, one can further turn this reduction into a normal one,
as will be shown in detail in section 7.2.

The valuation bounds that are required in section 7.2 are proved in section 6. In this section
we also prove degree and valuation bounds for head and tail choppers. The existence of head and
tail choppers whose size is polynomial in the size of the original equation makes it possible to
derive polynomial bounds for the complexity of creative telescoping: this follows from polynomial
bounds for the dimension of im [�] and for the reduction of an elements in M. We intend to work
out the details in a forthcoming paper.

2. Creative telescoping

Let k be an e�ective sub�eld ofC and let @x=@ /@x and @u=@ /@u denote the partial derivations
with respect to x and u. Consider a system of di�erential equations�

�@x y = Ay
�@u y = By;

(2)

where �2k[x; u] is non-zero and A;B 2k[x; u]r�r are such that

@x(�¡1B)+ �¡2AB= @u(�¡1A)+ �¡2BA:

Setting K=k(u), the �rst part of (2) then becomes of the form (1). Notice that any bivariate
holonomic function is an entry of a solution to a system of the form (2).

Let y be a complex analytic solution of the above system of equations and let M be the
K[x; �¡1]-module generated by the entries of y. Notice that M is stable under both @x and @u.
For any f = � y 2M with � 2K[x; �¡1]1�r and any non-singular contour C in C between two
points �; � 2k, we may consider the integral

F (u) =

Z
C
f(x; u) dx;

which de�nes a function in the single variable u. It is natural to ask under which conditions F
is a holonomic function and how to compute a di�erential operator L2K[@u] with LF =0.

The idea of creative telescoping is to compute a di�erential operatorK 2K[@u] and a function
�= @x� with �2M such that

Kf(x; u) = �(x; u): (3)

Integrating over C , we then obtain

KF (u) =

Z
C

@�
@x

(x; u) dx = �(�; u)¡ �(�; u):

If the contour C has the property that �(�)= �(�) for all �2M (where the equality is allowed
to hold at the limit if necessary), then L = K yields the desired annihilator with LF = 0. In
general, we need to multiply K on the left with an annihilator of �(�; u)¡ �(�; u).

Now assume that we have a computable con�ned reduction [�]:M!M. Then the functions
in the sequence [f ]; [@u f ]; [@u2 f ]; ::: can all be computed and they belong to a �nite dimensional
K-vector space V . Using linear algebra, that means that we can compute a relation

K0 [f ] + ���+Ks [@u
s f ] = [K0 f + ���+Ks @u

s f ] = 0 (4)

2 Constructing reductions for creative telescoping



with K0; :::; Ks2K. Taking

K = K0+ ���+Ks @u
s

� = (Kf)¡ [Kf ] 2 @xM;

we thus obtain (3). If the relation (4) has minimal order s and the reduction [�] is normal, then
it can be shown [9] that there exist no relations of the form (3) of order lower than s.

3. Row swept forms

Let U 2Kr�r be a matrix and denote the i-th row of U by Ui;�. Assuming that Ui;�=/ 0, its leading
index `i is the smallest index j with Ui;j=/ 0. We say that U is in row swept form if there exists
a k2f0; :::; rg such that U1;�=/ 0; :::; Uk;�=/ 0; Uk+1;�= ���=Ur;�=0 and Ui0;`i=0 for all i< i06k.
Notice that U has rank k in this case.

An invertible matrix S2Kr�r such that S U is in row swept form will be called a row sweaper
for U . We may compute such a matrix S using the routine RowSweaper below, which is really
a variant of Gaussian elimination. Whenever we apply this routine to a matrix U such that the
truncated matrix U~ with rows U1;�; :::; Uk;�; 0; :::; 0 is in row swept form, we notice that these
�rst k rows are left invariant by the row sweaping process. In other words, the returned row
sweaper S is of the form S=

�
Idk 0
� �

�
. If, in addition, the matrix U has rank k, then S is of the

form S=
�

Idk 0
� Idr¡k

�
.

Algorithm RowSweaper(U)

S := Idr, R :=U
for i from 1 to r do

if Ri0;j=0 for all i0> i and j then return S

Let i0>i be minimal such that Ri0;j=/ 0 for some j
Swap the i-th and i0-th rows of S and R
v :=Ri;`i

¡1

for i0 from i+1 to r do
Si0;� :=Si0;�¡ vRi0;`iSi;�, Ri0;� :=Ri0;�¡ vRi0;`iRi;�

return S

4. Head reduction

4.1. Head choppers

Let i 2K and T 2 �K(i)[x; x¡1]r�r. We may regard T as a Laurent polynomial with matrix
coe�cients Tk2K(i)r�r:

T =
X
k2Z

Tkx
k: (5)

If T =/ 0, then we denote deg T =max fk 2Z: Tk=/ 0g and val T =min fk 2Z: Tk=/ 0g. For any
� 2Z, we also denote (��T )(x; i)= x�T (x; i+ �). Setting

U = �(T ) := �¡1TA+T 0+ i x¡1T ; (6)

the equation (1) implies

(CxiTy)0 = CxiUy; (7)

Joris van der Hoeven, 3



for any constant matrix C 2K(i)r�r. The matrix U can also be regarded as a Laurent polynomial
with matrix coe�cients Uk 2K(i)r�r. We say that T is a head chopper for (1) if UdegU is an
invertible matrix.

