Constructing reductions for creative telescoping

Joris van der Hoeven

To cite this version:

Joris van der Hoeven. Constructing reductions for creative telescoping. 2017. hal-01435877v2

HAL Id: hal-01435877
 https://hal.science/hal-01435877v2

Preprint submitted on 22 Feb 2017 (v2), last revised 28 Dec 2019 (v5)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Constructing reductions for creative telescoping

Joris van der Hoeven
Laboratoire d'informatique, UMR 7161 CNRS
Campus de l'École polytechnique
1, rue Honoré d'Estienne d'Orves
Bâtiment Alan Turing, CS35003
91120 Palaiseau
Email: vdhoeven@lix.polytechnique.fr

Draft version, February 22, 2017

Abstract

The class of reduction-based algorithms was introduced recently as a new approach towards creative telescoping. Starting with Hermite reduction of rational functions, various reductions have been introduced for increasingly large classes of holonomic functions. In this paper we show how to construct reductions for general holonomic functions, in the purely differential setting.

Keywords: creative telescoping, holonomic function, Hermite reduction, residues
A.C.M. subject classification: I.1.2 Algebraic algorithms
A.M.S. SUBJECT CLASSIFICATION: 33F10, 68W30

1. INTRODUCTION

Let \mathbb{K} be an effective field of characteristic zero and $\phi \in \mathbb{K}[x]$ a non-zero polynomial. Consider the system of differential equations

$$
\begin{equation*}
\phi y^{\prime}=A y \tag{1}
\end{equation*}
$$

where $A \in \mathbb{K}[x]^{r \times r}$ is an $r \times r$ matrix with entries in $\mathbb{K}[x]$ and y is a column vector of r unknown functions. Notice that any system of differential equations $y^{\prime}=B y$ with $B \in \mathbb{K}(x)$ can be rewritten in this form by taking ϕ to be a multiple of all denominators.

Let y be a formal solution to (1) and consider the $\mathbb{K}\left[x, \phi^{-1}\right]$-module \mathbb{M} of linear combinations $\lambda y=\lambda_{1,1} y_{1}+\cdots+\lambda_{1, r} y_{r}$ where $\lambda \in \mathbb{K}\left[x, \phi^{-1}\right]^{1 \times r}$ is a row vector. Then \mathbb{M} has the natural structure of a D-module for the derivation ∂ defined by $(\lambda y)^{\prime}=\left(\lambda^{\prime}+\phi^{-1} \lambda A\right) y$. A \mathbb{K}-linear mapping $[\cdot]: \mathbb{M} \rightarrow \mathbb{M}$ is said to be a reduction if $[f]-f \in \operatorname{Im} \partial$ for all $f \in \mathbb{M}$. Such a reduction is said to be confined if its image is a finite dimensional subspace of \mathbb{M} and normal if $\left[f^{\prime}\right]=0$ for all $f \in \mathbb{M}$.

In this paper, we will show how to construct confined reductions. Such reductions are interesting for their application to creative telescoping [10, 5], as we briefly recall in section 2 . The first reduction of this kind is Hermite reduction [1, 2], in which case $A=0$. The existence of normal confined reductions has also been shown in increasingly general cases [9, 4] and most noticeably so for Fuchsian differential equations [3]. We refer to [2, 7] for more details and the application to creative telescoping.

Our construction of confined reductions proceeds in two stages. In section 4, we first focus on the $\mathbb{K}[x]$-submodule \mathbb{M}^{\sharp} of \mathbb{M} of linear combinations λy with $\lambda \in \mathbb{K}[x]^{1 \times r}$. We will construct a \mathbb{K}-linear head reduction $\lceil\cdot\rceil: \mathbb{M}^{\sharp} \rightarrow \mathbb{M}^{\sharp}$ such that $\lceil f\rceil-f \in \operatorname{Im} \partial$ and $\operatorname{deg}\lceil f\rceil$ is bounded from above for all $f \in \mathbb{M}^{\sharp}$. Here we understand that $\operatorname{deg}(\lambda y):=\operatorname{deg} \lambda:=\max \left(\operatorname{deg} \lambda_{1,1}, \ldots, \operatorname{deg} \lambda_{1, r}\right)$ for all $\lambda \in \mathbb{K}[x]^{1 \times r}$. The construction uses a variant of Gaussian elimination that will be described in section 3 .

The head reduction may also be regarded as a way to reduce the valuation of f in x^{-1}, at the point at infinity. In section 5 we turn to tail reductions, with the aim to reduce the valuation of f at all other points in \mathbb{K} and its algebraic closure $\hat{\mathbb{K}}$. This is essentially similar to head reduction via a change of variables, while allowing ourselves to work in algebraic extensions of \mathbb{K}.

In the last section 6 , we show how to glue the head reduction and the tail reductions at each of the roots of ϕ together into a global confined reduction on \mathbb{M}.

2. Creative telescoping

Let \mathbb{k} be an effective subfield of \mathbb{C} and let $\partial_{x}=\partial / \partial x$ and $\partial_{u}=\partial / \partial u$ denote the partial derivations with respect to x and u. Consider a system of differential equations

$$
\left\{\begin{array}{l}
\phi \partial_{x} y=A y \tag{2}\\
\phi \partial_{u} y=B y
\end{array}\right.
$$

where $\phi \in \mathbb{k}[x, u]$ is non-zero and $A, B \in \mathbb{k}[x, u]^{r \times r}$ are such that

$$
\partial_{x}\left(\phi^{-1} B\right)+\phi^{-2} A B=\partial_{u}\left(\phi^{-1} A\right)+\phi^{-2} B A
$$

Setting $\mathbb{K}=\mathbb{k}(u)$, the first part of (2) then becomes of the form (1). Notice that any bivariate holonomic function is an entry of a solution to a system of the form (2).

Let y be a complex analytic solution of the above system of equations and let \mathbb{M} be the $\mathbb{K}\left[x, \phi^{-1}\right]$-module generated by the entries of y. Notice that \mathbb{M} is stable under both ∂_{x} and ∂_{u}. For any $f=\lambda y \in \mathbb{M}$ with $\lambda \in \mathbb{K}\left[x, \phi^{-1}\right]^{1 \times r}$ and any non-singular contour \mathscr{C} in \mathbb{C} between two points $\alpha, \beta \in \mathbb{k}$, we may consider the integral

$$
F(u)=\int_{\mathscr{C}} f(x, u) \mathrm{d} x
$$

which defines a function in the single variable u. It is natural to ask under which conditions F is a holonomic function and how to compute a differential operator $L \in \mathbb{K}\left[\partial_{u}\right]$ with $L F=0$.

