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The class of reduction-based algorithms was introduced recently as a new approach towards
creative telescoping . Starting with Hermite reduction of rational functions, various reduc-
tions have been introduced for increasingly large classes of holonomic functions. In this
paper we show how to construct reductions for general holonomic functions, in the purely
di�erential setting.
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1. Introduction

Let K be an e�ective �eld of characteristic zero and let � be a square-free polynomial. Consider
the system of di�erential equations

�t y 0 = Ay; (1)

where A 2K[x]r�r is an r � r matrix with entries in K[x], where y is a vector of r unknown
functions, and where t 2 N. Notice that any system of di�erential equations y 0 = B y with
B 2K(x) can be rewritten in this form by taking �t to be a multiple of all denominators.

Let y be a formal solution to (1) and consider theK[x; �¡1]-moduleM of linear combinations
�> y=�1 y1+ ���+�r yr with �2K[x; �¡1]r. Then M has the natural structure of a D-module
for the derivation @ de�ned by (�> y)0= ((�>)0+ �¡t �>A) y. A K-linear mapping [�]:M!M
is said to be a reduction if [f ]¡ f 2 Im@ for all f 2M . Such a reduction is said to be con�ned
if its image is a �nite dimensional subspace of M and normal if [f 0] = 0 for all f 2M .

In this paper, we will show how to construct normal con�ned reductions. Such reductions
are interesting for their application to creative telescoping [8, 5], as we brie�y recall in section 2.
The �rst reduction of this kind is Hermite reduction [1, 2], in which case A=0. The existence of
normal con�ned reductions has also been shown in increasingly general cases and most noticeably
so for Fuchsian di�erential equations [4, 3]. We refer to [2, 6] for more details and the application
to creative telescoping.

Our construction of con�ned reductions proceeds in two stages. In section 4, we �rst focus
on the K[x]-submodule M ] of M of linear combinations �> y with �2K[x]r. We will construct
a K-linear head reduction d�e:M ]!M ] such that df e¡ f 2 Im@ and deg df e is bounded from
above for all f 2M ]. Here we understand that deg(�> y) :=deg � :=max (deg �1; :::;deg�r) for
all �2K[x]r. The construction uses a variant of Gaussian elimination that will be described in
section 3.
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In section 5 we turn to the natural supplement M [ of M ] that is de�ned as follows. Every
element a2K[x; �¡1] admits a natural �nite �-adic expansion a=

P
i2Zai �

i whose coe�cients
ai 2 K[x] are of degree deg ai < deg �. Such expansions extend componentwise to linear
combinations f = �> y 2M with � 2K[x; �¡1]r. Now we de�ne M [= ff 2M : 8i> 0; fi= 0g.
Notice that M ]= ff 2M : 8i < 0; fi=0g, so that M =M ]�M [. We show that it is possible to
de�ne a K-linear tail reduction b�c:M!M such that bf c ¡ f 2 Im @ and val� bf c is bounded
from below for all f 2M . Here val� stands for the �-adic valuation on M .

The head reduction extends to f 2 M by setting df e = df ]e + f [, where f ] 2 M ] and
f [ 2 M [ are unique such that f = f ] + f [. Combining the head and the tail reductions, we
obtain a reduction [f ] := dbf ce with the property that degx [f ]] is bounded from above and
val� [f ] is bounded from below. This means that we constructed a con�ned reduction. Using
straightforward linear algebra, one can further turn this reduction into a normal one, as will be
shown in detail in section 6.

2. Creative telescoping

Let k be an e�ective sub�eld ofC and let @x=@ /@x and @u=@ /@u denote the partial derivations
with respect to x and u. Consider a system of di�erential equations(

�t @x y = Ay

�t @u y = By;
(2)

where � 2k[x; u] is square-free, t2N, and A; B 2k[x; u]r�r are such that AB =BA. Setting
K=k(u), the �rst part of (2) then becomes of the form (1). Notice that any bivariate holonomic
function is an entry of a solution to a system of the form (2).

Let y be a complex analytic solution of the above system of equations and let M be the
K[x; �¡1]-module generated by the entries of y. Notice that M is stable under both @x and @u.
For any f = �> y 2M with � 2K[x; �¡1]r and any non-singular contour C in C between two
points �; � 2k, we may consider the integral

F (u) =

Z
C
f(x; u) dx;

which de�nes a function in the single variable u. It is natural to ask under which conditions F
is a holonomic function and how to compute a di�erential operator L2K[@u] with LF =0.