Proposition 1. For all � 2Z, we have

�(��T ) = ���(T ):

Proof. Setting U =�(T ), T~=��T and U~ =�(T~), we have

U~(x; i) = �¡1x�T (x; i+ �)A+ x�T 0(x; i+ �)+ � x�¡1T (x; i+ �)+ i x�¡1T (x; i+ �)

= x� (�¡1T (x; i+ �)A+T 0(x; i+ �)+ (i+ �)x¡1T (x; i+ �))

= x�U(x; i+ �):

In other words, U~ =��U . �

Proposition 2. Assume that � 2Z and that P 2K(i)r�r is invertible. Then

a) T is a head chopper for (1) if and only if ��T is a head chopper for (1).

b) T is a head chopper for (1) if and only if PT is a head chopper for (1).

Proof. Assume that T is a head chopper for (1). Setting T~ = �� T and U~ = �(T~), we have
U~=��U and U~degU~(i)=UdegU(i+ �) is invertible. Similarly, setting T̂ =PT and Û =�(T̂ ), we
have Û =PU , whence Ûdeg Û=PUdegU is invertible. The inverse directions follow by taking ¡�
and P¡1 in the roles of � and P . �

4.2. Head annihilators
Notice that the equations (5�7) and Proposition 1 generalize to the case when T 2 � K(i)[x;
x¡1]n�r for some arbitrary n. Notice also that degU 6degT +�, where � :=max (degA¡deg �;
¡1). Given d2Z and e2N, let

Md = fT 2 �K(i)[x; x¡1]1�r: deg T 6 dg
Md;e = fT 2Md:deg�(T )6 d+�¡ eg:

It is easy to see that both Md and Md;e are K(i)[�¡1]-modules.
Now consider a matrix T 2 � K(i)[x; x¡1]r�r with rows T1;�; :::; Tr;� 2 Md;e ordered by

increasing degree deg T1;�6 ���6 deg Tn;�. Let U =�(T ), let N =N(T ) be the matrix with rows
�¡degT1;� T1;�; :::; �

¡degTr;� Tr;�, and let k be maximal such that deg Tk;�< d. We say that T is
a (d; e)-head annihilator for (1) if the following conditions are satis�ed:

HA1. The rows of T form a basis for the K(i)[�¡1]-module Md;e;

HA2. The matrix N0 is invertible;

HA3. The �rst k rows of Ud+�¡e are K(i)-linearly independent.

The matrix � xd¡deg � Idr is obviously a (d; 0)-head annihilator. If k = r, then we notice
that HA3 implies that T is a head chopper for (1). The following proposition is also easily
checked:

Proposition 3. For any � 2Z, we have

Md+� = ��Md

Md+�;e = ��Md;e:

Moreover, T is a (d; e)-head annihilator if and only if ��T is a (d+ �; e)-head annihilator. �
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Proposition 4. Let T be a (d;e)-head annihilator for (1). Let U=�(T ) and k�=rank(Ud+�¡e).

Then there exists an invertible matrix J 2K(i)r�r of the form J =
�

Idk 0
� �

�
such that the last

r¡ k� rows of JUd+�¡e vanish and such that JT is a (d; e)-head annihilator for (1).

Proof. Let J =
�

Idk 0
V W

�
be the row sweaper for Ud+�¡e as computed by the algorithm

RowSweaper from section 3. By construction, deg (J T )j;� = deg Tj ;� for all j 6 k�. We
claim that deg (J T )j ;� = deg Tj ;� = d for all j > k�. Indeed, if deg (J T )j;� < d, then
this would imply that (J N0)j ;� = 0, which contradicts HA2. From our claim, it follows that
deg (J T )1;�6 ���6 deg (J T )n;� and k is maximal with the property that deg (J T )k;�< d. Since
the �rst k rows of U and J U = �(J T ) coincide, the �rst k rows of (J U)d+�¡e are K(i)-
linearly independent. This shows that HA3 is satis�ed for J T . As to HA2, let J~ 2K(i)r�r

be the invertible matrix with J~(i) = J(i ¡ d) =
�

Idk 0
V (i¡ d) W (i¡ d)

�
. Then we notice that

N(J T )= J~N(T ), whence N(JT )0= J~N0 is invertible. The rows of J T clearly form a basis for
Md;e, since J is invertible. �

Proposition 5. Let T be a (d;e)-head annihilator for (1). Let U=�(T ), let k�=rank(Ud+�¡e),
and assume that the last r ¡ k� rows of Ud+�¡e vanish. Let T � be the matrix with rows
(�¡1T )1;�; :::; (�

¡1T )k�;�; Tk�+1;�; :::; Tr;�. Then T � is a (d; e+1)-head annihilator for (1).