The idea of creative telescoping is to compute a differential operator $K \in \mathbb{K}\left[\partial_{u}\right]$ and a function $\xi=\partial_{x} \chi$ with $\chi \in \mathbb{M}$ such that

$$
\begin{equation*}
K f(x, u)=\xi(x, u) \tag{3}
\end{equation*}
$$

Integrating over \mathscr{C}, we then obtain

$$
K F(u)=\int_{\mathscr{C}} \frac{\partial \chi}{\partial x}(x, u) \mathrm{d} x=\chi(\beta, u)-\chi(\alpha, u)
$$

If the contour \mathscr{C} has the property that $\chi(\beta)=\chi(\alpha)$ for all $\chi \in \mathbb{M}$ (where the equality is allowed to hold at the limit if necessary), then $L=K$ yields the desired annihilator with $L F=0$. In general, we need to multiply K on the left with an annihilator of $\chi(\beta, u)-\chi(\alpha, u)$.

Now assume that we have a computable confined reduction $[\cdot]: \mathbb{M} \rightarrow \mathbb{M}$. Then the functions in the sequence $[f],\left[\partial_{u} f\right],\left[\partial_{u}^{2} f\right], \ldots$ can all be computed and they belong to a finite dimensional \mathbb{K}-vector space V. Using linear algebra, that means that we can compute a relation

$$
\begin{equation*}
K_{0}[f]+\cdots+K_{s}\left[\partial_{u}^{s} f\right]=\left[K_{0} f+\cdots+K_{s} \partial_{u}^{s} f\right]=0 \tag{4}
\end{equation*}
$$

with $K_{0}, \ldots, K_{s} \in \mathbb{K}$. Taking

$$
\begin{aligned}
K & =K_{0}+\cdots+K_{s} \partial_{u}^{s} \\
\xi & =(K f)-[K f] \in \partial_{x} \mathbb{M}
\end{aligned}
$$

we thus obtain (3). If the relation (4) has minimal order s and the reduction $[\cdot]$ is normal, then it can be shown [7] that there exist no relations of the form (3) of order lower than s.

3. ROW SWEPT FORMS

Let $U \in \mathbb{K}^{r \times r}$ be a matrix and denote the i-th row of U by $U_{i, .}$. Assuming that $U_{i,} \neq 0$, its leading index ℓ_{i} is the smallest index j with $U_{i, j} \neq 0$. We say that U is in row swept form if there exists a $k \in\{0, \ldots, r\}$ such that $U_{1,} \neq 0, \ldots, U_{k,} \neq 0, U_{k+1, \cdot}=\cdots=U_{r, .}=0$ and $U_{i^{\prime}, \ell_{i}}=0$ for all $i<i^{\prime} \leqslant k$. Notice that U has rank k in this case.

An invertible matrix $S \in \mathbb{K}^{r \times r}$ such that $S U$ is in row swept form will be called a row sweaper for U. We may compute such a matrix S using the routine RowSweaper below, which is really a variant of Gaussian elimination. Whenever we apply this routine to a matrix U such that the truncated matrix \tilde{U} with rows $U_{1,,}, \ldots, U_{k, .}, 0, \ldots, 0$ is in row swept form, we notice that these first k rows are left invariant by the row sweaping process. In other words, the returned row sweaper S is of the form $S=\left(\begin{array}{cc}\mathrm{Id}_{k} & 0 \\ * & *\end{array}\right)$. If, in addition, the matrix U has rank k, then S is of the form $S=\left(\begin{array}{cc}\operatorname{Id}_{k} & 0 \\ * & \operatorname{Id}_{r-k}\end{array}\right)$.

```
Algorithm RowSweaper( \(U\) )
\(S:=\mathrm{Id}_{r}, R:=U\)
for \(i\) from 1 to \(r\) do
    if \(R_{i^{\prime}, j}=0\) for all \(i^{\prime} \geqslant i\) and \(j\) then return \(S\)
    Let \(i^{\prime}>i\) be minimal such that \(R_{i^{\prime}, j} \neq 0\) for some \(j\)
    Swap the \(i\)-th and \(i^{\prime}\)-th rows of \(S\) and \(R\)
    \(v:=R_{i, \ell_{i}}^{-1}\)
    for \(i^{\prime}\) from \(i+1\) to \(r\) do
        \(S_{i^{\prime},:}=S_{i^{\prime}, .}-v R_{i^{\prime}, \ell_{i}} S_{i, .}, R_{i^{\prime},:}:=R_{i^{\prime}, .}-v R_{i^{\prime}, \ell_{i}} R_{i,}\),
return \(S\)
```


4. Head reduction

4.1. Head choppers

Let $i \in \mathbb{K}$ and $T \in \phi \mathbb{K}(i)\left[x, x^{-1}\right]^{r \times r}$. We may regard T as a Laurent polynomial with matrix coefficients $T_{k} \in \mathbb{K}(i)^{r \times r}$:

$$
\begin{equation*}
T=\sum_{k \in \mathbb{Z}} T_{k} x^{k} . \tag{5}
\end{equation*}
$$

If $T \neq 0$, then we denote $\operatorname{deg} T=\max \left\{k \in \mathbb{Z}: T_{k} \neq 0\right\}$ and $\operatorname{val} T=\min \left\{k \in \mathbb{Z}: T_{k} \neq 0\right\}$. For any $\delta \in \mathbb{Z}$, we also denote $\left(\Xi^{\delta} T\right)(x, i)=x^{\delta} T(x, i+\delta)$. Setting

$$
\begin{equation*}
U=\Upsilon(T):=\phi^{-1} T A+T^{\prime}+i x^{-1} T \tag{6}
\end{equation*}
$$

the equation (1) implies

$$
\begin{equation*}
\left(C x^{i} T y\right)^{\prime}=C x^{i} U y, \tag{7}
\end{equation*}
$$

for any constant matrix $C \in \mathbb{K}(i)^{r \times r}$. The matrix U can also be regarded as a Laurent polynomial with matrix coefficients $U_{k} \in \mathbb{K}(i)^{r \times r}$. We say that T is a head chopper for (1) if $U_{\operatorname{deg} U}$ is an invertible matrix.
Proposition 1. For all $\delta \in \mathbb{Z}$, we have

$$
\Upsilon\left(\Xi^{\delta} T\right)=\Xi^{\delta} \Upsilon(T) .
$$

Proof. Setting $U=\Upsilon(T), \tilde{T}=\Xi^{\delta} T$ and $\tilde{U}=\Upsilon(\tilde{T})$, we have

$$
\begin{aligned}
\tilde{U}(x, i) & =\phi^{-1} x^{\delta} T(x, i+\delta) A+x^{\delta} T^{\prime}(x, i+\delta)+\delta x^{\delta-1} T(x, i+\delta)+i x^{\delta-1} T(x, i+\delta) \\
& =x^{\delta}\left(\phi^{-1} T(x, i+\delta) A+T^{\prime}(x, i+\delta)+(i+\delta) x^{-1} T(x, i+\delta)\right) \\
& =x^{\delta} U(x, i+\delta) .
\end{aligned}
$$

In other words, $\tilde{U}=\Xi^{\delta} U$.

Proposition 2. Assume that $\delta \in \mathbb{Z}$ and that $P \in \mathbb{K}(i)^{r \times r}$ is invertible. Then
a) T is a head chopper for (1) if and only if $\Xi^{\delta} T$ is a head chopper for (1).
b) T is a head chopper for (1) if and only if PT is a head chopper for (1).

Proof. Assume that T is a head chopper for (1). Setting $\tilde{T}=\Xi^{\delta} T$ and $\tilde{U}=\Upsilon(\tilde{T})$, we have $\tilde{U}=\Xi^{\delta} U$ and $\tilde{U}_{\operatorname{deg}} \tilde{U}(i)=U_{\operatorname{deg} U}(i+\delta)$ is invertible. Similarly, setting $\hat{T}=P T$ and $\hat{U}=\Upsilon(\hat{T})$, we have $\hat{U}=P U$, whence $\hat{U}_{\operatorname{deg} \hat{U}}=P U_{\operatorname{deg} U}$ is invertible. The inverse directions follow by taking $-\delta$ and P^{-1} in the roles of δ and P.

4.2. Head annihilators

Notice that the equations (5-7) and Proposition 1 generalize to the case when $T \in \phi \mathbb{K}(i)[x$, $\left.x^{-1}\right]^{n \times r}$ for some arbitrary n. Notice also that $\operatorname{deg} U \leqslant \operatorname{deg} T+\sigma$, where $\sigma:=\max (\operatorname{deg} A-\operatorname{deg} \phi$, $-1)$. Given $d \in \mathbb{Z}$ and $e \in \mathbb{N}$, let

$$
\begin{aligned}
M_{d} & =\left\{T \in \phi \mathbb{K}(i)\left[x, x^{-1}\right]^{1 \times r}: \operatorname{deg} T \leqslant d\right\} \\
M_{d, e} & =\left\{T \in M_{d}: \operatorname{deg} \Upsilon(T) \leqslant d+\sigma-e\right\} .
\end{aligned}
$$

It is easy to see that both M_{d} and $M_{d, e}$ are $\mathbb{K}(i)\left[\Xi^{-1}\right]$-modules.
Now consider a matrix $T \in \phi \mathbb{K}(i)\left[x, x^{-1}\right]^{r \times r}$ with rows $T_{1, .,}, \ldots, T_{r, \cdot} \in M_{d, e}$ ordered by increasing degree $\operatorname{deg} T_{1,} \leqslant \cdots \leqslant \operatorname{deg} T_{n, .}$ Let $U=\Upsilon(T)$, let $N=\mathrm{N}(T)$ be the matrix with rows $\Xi^{-\operatorname{deg} T_{1,} \cdot} T_{1, \cdot}, \ldots, \Xi^{-\operatorname{deg} T_{r, \cdot}} T_{r,}$, and let k be maximal such that $\operatorname{deg} T_{k, \cdot}<d$. We say that T is a (d,e)-head annihilator for (1) if the following conditions are satisfied:

HA1. The rows of T form a basis for the $\mathbb{K}(i)\left[\Xi^{-1}\right]$-module $M_{d, e} ;$
HA2. The matrix N_{0} is invertible;
HA3. The first k rows of $U_{d+\sigma-e}$ are $\mathbb{K}(i)$-linearly independent.
The matrix $\phi x^{d-\operatorname{deg} \phi} \mathrm{Id}_{r}$ is obviously a ($d, 0$)-head annihilator. If $k=r$, then we notice that HA3 implies that T is a head chopper for (1). The following proposition is also easily checked:

Proposition 3. For any $\delta \in \mathbb{Z}$, we have

$$
\begin{aligned}
M_{d+\delta} & =\Xi^{\delta} M_{d} \\
M_{d+\delta, e} & =\Xi^{\delta} M_{d, e} .
\end{aligned}
$$

Moreover, T is a (d, e)-head annihilator if and only if $\Xi^{\delta} T$ is a $(d+\delta, e)$-head annihilator.
Proposition 4. Let T be a (d,e)-head annihilator for (1). Let $U=\Upsilon(T)$ and $k^{*}=\operatorname{rank}\left(U_{d+\sigma-e}\right)$. Then there exists an invertible matrix $J \in \mathbb{K}(i)^{r \times r}$ of the form $J=\left(\begin{array}{cc}\mathrm{Id}_{k} & 0 \\ * & *\end{array}\right)$ such that the last $r-k^{*}$ rows of $J U_{d+\sigma-e}$ vanish and such that $J T$ is a (d,e)-head annihilator for (1).

Proof. Let $J=\left(\begin{array}{cc}\mathrm{Id}_{k} & 0 \\ V & W\end{array}\right)$ be the row sweaper for $U_{d+\sigma-e}$ as computed by the algorithm
 claim that $\operatorname{deg}(J T)_{j, \cdot}=\operatorname{deg} T_{j, .}=d$ for all $j>k^{*}$. Indeed, if $\operatorname{deg}(J T)_{j, .}<d$, then this would imply that $\left(J N_{0}\right)_{j, \cdot}=0$, which contradicts HA2. From our claim, it follows that $\operatorname{deg}(J T)_{1, .} \leqslant \cdots \leqslant \operatorname{deg}(J T)_{n, .}$ and k is maximal with the property that $\operatorname{deg}(J T)_{k, .}<d$. Since the first k rows of U and $J U=\Upsilon(J T)$ coincide, the first k rows of $(J U)_{d+\sigma-e}$ are $\mathbb{K}(i)$ linearly independent. This shows that HA3 is satisfied for $J T$. As to HA2, let $\tilde{J} \in \mathbb{K}(i)^{r \times r}$ be the invertible matrix with $\tilde{J}(i)=J(i-d)=\left(\begin{array}{c}\mathrm{Id}_{k} \\ V(i-d) \\ W(i-d)\end{array}\right)$. Then we notice that $\mathrm{N}(J T)=\tilde{J} \mathrm{~N}(T)$, whence $\mathrm{N}(J T)_{0}=\tilde{J} N_{0}$ is invertible. The rows of $J T$ clearly form a basis for $M_{d, e}$, since J is invertible.