Proof. We have degTj;�� =degTj ;�¡1<d for all j6k� and degTj ;�� =degTj;�=d for all j >k�. In
particular, we have degT1;�� 6 ���6degTn;�� and k� is maximal with the property that degTk�;�� <d.
Setting U �=�(T �), we also observe that Uj ;�� =�¡1(Uj ;�) for all j6k�. Since rank(Ud+�¡e)=k�
and the last r¡ k� rows of Ud+�¡e vanish, the �rst k� rows of both Ud+�¡e and Ud+�¡e¡1� are
K(i)-linearly independent. In other words,HA3 is satis�ed for T �. As toHA2, we observe that
N(T �)=N(T ), whence N(T �)0=N0 is invertible.

Let us �nally show that T � forms a basis for theK(i)[�¡1]-moduleMd;e+1. So let R2Md;e+1.
Then R2Md;e, so R=�(T ) for some row matrix �=�0+�1�¡1+ ���2K(i)[�¡1]1�r with �k2
K(i)1�r. Setting S=�(�(T )), we have degS6 d+ �¡ e¡ 1, whence Sd+�¡e=�0Ud+�¡e=0.
Since the �rst k� rows of Ud+�¡e are K(i)-linearly independent and the last r ¡ k� rows of
Ud+�¡e vanish, we get (�0)1;j = 0 for all j 6 k�. Let �~ be the row vector with �~1;j = �1;j �

for j 6 k� and �~1;j = �1;j for j > k�. By what precedes, we have �~ 2 K(i)[�¡1]1�r and
R=�1;1(T1;�) + ���+�1;r(Tr;�). Now we have �1;j(Tj ;�) = �1;j(�

¡1(Tj ;�
� )) = �~1;j(Tj ;�

� ) for j 6 k�
and �1;j(Tj;�)=�~1;j(Tj ;�

� ) for j >k�. In other words, R=�~(T �), as desired. �

4.3. Computing head choppers
Propositions 4 and 5 allow us to compute (d;e)-head annihilators for (1) with arbitrarily large e.
Assuming that we have k= r in HA3 for su�ciently large e, this yields the following algorithm
for the computation of a head chopper for (1):

Algorithm HeadChopper(�;A)

T := � Idr; U :=�(T )
repeat

if UdegU is invertible then return T
J :=RowSweaper(UdegU)
(T ; U) := (JT ; JU)

k� := rank(UdegU), � :=
 

Idk��¡1 0
0 Idr¡k�

!
(T ; U) := (�T ;�U)

Proposition 6. Let d=deg �. Consider the value of T at the beginning of the loop and after e
iterations. Then T is a (d; e)-head annihilator.

Joris van der Hoeven, 5



Proof. We �rst observe that U = �(T ) throughout the algorithm. Let us now prove the
proposition by induction over e. The proposition clearly holds for e = 0. Assuming that the
proposition holds for a given e, let us show that it again holds at the next iteration. Consider
the values of T and U at the beginning of the loop and after e iterations. Let k be maximal such
that deg Tk;� < d. From the induction hypothesis, it follows that the �rst k rows of UdegU are
K(i)-linearly independent, whence the matrix J is of the form J =

�
Idk 0
� �

�
. Now Proposition 4

implies that J T is still a (d; e)-head annihilator. Since the last r ¡ k� rows of (J U)deg (JU)
vanish, Proposition 5 also implies that �(J T ) is a (d; e+ 1)-head annihilator. This completes
the induction. Notice also that k�>k is maximal with the property that deg (�(J T ))k�;�<d. �

Proposition 7. If the algorithm HeadChopper does not terminate, then there exists a non
zero row matrix R2 �K(i)[[x¡1]]1�r with �(R)=0. In particular, (Ry)0=0.

Proof. Assume that HeadChopper does not terminate. Let Te be the value of T at the
beginning of the main loop after e iterations. Also let Je and �e be the values of J and � as
computed during the (e+1)-th iteration.

Let ke be maximal such that deg Tke;�<d := deg �. Using the observation made at the end
of the above proof, we have k06k16 ���, so there exist an index e02N and k1<r with ke= k1
for all e> e0. Furthermore,

Je=

�
Idke 0
� �

�
; �e=

 
Idke+1�

¡1 0

0 Idr¡ke+1

!
;

and

Te+1 = �e(JeTe):

Moreover, for e> e0, the row sweaper Je is even of the form

Je =

�
Idk1 0
� Idr¡k1

�
:

By induction on e 2 N, we observe that Te 2 � K(i)[x¡1]r�r. For e > e0, we also have
deg (�¡1 Te)j ;� 6 e0 ¡ e for all j 6 k1, again by induction. Consequently, deg (�¡1 Te+1 ¡
�¡1 Te) 6 e0 ¡ e for all e0 ¡ e, which means that the sequence �¡1 Te converges to a limit
�¡1 T1 in K(i)[[x¡1]]r�r. By construction, the �rst k1 rows of T1 are zero, its last r ¡
k1 rows have rank r¡k1, and �(T1)=0. We conclude by taking R to be the last row of T1. �

Theorem 8. The algorithm HeadChopper terminates and returns a head chopper for (1).