Proposition 5. Let T be a (d,e)-head annihilator for (1). Let $U=\Upsilon(T)$, let $k^{*}=\operatorname{rank}\left(U_{d+\sigma-e}\right)$, and assume that the last $r-k^{*}$ rows of $U_{d+\sigma-e}$ vanish. Let T^{*} be the matrix with rows $\left(\Xi^{-1} T\right)_{1, \cdot}, \ldots,\left(\Xi^{-1} T\right)_{k^{*}, .}, T_{k^{*}+1,,}, \ldots, T_{r, .}$. Then T^{*} is a $(d, e+1)$-head annihilator for (1).

Proof. We have $\operatorname{deg} T_{j, .}^{*}=\operatorname{deg} T_{j,}-1<d$ for all $j \leqslant k^{*}$ and $\operatorname{deg} T_{j, .}^{*}=\operatorname{deg} T_{j,}=d$ for all $j>k^{*}$. In particular, we have $\operatorname{deg} T_{1, .}^{*} \leqslant \cdots \leqslant \operatorname{deg} T_{n, \text {, and }}^{*} k^{*}$ is maximal with the property that $\operatorname{deg} T_{k^{*}, .}^{*}<d$. Setting $U^{*}=\Upsilon\left(T^{*}\right)$, we also observe that $U_{j, .}^{*}=\Xi^{-1}\left(U_{j, .}\right)$ for all $j \leqslant k^{*}$. Since $\operatorname{rank}\left(U_{d+\sigma-e}\right)=k^{*}$ and the last $r-k^{*}$ rows of $U_{d+\sigma-e}$ vanish, the first k^{*} rows of both $U_{d+\sigma-e}$ and $U_{d+\sigma-e-1}^{*}$ are $\mathbb{K}(i)$-linearly independent. In other words, HA3 is satisfied for T^{*}. As to HA2, we observe that $\mathrm{N}\left(T^{*}\right)=\mathrm{N}(T)$, whence $\mathrm{N}\left(T^{*}\right)_{0}=N_{0}$ is invertible.

Let us finally show that T^{*} forms a basis for the $\mathbb{K}(i)\left[\Xi^{-1}\right]$-module $M_{d, e+1}$. So let $R \in M_{d, e+1}$. Then $R \in M_{d, e}$, so $R=\Lambda(T)$ for some row matrix $\Lambda=\Lambda_{0}+\Lambda_{1} \Xi^{-1}+\cdots \in \mathbb{K}(i)\left[\Xi^{-1}\right]^{1 \times r}$ with $\Lambda_{k} \in$ $\mathbb{K}(i)^{1 \times r}$. Setting $S=\Upsilon(\Lambda(T))$, we have $\operatorname{deg} S \leqslant d+\sigma-e-1$, whence $S_{d+\sigma-e}=\Lambda_{0} U_{d+\sigma-e}=0$. Since the first k^{*} rows of $U_{d+\sigma-e}$ are $\mathbb{K}(i)$-linearly independent and the last $r-k^{*}$ rows of $U_{d+\sigma-e}$ vanish, we get $\left(\Lambda_{0}\right)_{1, j}=0$ for all $j \leqslant k^{*}$. Let $\tilde{\Lambda}$ be the row vector with $\tilde{\Lambda}_{1, j}=\Lambda_{1, j} \Xi$ for $j \leqslant k^{*}$ and $\tilde{\Lambda}_{1, j}=\Lambda_{1, j}$ for $j>k^{*}$. By what precedes, we have $\tilde{\Lambda} \in \mathbb{K}(i)\left[\Xi^{-1}\right]^{1 \times r}$ and $R=\Lambda_{1,1}\left(T_{1, \cdot}\right)+\cdots+\Lambda_{1, r}\left(T_{r, \cdot}\right)$. Now we have $\Lambda_{1, j}\left(T_{j, .}\right)=\Lambda_{1, j}\left(\Xi^{-1}\left(T_{j, .}^{*}\right)\right)=\tilde{\Lambda}_{1, j}\left(T_{j, .}^{*}\right)$ for $j \leqslant k^{*}$ and $\Lambda_{1, j}\left(T_{j,}\right)=\tilde{\Lambda}_{1, j}\left(T_{j,}^{*},\right)$ for $j>k^{*}$. In other words, $R=\tilde{\Lambda}\left(T^{*}\right)$, as desired.

4.3. Computing head choppers

Propositions 4 and 5 allow us to compute (d, e)-head annihilators for (1) with arbitrarily large e. Assuming that we have $k=r$ in HA3 for sufficiently large e, this yields the following algorithm for the computation of a head chopper for (1):

```
Algorithm HeadChopper \((\phi, A)\)
\(T:=\phi \mathrm{Id}_{r}, U:=\Upsilon(T)\)
repeat
    if \(U_{\operatorname{deg} U}\) is invertible then return \(T\)
    \(J:=\) RowSweaper \(\left(U_{\operatorname{deg} U}\right)\)
    \((T, U):=(J T, J U)\)
    \(k^{*}:=\operatorname{rank}\left(U_{\operatorname{deg} U}\right), \Delta:=\left(\begin{array}{ccc}\mathrm{Id}_{k^{*}} \Xi^{-1} & 0 \\ 0 & \mathrm{Id}_{r-k^{*}}\end{array}\right)\)
    \((T, U):=(\Delta T, \Delta U)\)
```

Proposition 6. Let $d=\operatorname{deg} \phi$. Consider the value of T at the beginning of the loop and after e iterations. Then T is a (d, e)-head annihilator.

Proof. We first observe that $U=\Upsilon(T)$ throughout the algorithm. Let us now prove the proposition by induction over e. The proposition clearly holds for $e=0$. Assuming that the proposition holds for a given e, let us show that it again holds at the next iteration. Consider the values of T and U at the beginning of the loop and after e iterations. Let k be maximal such that $\operatorname{deg} T_{k, .}<d$. From the induction hypothesis, it follows that the first k rows of $U_{\operatorname{deg} U}$ are $\mathbb{K}(i)$-linearly independent, whence the matrix J is of the form $J=\left(\begin{array}{cc}\mathrm{Id}_{k} & 0 \\ * & *\end{array}\right)$. Now Proposition 4 implies that $J T$ is still a (d, e)-head annihilator. Since the last $r-k^{*}$ rows of $(J U)_{\operatorname{deg}(J U)}$ vanish, Proposition 5 also implies that $\Delta(J T)$ is a $(d, e+1)$-head annihilator. This completes the induction. Notice also that $k^{*} \geqslant k$ is maximal with the property that $\operatorname{deg}(\Delta(J T))_{k^{*}, .}<d$.

Proposition 7. If the algorithm HeadChopper does not terminate, then there exists a non zero row matrix $R \in \phi \mathbb{K}(i)\left[\left[x^{-1}\right]\right]^{1 \times r}$ with $\Upsilon(R)=0$. In particular, $(R y)^{\prime}=0$.

Proof. Assume that HeadChopper does not terminate. Let T_{e} be the value of T at the beginning of the main loop after e iterations. Also let J_{e} and Δ_{e} be the values of J and Δ as computed during the $(e+1)$-th iteration.

Let k_{e} be maximal such that $\operatorname{deg} T_{k_{e},} .<d:=\operatorname{deg} \phi$. Using the observation made at the end of the above proof, we have $k_{0} \leqslant k_{1} \leqslant \cdots$, so there exist an index $e_{0} \in \mathbb{N}$ and $k_{\infty}<r$ with $k_{e}=k_{\infty}$ for all $e \geqslant e_{0}$. Furthermore,

$$
J_{e}=\left(\begin{array}{cc}
\operatorname{Id}_{k_{e}} & 0 \\
* & *
\end{array}\right), \quad \Delta_{e}=\left(\begin{array}{cc}
\operatorname{Id}_{k_{e+1}} \Xi^{-1} & 0 \\
0 & \operatorname{Id}_{r-k_{e+1}}
\end{array}\right),
$$

and

$$
T_{e+1}=\Delta_{e}\left(J_{e} T_{e}\right) .
$$

Moreover, for $e \geqslant e_{0}$, the row sweaper J_{e} is even of the form

$$
J_{e}=\left(\begin{array}{cc}
\mathrm{Id}_{k_{\infty}} & 0 \\
* & \mathrm{Id}_{r-k_{\infty}}
\end{array}\right) .
$$

By induction on $e \in \mathbb{N}$, we observe that $T_{e} \in \phi \mathbb{K}(i)\left[x^{-1}\right]^{r \times r}$. For $e \geqslant e_{0}$, we also have $\operatorname{deg}\left(\phi^{-1} T_{e}\right)_{j,:} \leqslant e_{0}-e$ for all $j \leqslant k_{\infty}$, again by induction. Consequently, $\operatorname{deg}\left(\phi^{-1} T_{e+1}-\right.$ $\left.\phi^{-1} T_{e}\right) \leqslant e_{0}-e$ for all $e_{0}-e$, which means that the sequence $\phi^{-1} T_{e}$ converges to a limit $\phi^{-1} T_{\infty}$ in $\mathbb{K}(i)\left[\left[x^{-1}\right]\right]^{r \times r}$. By construction, the first k_{∞} rows of T_{∞} are zero, its last $r-$ k_{∞} rows have rank $r-k_{\infty}$, and $\Upsilon\left(T_{\infty}\right)=0$. We conclude by taking R to be the last row of T_{∞}.

Theorem 8. The algorithm HeadChopper terminates and returns a head chopper for (1).
Proof. We already observed that $U=\Upsilon(T)$ throughout the algorithm. If the algorithm terminates, then it follows that T is indeed a head chopper for (1). Assume for contradiction that the algorithm does not terminate and let $R \in \phi \mathbb{K}(i)\left[\left[x^{-1}\right]\right]^{1 \times r}$ be such that $\Upsilon(R)=0$. Let $y \in \mathbb{L}^{r \times r}$ be a fundamental system of solutions to the equation (1), where \mathbb{L} is some differential field extension of $\mathbb{K}(i)\left(\left(x^{-1}\right)\right)$ with constant field $\mathbb{K}(i)$. From $\Upsilon(R)=0$ we deduce that $(R y)^{\prime}=0$, whence $R y \in \mathbb{K}(i)^{r}$. More generally, $\Upsilon\left(\Xi^{-j} R\right)=0$ whence $\left(\left(\Xi^{-j} R\right) y\right)^{\prime}=0$ and $\left(\Xi^{-j} R\right) y \in \mathbb{K}(i)^{r}$ for all $j \in \mathbb{N}$. Since the space $\mathbb{K}(i)^{r}$ has dimension r over $\mathbb{K}(i)$, it follows that there exists a polynomial $\Lambda \in \mathbb{K}(i)\left[\Xi^{-1}\right]$ of degree at most r in Ξ^{-1} such that $\Lambda(R) y=0$ and $\Lambda(R) \neq 0$. Since y is a fundamental system of solutions, we have det $y \neq 0$. This contradicts the existence of an element $\Lambda(R) \in \mathbb{L}^{r} \backslash\{0\}$ with $\Lambda(R) y=0$.

4.4. Head reduction

Let T be a head chopper for (1). Replacing T by $\Xi^{\mathrm{val} T} T$ if necessary, we may assume without loss of generality that $T \in \phi \mathbb{K}(i)[x]^{r \times r}$ and $U=\Upsilon(T) \in \mathbb{K}(i)[x]^{r \times r}$. Let $\tau=\operatorname{deg} U$. Writing $T=N / D$ with $N \in \phi \mathbb{K}[i][x]^{r \times r}$ and $D \in \mathbb{K}[i]$, let \mathcal{I} to be the set of exceptional indices $i \in \mathbb{K}$ for which $D(i)=0$ or $\left(\operatorname{det} U_{\tau}\right)(i)=0$. For any $d \in \mathbb{Z}$, let

$$
\Lambda_{d}=\left\{\lambda \in \mathbb{K}[x]^{1 \times r}: \forall i>d, i-\tau \notin \mathcal{I} \Rightarrow \lambda_{i}=0\right\} .
$$