Proof. We already observed that U =�(T ) throughout the algorithm. If the algorithm termi-
nates, then it follows that T is indeed a head chopper for (1). Assume for contradiction that the
algorithm does not terminate and let R2 �K(i)[[x¡1]]1�r be such that �(R)=0. Let y 2Lr�r

be a fundamental system of solutions to the equation (1), where L is some di�erential �eld
extension of K(i)((x¡1)) with constant �eld K(i). From �(R) = 0 we deduce that (R y)0 = 0,
whence R y2K(i)r. More generally, �(�¡jR)=0 whence ((�¡jR) y)0=0 and (�¡jR) y2K(i)r
for all j 2 N. Since the space K(i)r has dimension r over K(i), it follows that there exists
a polynomial � 2 K(i)[�¡1] of degree at most r in �¡1 such that �(R) y = 0 and �(R) =/ 0.
Since y is a fundamental system of solutions, we have det y=/ 0. This contradicts the existence
of an element �(R)2Lr n f0g with �(R) y=0. �

4.4. Head reduction
Let T be a head chopper for (1). Replacing T by �valTT if necessary, we may assume without
loss of generality that T 2 � K(i)[x]r�r and U = �(T ) 2 K(i)[x]r�r. Let � = deg U . Writing
T =N /D with N 2 �K[i][x]r�r and D 2K[i], let I to be the set of exceptional indices i 2K
for which D(i)= 0 or (detU�)(i)=0. For any d2Z, let

�d = f�2K[x]1�r:8i >d; i¡ � 2/ I)�i=0g:

6 Constructing reductions for creative telescoping



If d> � and i= d ¡ � 2/ I, then the matrix U�(i) 2Kr�r is invertible. We de�ne the K-linear
mapping �d: �d!�d¡1 by

�d(�) = �¡ (�dU�¡1(i))xiU(i):

We indeed have �d(�) 2 �d¡1, since (�d U�¡1(i)) xi U(i) = �d x
d + O(xd¡1). The mapping �d

also induces a mapping �d y! �d¡1 y; � y 7! �d(�) y that we will still denote by �d. Setting
c=�dU�

¡1(i), the relation (7) yields

(�¡�d(�)) y= c xiU(i) y=(c xiT (i) y)0:

This shows that the mapping �d is a reduction. If d>� and i=d¡� 2I, then we have �d=�d¡1
and the identity map �d: �d y!�d¡1 y is clearly a reduction as well.

Since compositions of reductions are again reductions, we also obtain a reduction �� � ��� ��d:
�d y ! ��¡1 y for each d. Now let d�e:K[x]1�r y!K[x]1�r y be the unique mapping with
d� ye=(�� � ��� ��d)(� y) for all d>� and �2�d. Then d�e is clearly a reduction as well and it has
a �nite dimensional image im d�e���¡1. For any �2K[x]1�r, we call d� ye the head reduction
of � y. The following straightforward algorithm allows us to compute head reductions:

Algorithm HeadReduce(�)

repeat
if �i+� =0 for all i2N n I then return �
Let i2N n I be maximal with �i+� =/ 0
c :=�i+�U�

¡1(i)

� :=�¡ c xiU(i)

Proposition 9. The routine HeadReduce terminates and is correct. �

Remark 10. It is straightforward to adapt HeadReduce so that it also returns the certi�cate
�2 �K[x]1�r with �y¡ (�y)02��¡1 y. Indeed, it su�ces to start with � := 0 and accumulate
� :=�+ c xiT (i) at the end of the main loop.

Remark 11. The algorithm HeadReduce is not very e�cient. The successive values of c can
be computed more e�ciently in a relaxed manner [10].

Remark 12. The algorithm HeadReduce also works for matrices � 2K[x]n�r with an arbi-
trary number of rows n. This allows for the simultaneous head reduction of several elements in
K[x]1�r y, something that might be interesting for the application to creative telescoping.

5. Tail reduction

5.1. Tail choppers
Head reduction essentially allows us to reduce the valuation in x¡1 of elements in M via the
subtraction of elements in @M. Tail reduction aims at reducing the valuation in x ¡ � in
a similar way for any � in the algebraic closure K̂ of K. More precisely, let i 2K, � 2 K̂ and
T 2 � K̂(i)[x; (x ¡ �)¡1]r�r. We may regard T as a Laurent polynomial in x ¡ � with matrix
coe�cients Tk2 K̂(i)r�r:

T =
X
k2Z

Tk (x¡�)k: (8)

If T =/ 0, then we denote its valuation in x¡� by val�T =min fk 2Z:Tk=/ 0g. Setting

U = ��(T ) := �¡1TA+T 0+ i (x¡�)¡1T ; (9)