If $d \geqslant \tau$ and $i=d-\tau \notin \mathcal{I}$, then the matrix $U_{\tau}(i) \in \mathbb{K}^{r \times r}$ is invertible. We define the \mathbb{K}-linear mapping $\pi_{d}: \Lambda_{d} \rightarrow \Lambda_{d-1}$ by

$$
\pi_{d}(\lambda)=\lambda-\left(\lambda_{d} U_{\tau}^{-1}(i)\right) x^{i} U(i)
$$

We indeed have $\pi_{d}(\lambda) \in \Lambda_{d-1}$, since $\left(\lambda_{d} U_{\tau}^{-1}(i)\right) x^{i} U(i)=\lambda_{d} x^{d}+O\left(x^{d-1}\right)$. The mapping π_{d} also induces a mapping $\Lambda_{d} y \rightarrow \Lambda_{d-1} y ; \lambda y \mapsto \pi_{d}(\lambda) y$ that we will still denote by π_{d}. Setting $c=\lambda_{d} U_{\tau}^{-1}(i)$, the relation (7) yields

$$
\left(\lambda-\pi_{d}(\lambda)\right) y=c x^{i} U(i) y=\left(c x^{i} T(i) y\right)^{\prime} .
$$

This shows that the mapping π_{d} is a reduction. If $d \geqslant \tau$ and $i=d-\tau \in \mathcal{I}$, then we have $\Lambda_{d}=\Lambda_{d-1}$ and the identity map $\pi_{d}: \Lambda_{d} y \rightarrow \Lambda_{d-1} y$ is clearly a reduction as well.

Since compositions of reductions are again reductions, we also obtain a reduction $\pi_{\tau} \circ \cdots \circ \pi_{d}$: $\Lambda_{d} y \rightarrow \Lambda_{\tau-1} y$ for each d. Now let $\left[\cdot \neg: \mathbb{K}[x]^{1 \times r} y \rightarrow \mathbb{K}[x]^{1 \times r} y\right.$ be the unique mapping with $\lceil\lambda y\rceil=\left(\pi_{\tau} \circ \cdots \circ \pi_{d}\right)(\lambda y)$ for all $d \geqslant \tau$ and $\lambda \in \Lambda_{d}$. Then $\lceil\cdot\rceil$ is clearly a reduction as well and it has a finite dimensional image im $\lceil\cdot\rceil \subseteq \Lambda_{\tau-1}$. For any $\lambda \in \mathbb{K}[x]^{1 \times r}$, we call $\lceil\lambda y\rceil$ the head reduction of λy. The following straightforward algorithm allows us to compute head reductions:

```
Algorithm HeadReduce( \(\boldsymbol{\lambda}\) )
repeat
    if \(\lambda_{i+\tau}=0\) for all \(i \in \mathbb{N} \backslash \mathcal{I}\) then return \(\lambda\)
    Let \(i \in \mathbb{N} \backslash \mathcal{I}\) be maximal with \(\lambda_{i+\tau} \neq 0\)
    \(c:=\lambda_{i+\tau} U_{\tau}^{-1}(i)\)
    \(\lambda:=\lambda-c x^{i} U(i)\)
```

Proposition 9. The routine HeadReduce terminates and is correct.
Remark 10. It is straightforward to adapt HeadReduce so that it also returns the certificate $\kappa \in \phi \mathbb{K}[x]^{1 \times r}$ with $\lambda y-(\kappa y)^{\prime} \in \Lambda_{\tau-1} y$. Indeed, it suffices to start with $\kappa:=0$ and accumulate $\kappa:=\kappa+c x^{i} T(i)$ at the end of the main loop.

Remark 11. The algorithm HeadReduce is not very efficient. The successive values of c can be computed more efficiently in a relaxed manner [8].

Remark 12. The algorithm HeadReduce also works for matrices $\lambda \in \mathbb{K}[x]^{n \times r}$ with an arbitrary number of rows n. This allows for the simultaneous head reduction of several elements in $\mathbb{K}[x]^{1 \times r} y$, something that might be interesting for the application to creative telescoping.

5. TAIL REDUCTION

5.1. Tail choppers

Head reduction essentially allows us to reduce the valuation in x^{-1} of elements in \mathbb{M} via the subtraction of elements in $\partial \mathbb{M}$. Tail reduction aims at reducing the valuation in $x-\alpha$ in a similar way for any α in the algebraic closure $\hat{\mathbb{K}}$ of \mathbb{K}. More precisely, let $i \in \mathbb{K}, \alpha \in \mathbb{K}$ and $T \in \phi \hat{\mathbb{K}}(i)\left[x,(x-\alpha)^{-1}\right]^{r \times r}$. We may regard T as a Laurent polynomial in $x-\alpha$ with matrix coefficients $T_{k} \in \hat{\mathbb{K}}(i)^{r \times r}$:

$$
\begin{equation*}
T=\sum_{k \in \mathbb{Z}} T_{k}(x-\alpha)^{k} . \tag{8}
\end{equation*}
$$

If $T \neq 0$, then we denote $\operatorname{deg}_{\alpha} T=\max \left\{k \in \mathbb{Z}: T_{k} \neq 0\right\}$ and $\operatorname{val}_{\alpha} T=\min \left\{k \in \mathbb{Z}: T_{k} \neq 0\right\}$. Setting

$$
\begin{equation*}
U=\Upsilon_{\alpha}(T):=\phi^{-1} T A+T^{\prime}+i(x-\alpha)^{-1} T, \tag{9}
\end{equation*}
$$

the equation (1) implies

$$
\begin{equation*}
\left(C(x-\alpha)^{i} T y\right)^{\prime}=C(x-\alpha)^{i} U y, \tag{10}
\end{equation*}
$$

for any matrix $C \in \hat{\mathbb{K}}(i)^{r \times r}$. The matrix U can also be regarded as a Laurent polynomial with matrix coefficients $U_{k} \in \hat{\mathbb{K}}(i)^{r \times r}$. We say that T is a tail chopper at α for (1) if $U_{\operatorname{val}_{\alpha} U}$ is an invertible matrix. In fact, it suffices to consider tail choppers at the origin:

Lemma 13. Let $T \in \phi \hat{\mathbb{K}}(i)\left[x,(x-\alpha)^{-1}\right]^{r \times r}$, where $\alpha \in \hat{\mathbb{K}}$. Define $\tilde{T}(x, i)=T(x+\alpha, i)$, $\tilde{\phi}(x)=\phi(x+\alpha)$ and $\tilde{A}(x)=A(x+\alpha)$. Then T is a tail chopper at α for (1) if and only if \tilde{T} is a tail chopper at 0 for $\tilde{\phi} \tilde{y}^{\prime}=\tilde{A} \tilde{y}$.