Joris van der Hoeven, 7



the equation (1) implies

(C (x¡�)iT y)0 = C (x¡�)iUy; (10)

for any matrix C 2 K̂(i)r�r. The matrix U can also be regarded as a Laurent polynomial with
matrix coe�cients Uk 2 K̂(i)r�r. We say that T is a tail chopper at � for (1) if Uval�U is an
invertible matrix. In fact, it su�ces to consider tail choppers at the origin:

Lemma 13. Let T 2 � K̂(i)[x; (x ¡ �)¡1]r�r, where � 2 K̂. De�ne T~(x; i) = T (x + �; i),
�~(x) = �(x+�) and A~(x) =A(x+�). Then T is a tail chopper at � for (1) if and only if T~ is
a tail chopper at 0 for �~ y~0=A~ y~.

Proof. Setting U~ = �0(T~), we have U~(x) = U(x + �). Consequently, val� U~ = val0 U and
U~val�U~=Uval0U. �

There is also a direct link between head choppers and tail choppers at 0 via the change of
variables x!x¡1.

Lemma 14. Let T 2 � K̂(i)[x;x¡1]r�r. Setting x~=x¡1, we de�ne �~(x~)=¡x2 �(x), A~(x~)=A(x)
and T~(x~; i)=T (x;¡i). Then T is a tail chopper at 0 for (1) if and only if T~ is a head chopper
for �~ y~0=A~ y~.

Proof. Setting U~ =�(T~), we have

U~(x~;¡i) = �~(x~)¡1T~(x~;¡i)A~(x~)+ @ T~

@ x~
(x~;¡i)¡ i x~¡1T~(x~;¡i)

= ¡x2 �(x)¡1T (x; i)A(x)¡x2T 0(x; i)¡ i x T (x; i)
= ¡x2 (�(x)¡1T (x; i)A(x)+T 0(x; i)+ i x¡1T (x; i))
= ¡x2U(x; i):

Consequently, degU~ = val0U +2 and U~degU~(¡i)=Uval0U(i). �

Finally, the matrix � Idr is a tail chopper at almost all points �:

Lemma 15. Let �2 K̂ be such that �(�~)=/ 0. Then � Idr is a tail chopper for (1) at �.

Proof. If �(�~)=/ 0 and T =� Idr, then (9) becomes U = i (x¡�)¡1 � Idr+O((x¡�)0) for x!�.
In particular, val�U =¡1 and Uval�(U)= i �(�) Idr is invertible in K̂(i)r�r. �

5.2. Computing tail choppers
Now consider a monic square-free polynomial  2 K[x] and assume that we wish to compute
a tail chopper for (1) at a root � of  in K̂. First of all, we have to decide how to conduct
computations in K̂. If  is irreducible, then we may simply work in the �eld L = K[x] / ( )

instead of K̂ and take � to be the residue class of x, so that � becomes a generic formal root
of  . In general, factoring  over K may be hard, so we cannot assume  to be irreducible.
Instead, we rely on the well known technique of dynamic evaluation [8].

For convenience of the reader, let us recall that dynamic evaluation amounts to performing
all computations as if  were irreducible and L=K[x]/( ) were a �eld with an algorithm for
division. Whenever we wish to divide by a non-zero element amod  (with a2K[x]) that is not
invertible, then gcd(a;  ) provides us with a non trivial factor of  . In that case, we launch an
exception and redo all computations with gcd(a;  ) or  /gcd(a;  ) in the role of  .
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So let �2L be a formal root of  and de�ne x~=(x¡�)¡1, y~(x~)= y(x), �~(x~)=¡(x¡�)2 �(x)
and A~(x~)=A(x). Let T~(x~; i) be a head chopper for the equation �~ y~0=A~ y~, as computed using
the algorithm from section 4.3. Then T (x; i) = T~(x~;¡i) is a tail chopper at � by Lemmas 13
and 14.

5.3. Tail reduction
Let T be a tail chopper for (1) at �2 K̂. Let x~= (x¡�)¡1, y~(x~)= y(x), �~(x~)=¡(x¡�)2 �(x)
and A~(x~) = A(x) be as above, so that T~(x~; i) = T (x; ¡i), is a head chopper for the equation
�~ y~0=A~ y~. In particular, rewriting linear combinations � y with � 2 K̂[(x ¡ �)¡1]1�r as linear
combinations �~ y~ with �~ 2 K̂[x~]1�r, we may head reduce �~ y~ as described in section 4.4.
Let �~ 2 K̂[x~]1�r be such that �~ y~ = d�~ y~e. Then we may rewrite �~ y~ as an element � y of
K̂[(x¡�)¡1]1�r y. We call � y the tail reduction of � y at � and write �y= b� yc�.