Proof. Setting $\tilde{U}=\Upsilon_{0}(\tilde{T})$, we have $\tilde{U}(x)=U(x+\alpha)$. Consequently, $\operatorname{val}_{\alpha} \tilde{U}=\operatorname{val}_{0} U$ and $\tilde{U}_{\operatorname{val}_{\alpha} \tilde{U}}=U_{\operatorname{val}_{0} U}$.

There is also a direct link between head choppers and tail choppers at 0 via the change of variables $x \longleftrightarrow x^{-1}$.

Lemma 14. Let $T \in \phi \hat{\mathbb{K}}(i)\left[x, x^{-1}\right]^{r \times r}$. Setting $\tilde{x}=x^{-1}$, we define $\tilde{\phi}(\tilde{x})=-x^{2} \phi(x), \tilde{A}(\tilde{x})=A(x)$ and $\tilde{T}(\tilde{x}, i)=T(x,-i)$. Then T is a tail chopper at 0 for (1) if and only if \tilde{T} is a head chopper for $\tilde{\phi} \tilde{y}^{\prime}=\tilde{A} \tilde{y}$.

Proof. Setting $\tilde{U}=\Upsilon(\tilde{T})$, we have

$$
\begin{aligned}
\tilde{U}(\tilde{x},-i) & =\tilde{\phi}(\tilde{x})^{-1} \tilde{T}(\tilde{x},-i) \tilde{A}(\tilde{x})+\frac{\partial \tilde{T}}{\partial \tilde{x}}(\tilde{x},-i)-i \tilde{x}^{-1} \tilde{T}(\tilde{x},-i) \\
& =-x^{2} \phi(x)^{-1} T(x, i) A(x)-x^{2} T^{\prime}(x, i)-i x T(x, i) \\
& =-x^{2}\left(\phi(x)^{-1} T(x, i) A(x)+T^{\prime}(x, i)+i x^{-1} T(x, i)\right) \\
& =-x^{2} U(x, i) .
\end{aligned}
$$

Consequently, $\operatorname{deg} \tilde{U}=\operatorname{val} U+2$ and $\tilde{U}_{\operatorname{deg}} \tilde{U}(-i)=U_{\operatorname{val}_{0} U}(i)$.
Finally, the matrix $\phi \mathrm{Id}_{r}$ is a tail chopper at almost all points α :
Lemma 15. Let $\alpha \in \hat{\mathbb{K}}$ be such that $\phi(\tilde{\alpha}) \neq 0$. Then $\phi \operatorname{Id}_{r}$ is a tail chopper for (1) at α.
Proof. If $\phi(\tilde{\alpha}) \neq 0$ and $T=\phi \operatorname{Id}_{r}$, then (9) becomes $U=i(x-\alpha)^{-1} \phi \operatorname{Id}_{r}+O\left((x-\alpha)^{0}\right)$ for $x \rightarrow \alpha$. In particular, $\operatorname{val}_{\alpha} U=-1$ and $U_{\operatorname{val}_{\alpha}(U)}=i \phi(\alpha) \operatorname{Id}_{r}$ is invertible in $\hat{\mathbb{K}}(i)^{r \times r}$.

5.2. Computing tail choppers

Now consider a monic square-free polynomial $\psi \in \mathbb{K}[x]$ and assume that we wish to compute a tail chopper for (1) at a root α of ψ in $\hat{\mathbb{K}}$. First of all, we have to decide how to conduct computations in $\hat{\mathbb{K}}$. If ψ is irreducible, then we may simply work in the field $\mathbb{L}=\mathbb{K}[x] /(\psi)$ instead of $\hat{\mathbb{K}}$ and take α to be the residue class of x, so that α becomes a generic formal root of ψ. In general, factoring ψ over \mathbb{K} may be hard, so we cannot assume ψ to be irreducible. Instead, we rely on the well known technique of dynamic evaluation [6].

For convenience of the reader, let us recall that dynamic evaluation amounts to performing all computations as if ψ were irreducible and $\mathbb{L}=\mathbb{K}[x] /(\psi)$ were a field with an algorithm for division. Whenever we wish to divide by a non-zero element $a \bmod \psi($ with $a \in \mathbb{K}[x])$ that is not invertible, then $\operatorname{gcd}(a, \psi)$ provides us with a non trivial factor of ψ. In that case, we launch an exception and redo all computations with $\operatorname{gcd}(a, \psi)$ or $\psi / \operatorname{gcd}(a, \psi)$ in the role of ψ.

So let $\alpha \in \mathbb{L}$ be a formal root of ψ and define $\tilde{x}=(x-\alpha)^{-1}, \tilde{y}(\tilde{x})=y(x), \tilde{\phi}(\tilde{x})=-(x-\alpha)^{2} \phi(x)$ and $\tilde{A}(\tilde{x})=A(x)$. Let $\tilde{T}(\tilde{x}, i)$ be a head chopper for the equation $\tilde{\phi} \tilde{y}^{\prime}=\tilde{A} \tilde{y}$, as computed using the algorithm from section 4.3. Then $T(x, i)=\tilde{T}(\tilde{x},-i)$ is a tail chopper at α by Lemmas 13 and 14.

5.3. Tail reduction

Let T be a tail chopper for (1) at $\alpha \in \hat{\mathbb{K}}$. Let $\tilde{x}=(x-\alpha)^{-1}, \tilde{y}(\tilde{x})=y(x), \tilde{\phi}(\tilde{x})=-(x-\alpha)^{2} \phi(x)$ and $\tilde{A}(\tilde{x})=A(x)$ be as above, so that $\tilde{T}(\tilde{x}, i)=T(x,-i)$, is a head chopper for the equation $\tilde{\phi} \tilde{y}^{\prime}=\tilde{A} \tilde{y}$. In particular, rewriting linear combinations λy with $\lambda \in \hat{\mathbb{K}}\left[(x-\alpha)^{-1}\right]^{1 \times r}$ as linear combinations $\tilde{\lambda} \tilde{y}$ with $\tilde{\lambda} \in \hat{\mathbb{K}}[\tilde{x}]^{1 \times r}$, we may head reduce $\tilde{\lambda} \tilde{y}$ as described in section 4.4. Let $\tilde{\mu} \in \hat{\mathbb{K}}[\tilde{x}]^{1 \times r}$ be such that $\tilde{\mu} \tilde{y}=\lceil\tilde{\lambda} \tilde{y}\rceil$. Then we may rewrite $\tilde{\mu} \tilde{y}$ as an element μy of $\hat{\mathbb{K}}\left[(x-\alpha)^{-1}\right]^{1 \times r} y$. We call μy the tail reduction of λy at α and write $\mu y=\lfloor\lambda y\rfloor_{\alpha}$.