Let I~ be the �nite set of exceptional indices for the above head reduction and I=¡I~. Setting
U = ��(T ) and � = val� U , it can be checked that the following algorithm computes the tail
reduction at �:

Algorithm TailReduce(�)

repeat
if �i+� =0 for all i2 (¡N) n I then return �
Let i2 (¡N) n I be minimal with �i+� =/ 0
c :=�i+�U�

¡1(i)

� :=�¡ c (x¡�)iU(i)

6. Degree and valuation bounds

6.1. Cyclic vectors
In the particular case when

�=¡Lr; A=

0BB@
0 1 0
��� ���
0 0 1
L0 L1 ��� Lr¡1

1CCA; y=

0@ f
���

f (r¡1)

1A (11)

for some operator L2K[x][@] of order r, the system (1) is equivalent to

Lf = 0: (12)

Given a general system (1), there always exists an element f 2K(x) y such that f ; :::; f (r¡1)

are K(x)-linearly independent. Such an element f is called a cyclic vector and, with respect to
the basis f ; :::; f (r¡1) of K(x) y, the equation (1) transforms into an equation of the form (12).
For e�cient algorithms to compute cyclic vectors, we refer to [3].

In the remainder of this section, we focus on systems (1) that are equivalent to (12), with �,A
and y as in (11).

6.2. Formal transseries solutions
Let us start with a quick review of some well known results about the asymptotic behaviour of
solutions to (12) when x!1. We de�ne

S = K̂((x¡Q))[logx]
S = x¡Q logNx

Joris van der Hoeven, 9



to be the set of polynomials in logx whose coe�cients are Puiseux series in x¡1, together with
the corresponding set of monomials. The set S is asymptotically ordered by

x� logix4x� logjx () �> � _ (�= � ^ i6 �)

and elements f of S can be written as series f =
P

m2S fmm with fm2 K̂. We call supp f :=
fm2S: fm=/ 0g the support of f . If f =/ 0, then the maximal element df of the support is called
the dominant monomial of f .

We may also regard elements f of S as series
P

�2Qf� x
¡� in x¡1 with coe�cients in K̂[logx].

If f =/ 0, then we denote by v(f) = val1 f =max f� 2Q: f�=/ 0g the corresponding valuation
of f in x¡1. Notice that we have df = x

¡v(f) logix for some i2N.
Let Q> = fa 2 Q: a > 0g. We write K̂[xQ

>
] for the set of �nite K̂-linear combinations

of elements of xQ
>
. The sets K̂[xQ

>
] and K̂[xQ] are de�ned likewise. Consider the formal

exponential monomial group

E = xK̂eK̂
�
xQ

>�
:

It is well known [1, 11] that the equation (12) admits a basis h1; :::; hr of formal solutions of the
form

hi = 'i ei;

with 'i 2 S, ei 2E and such that the monomials d'1 e1; :::; d'r er are pairwise distinct. We will
write

HL = fd'1 e1; :::; d'r erg:

Notice that this result generalizes to the case when L 2K[xQ][@] via a straightforward change
of variables x x� with �2Q>.

6.3. Action of linear di�erential operators on transseries

Let us now consider a linear di�erential operator L 2 K̂[xQ][@]. Such an operator can also be
expanded with respect to x¡1; we denote by v(L) the valuation of L in x¡1 and by DL 2 K̂[@]

the coe�cient of x¡v(L) in this expansion.
From the valuative point of view it is more convenient to work with linear di�erential oper-

ators L2 K̂[xQ][�], where �=x @x is the Euler derivation. Such operators can be expanded with
respect to x¡1 in a similar way and v(L) and DL are de�ned as above.

For L2 K̂[xQ][@], let L� be the corresponding operator in K̂[xQ][�]. If L has order r, then

v(L) 6 v(L�) 6 v(L)+ r:

For L2 K̂[xQ][�], let L@ be the corresponding operator in K̂[xQ][�]. If L has order r, then

v(L)¡ r 6 v(L@) 6 v(L):

Given e 2 E, we notice that its logarithmic Euler derivative � := � e / e belongs to K̂[xQ
>
].

Let Lne2 K̂[xQ][�] be the operator obtained from L by substituting �+ � for �. Then

Lne(f) = e¡1L(f e)

for all f 2S. If L has order r, then

v(L)+ r v(�) 6 v(Lne) 6 v(L)¡ r v(�):

We call Lne the twist of L by e.
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Now consider an operator L2 K̂[xQ][@] and f 2S. If DL(df)=0, then it can be shown that
df 2HL. Otherwise, Lf �DL(df)x

v(L), whence v(Lf)= v(L)+ v(f). In other words,

df 2/ HL =) v(Lf)= v(L)+ v(f):

More generally, if f 2S and e2E, then

df e2/ HL =) v(e¡1L(f e))= v(Lne)+ v(f):

Let

~ = ¡min fv(� e/e):me2HL;m2S; e2Eg:

If L2 K̂[x][�], then it can be shown using the Newton polygon method that ~> valL¡degL.

6.4. Degree and valuation bounds for head and tail choppers
Let �=¡min (v(A)¡ v(�); 1) and notice that v(�(T ))> v(T )¡ � for all T 2K(i)[x; x¡1]1�r.

Theorem 16. For any T 2K(i)[x; x¡1]1�r and U =�(T ), we have

v(T )¡� 6 v(U) 6 v(T )+ 2 r~+ r+1:

Proof. Let � be a transcendental constant over K with @x � = 0 and let L = K(�). Then
T (�)2L[x; x¡1]1�r satis�es v(T (�))= v(T ), v(U(�))= v(U), and

(x�T (�) y)0 = x�U(�) y:

We may rewrite T (�) y=Kf for the linear di�erential operatorK=T (�)1;1+ ���+T (�)1;r @r¡12
L[x; x¡1][@]. Notice that v(K) = v(T (�)) = v(T ). Similarly, we may rewrite U(�) y =Hf for
some operator H 2L[x; x¡1][@] with v(H)= v(U(�))= v(U).

Let 
; � 2 L[x; x¡1][�] be the operators given by 
 = (� + �) K� and � = H�, so that
v(
)6 v(T )+ r and v(U)6 v(�). By construction,


f = �K� f + �K� f

= x¡� �(x�K� f)

= x¡� �(x�T (�) y)

= xU(�) y

= x�f:

Since K has order at most r¡ 1, there exists a monomial me2HL nHK with m2S and e2E.
Since � is transcendental over K, we have H
=HK [ fx¡�g and m e 2 HL n H
. Let ' 2 S be
a solution to L (' e)= 0 with d'=m. Then f = ' e satis�es

v(x e¡1�f) = v(x�ne') > v(�ne)+ v(m)¡ 1;

whereas

v(e¡1
f) = v(
ne') = v(
ne)+ v(m):

From 
f =x�f , it now follows that

v(
)+ r~ > v(
)¡ r v
¡ �e
e

�
> v(
ne) > v(�ne)¡ 1 > v(�)+ r v

¡ �e
e

�
¡ 1 > v(�)¡ r ~¡ 1;

whence

v(U) = v(�) 6 v(
)+2 r~+1 6 v(T )+2 r ~+ r+1:

We already noticed before that v(U)> v(T )¡�. �
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We notice that our de�nition of � coincides with the one from section 4.2, since the degree
in x coincides with the opposite of the valuation in x¡1. Theorem 16 immediately yields a bound
for the number e of iterations that are necessary in HeadChopper in order to obtain a head
chopper. More precisely:

Corollary 17. There exists a head chopper T 2M0;e for (1) with e6 r+1+2 r~+�.

Proof. Let T~ be the head chopper as computed by HeadChopper and let R be its last
row. Then v(R) = v(�) and T~ 2 Mdeg �;e where e = v(�(R)) + �. Now the theorem implies
e6 v(R)+ r+1+2 r ~+ �, whereas T =�¡deg �(T~) is a head chopper in M0;e. �

Let �1= �, ~1= ~, and let e1 2N be the smallest number for which there exists a head
chopper T with

val1�(T )= val1T ¡ �1+ e1: (13)

We will call e1 the defect of (1) at in�nity. Collarary 17 shows that e16 r+1+ 2 r ~1+ �1.
In a similar way, given �2 K̂, let ��=¡min (val�A¡val��;¡1) and let e�2N be the smallest
number for which there exists a tail chopper T with

val���(T )= val1T ¡��+ e�: (14)

We call e� the defect of (1) at �. De�ning ~� in a similar way as h1, but at the point x= �,
one has e�6 r+1+2 r ~�+��.

6.5. Valuation bounds for di�erentiation on M

Let R 2 K((x¡1))1�r and S = �¡1 R A + R0, so that (R y)0 = S y. The proof technique from
Theorem 16 can also be used for studying v(S) as a function of v(R):

Theorem 18. For all R2K((x¡1))1�r with dR
¡12/ HL and S= �¡1RA+R0, we have

v(R)¡ � 6 v(S) 6 v(R)+2 r ~+ r+1:

Proof. Let i=¡v(R) and rewrite R= xiR~ and S= xiS~ with v(R~)=0. Then we have

(xiR~ y)0 = xiS~y:

We may rewrite R~ y = Kf and S~ = Hf for some K; H 2 L[x; x¡1][@] with v(K) = v(R~) and
v(H) = v(S~). Let 
;� 2L[x; x¡1][�] be the operators given by 
= (�+ i)K� and �=H�, so
that v(
)6 r and v(S~)6 v(�). In a similar way as in the proof of Theorem 16, we deduce that


f = x�f:

Since K has order at most r¡ 1, there exists a monomial me2HL nHK with m2S and e2E.
Since x¡i= dR

¡12/ HL and H
=HL[ fx¡ig, we also have m e 2HL nH
. In a similar way as in
the proof of Theorem 16, we obtain

v(
) > v(�)¡ 2 r~¡ 1;

whence

v(S)¡ v(R) = v(S~)¡ v(R~) = v(H)¡ v(K) 6 v(�)¡ v(
)+ r 6 2 r ~+ r+1:

The inequality v(S)> v(R)¡� in the other direction is straightforward. �

Corollary 19. We can compute an integer �1 2 Z such that for all R 2 K((x¡1))1�r and
S= �¡1RA+R0 with val1R6 �1, we have

val1S 6 val1R¡�1+ e1:
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Proof. Let T be a head chopper for (1) such that U =�(T ) satis�es v(U)=v(T )¡�1+e1=0.
Let � be su�ciently small such that xi2/ HL and UdegU(i) is de�ned and invertible for all i6 �.
We take �1= � ¡ 2 r~¡ r¡ 1.