Let $\tilde{\mathcal{I}}$ be the finite set of exceptional indices for the above head reduction and $\mathcal{I}=-\tilde{\mathcal{I}}$. Setting $U=\Upsilon_{\alpha}(T)$ and $\tau=\operatorname{val}_{\alpha} U$, it can be checked that the following algorithm computes the tail reduction at α :

```
Algorithm TailReduce \((\lambda)\)
repeat
    if \(\lambda_{i+\tau}=0\) for all \(i \in(-\mathbb{N}) \backslash \mathcal{I}\) then return \(\lambda\)
    Let \(i \in(-\mathbb{N}) \backslash \mathcal{I}\) be minimal with \(\lambda_{i+\tau} \neq 0\)
    \(c:=\lambda_{i+\tau} U_{\tau}^{-1}(i)\)
    \(\lambda:=\lambda-c(x-\alpha)^{i} U(i)\)
```


6. GLOBAL REDUCTION

Let us now study how head and tail reductions can be glued together into a global confined reduction on $\mathbb{M}=\mathbb{K}\left[x, \phi^{-1}\right]^{1 \times r} y$. More generally, we consider the case when $\mathbb{M}=\mathbb{K}\left[x, \psi^{-1}\right]^{1 \times r} y$, where $\psi \in \mathbb{K}[x]$ is a monic square-free polynomial such that ϕ divides ψ^{t} for some $t \in \mathbb{N}$.

We assume that we have computed a head chopper for (1) and tail choppers $T_{\alpha_{i}}$ for (1) at each the roots $\alpha_{1}, \ldots, \alpha_{\ell}$ of ψ in $\hat{\mathbb{K}}$. In particular, we may compute the corresponding head and tail reductions. Given an element σ of the Galois group of $\hat{\mathbb{K}}$ over \mathbb{K}, we may also assume without loss of generality that the tail choppers were chosen such that $T_{\sigma\left(\alpha_{i}\right)}=\sigma\left(T_{\alpha_{i}}\right)$ for all i.

Partial fraction decomposition yields $\hat{\mathbb{K}}$-linear mappings

$$
\rho_{\alpha_{i}}: \hat{\mathbb{K}}\left[x, \psi^{-1}\right]^{1 \times r} \rightarrow\left(x-\alpha_{i}\right)^{-1} \hat{\mathbb{K}}\left[\left(x-\alpha_{i}\right)^{-1}\right]^{1 \times r}
$$

and

$$
\rho_{\infty}: \hat{\mathbb{K}}\left[x, \psi^{-1}\right]^{1 \times r} \rightarrow \hat{\mathbb{K}}[x]^{1 \times r}
$$

with

$$
\lambda=\rho_{\infty}(\lambda)+\rho_{\alpha_{1}}(\lambda)+\cdots+\rho_{\alpha_{\ell}}(\lambda),
$$

for all $\lambda \in \hat{\mathbb{K}}\left[x, \psi^{-1}\right]^{1 \times r}$. This allows us to define a global reduction $[\lambda y]$ of λy by

$$
[\lambda y]=\left\lceil\rho_{\infty}(\lambda)\right\rceil+\left\lfloor\rho_{\alpha_{1}}(\lambda)\right\rfloor_{\alpha_{1}}+\cdots+\left\lfloor\rho_{\alpha_{\ell}}(\lambda)\right\rfloor_{\alpha_{\ell}} .
$$

By our assumption that the tail choppers were chosen in a way that is compatible with the action of the Galois group, we have $[\lambda y] \in \mathbb{K}\left[x, \psi^{-1}\right]^{1 \times r} y$ whenever $\lambda \in \mathbb{K}\left[x, \psi^{-1}\right]^{1 \times r}$. Furthermore, the restriction of the reduction on $\hat{\mathbb{K}}\left[x, \psi^{-1}\right]^{1 \times r} y$ to $\mathbb{K}\left[x, \psi^{-1}\right]^{1 \times r} y$ is still a reduction.

Remark 16. It is plausible that computations in algebraic extensions can be avoided by combining tail choppers at conjugate roots under the action of the Galois group. However, we have not yet worked this idea out.

Bibliography

[1] A. Bostan, F. Chen, S. Chyzak, and Z. Li. Complexity of creative telescoping for bivariate rational functions. In Proc. ISSAC '12, pages 203-210. New York, NY, USA, 2010. ACM.
[2] S. Chen. Some applications of differential-difference algebra to creative telescoping. PhD thesis, École Polytechnique, 2011.
[3] S. Chen, M. van Hoeij, M. Kauers, and C. Koutschan. Reduction-based creative telescoping for Fuchsian Dfinite functions. Technical Report, ArXiv, 2016. http://arxiv.org/abs/1611. 07421.
[4] S. Chen, M. Kauers, and C. Koutschan. Reduction-based creative telescoping for algebraic functions. In Proc. ISSAC'16, pages 175-182. New York, NY, USA, 2016. ACM.
[5] F. Chyzak. The ABC of Creative Telescoping - Algorithms, Bounds, Complexity. Habilitation, École polytechnique, 2014.
[6] J. Della Dora, C. Dicrescenzo, and D. Duval. A new method for computing in algebraic number fields. In G. Goos and J. Hartmanis, editors, Eurocal'85 (2), volume 174 of Lect. Notes in Comp. Science, pages 321-326. Springer, 1985.
[7] L. Dumont. Efficient algorithms for the symbolic computation of some contour integrals depending on one parameter. PhD thesis, Ecole Polytechnique, 2016.
[8] J. van der Hoeven. Relax, but don't be too lazy. JSC, 34:479-542, 2002.
[9] P. Lairez. Periods of rational integrals: algorithms and applications. PhD thesis, École polytechnique, Nov 2014.
[10] D. Zeilberger. The method of creative telescoping. JSC, 11(3):195-204, 1991.