Assume for contradiction that v(R) 6 �1 and v(S) > v(R) ¡ �1 + e1. Let R~ and S~ be
such that S~ y = dS ye and (R~ y)0= S~ y. By construction, v(R~ ¡R)> v(S) + �1¡ e1, whence
v(R~) = v(R), and v(S~)> �. But then v(S~)¡ v(R~) = v(S~)¡ v(R)> � ¡ �1=2 r ~+ r+1. This

contradicts Theorem 18, since v(R~)6 �1 implies d
R~
¡1=xv(R

~)2/ HL. �

Corollary 20. Given � 2 K̂, we can compute an integer �� 2 Z such that for all R 2
K̂((x¡�))1�r and S= �¡1RA+R0 with val�R6 ��, we have

val�S 6 val�R¡��+ e�:

Proof. Follows from the previous proposition via a change of variables. �

7. Global reduction

7.1. Gluing together the head and tail reductions
Let us now study how head and tail reductions can be glued together into a global con�ned
reduction onM=K[x; �¡1]1�r y. More generally, we consider the case whenM=K[x; ¡1]1�r y,
where  2K[x] is a monic square-free polynomial such that � divides  t for some t2N.

We assume that we have computed a head chopper for (1) and tail choppers T�i for (1)
at each the roots �1; :::; �` of  in K̂. In particular, we may compute the corresponding head
and tail reductions. Given an element � of the Galois group of K̂ over K, we may also assume
without loss of generality that the tail choppers were chosen such that T�(�i)= �(T�i) for all i.

Partial fraction decomposition yields K̂-linear mappings

��i: K̂[x;  
¡1]1�r! (x¡�i)¡1 K̂[(x¡�i)¡1]1�r

and

�1: K̂[x;  
¡1]1�r! K̂[x]1�r

with

� = �1(�)+ ��1(�)+ ���+ ��`(�);

for all �2 K̂[x;  ¡1]1�r. This allows us to de�ne a global reduction [� y] of �y by

[� y] = d�1(�)e+ b��1(�)c�1+ ���+ b��`(�)c�`:

By our assumption that the tail choppers were chosen in a way that is compatible with the action
of the Galois group, we have [� y]2K[x;  ¡1]1�r y whenever �2K[x;  ¡1]1�r. Furthermore, the
restriction of the reduction on K̂[x;  ¡1]1�r y to K[x;  ¡1]1�r y is still a reduction.

Remark 21. It is plausible that computations in algebraic extensions can be avoided by com-
bining tail choppers at conjugate roots under the action of the Galois group. However, we have
not yet worked this idea out.

7.2. Normalizing the reduction
Given the con�ned reduction [�]:M!M from section 7.1, let us show how to contruct a normal
con�ned reduction J�K:M!M. For each � 2 f1; �1; :::; �kg, assume that we have computed
constants �� and �1 with the property that for all � y; � y2M with v�(�)6 �� and (� y)0= � y,
we have v�(�)6 v�(�)+ ��.

Joris van der Hoeven, 13



Consider the �nite dimensional K-vector space [M] :=f[f ]: f 2Mg and let �� :=minfval��:
� y 2 [M] n f0gg for all � 2f1; �1; :::; �`g. Let 
 be the K-subvector space of M of all � y 2M
with val� �>min (��; ��)¡ �� for all � 2 f1; �1; :::; �`g. This space is �nite dimensional and
our assumptions imply that we cannot have (� y)02 [M] for � y2Mn
. In other words, for any
f 2M with f 02 [M], we have f 2
.

Now let V := @
 \ [M] and let W be a supplement of V in [M] so that [M] = V �W . We
may compute bases of V and W using straightforward linear algebra. The canonical K-linear
projections �V : [M]! V and �W : [M]!W with �V + �W = Id are also computable. We claim
that we may take JfK := �W([f ]) for every f 2M.

Proposition 22. The mapping J�K:M!M; f 7!�W([f ]) de�nes a computable normal con�ned
reduction on M.

Proof. The mapping J�K is clearly a computable con�ned reduction on M. It remains to be
shown that Jf 0K=0 for all f 2M. Now [f 0]¡ f 02@M, so [f 0]2@M and there exists a g2M with
g 0=[f 0]. Since g 02 [M], it follows that g2
 and g 02@
\ [M]=V . In other words, [f 0]= g 02V
and Jf 0K=�W([f 0]) = 0. �
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