The idea of creative telescoping is to compute a di�erential operatorK 2K[@u] and a function
�= @x� with �2M such that

Kf(x; u) = �(x; u): (3)

Integrating over C , we then obtain

KF (u) =

Z
C

@�
@x

(x; u) dx = �(�; u)¡ �(�; u):

If the contour C has the property that �(�)= �(�) for all �2M (where the equality is allowed
to hold at the limit if necessary), then L = K yields the desired annihilator with LF = 0. In
general, we need to multiply K on the left with an annihilator of �(�; u)¡ �(�; u).

Now assume that we have a computable con�ned reduction [�]:M!M . Then the functions
in the sequence [f ]; [@u f ]; [@u2 f ]; ::: can all be computed and they belong to a �nite dimensional
K-vector space V . Using linear algebra, that means that we can compute a relation

K0 [f ] + ���+Ks [@u
s f ] = [K0 f + ���+Ks @u

s f ] = 0 (4)

with K0; :::; Ks2K. Taking

�=(K0 f + ���+Ks@u
s f)¡ [K0 f + ���+Ks @u

s f ]2 @xM;
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we thus obtain (3). If the relation (4) has minimal order s and the reduction [�] is normal, then
it can be shown [6] that there exist no relations of the form (3) of order lower than s.

3. Row swept forms

Let U 2Kr�r be a matrix and denote the i-th row of U by Ui. Assuming that Ui=/ 0, its leading
index `i is the smallest index j with Ui;j=/ 0. We say that U is in row swept form if there exists
a k 2 f0; :::; rg such that U1=/ 0; :::; Uk =/ 0; Uk+1= ���= Ur = 0 and Ui0;`i= 0 for all i < i06 k.
Notice that U has rank k in this case.

An invertible matrix S2Kr�r such that S U is in row swept form will be called a row sweaper
for U . We may compute such a matrix S using the routine RowSweaper below, which is really
a variant of Gaussian elimination. Whenever we apply this routine to a matrix U such that the
truncated matrix U~ with rows U1; :::; Uk; 0; :::; 0 is in row swept form, we notice that these �rst k
rows are left invariant by the row sweaping process. In other words, the returned row sweaper S
is of the form S=

�
Idk 0
� �

�
.

Algorithm RowSweaper(U)

S := Idr, R :=U
for i from 1 to r do

if Ri0;j=0 for all i0> i and j then return S

Let i0>i be minimal such that Ri0;j=/ 0 for some j
Swap the i-th and i0-th rows of S and R
v :=Ri;`i

¡1

for i0 from i+1 to r do
Si0 :=Si0¡ vRi0;`iSi, Ri0 :=Ri0¡ vRi0;`iRi

return S

In what follows, we will also need to consider matrices U 2 L� r�r, where L� =K[x]/( ) for
some square-free, but not necessarily irreducible polynomial  2K[x]. In that case, we say that U
is in row swept form if there exists a k2f0; :::; rg such that U1=/ 0; :::; Uk=/ 0;Uk+1= ���=Ur=0,
the entries Ui;`i with i 6 k are invertible, and Ui0;`i = 0 for all i < i0 6 k. An invertible matrix
S 2L� r�r such that SU is in row swept form is again called a row sweaper for U . We may still
use the above algorithm to compute row sweapers, but the algorithm potentially fails in the
case when we hit a non zero pivot Ri;`i that is not invertible. Whenever such a failure occurs,
the non invertible pivot c = Ri;`i induces a non trivial factorization  =  1  2 of  by taking
 1= gcd( ; c) and  2=  / 1.

4. Head reduction

For any matrix T 2 �tK[x]r�r and

U = �¡tTA+T 0;

the equation (1) implues

(Ty)0 = Uy:

For any constant matrix C 2Kr�r and i2Z, we also obtain

(CxiTy)0 = Cxi¡1 (Ux+ i T ) y:

Joris van der Hoeven, 3



We may regard Ux+ i T as a polynomial with matrix coe�cients in Kr�r. Our next aim is to
show that we may take T in such a way that the leading coe�cient of this polynomial is an
invertible matrix in Kr�r for almost all i. We will then use that in order to construct the head
reduction.

More precisely, given T 2 �tK[x]r�r, let d=max (deg U ; deg T ¡ 1) and let � be a formal
indeterminate. We say that T is a head chopper for (1) if the D = Ud+ Td+1 � is invertible as
a matrix in K(�)r�r. In that case, the determinant of D is a non zero polynomial in K[�] of
degree at most r, so there are at most r integers i for which Ud+ Td+1 i is not invertible. We
may compute a head chopper using the following algorithm:

Algorithm HeadChopper(�; t; A)

(T ;U) := (�t Idr; A+ t �0 �t¡1 Idr)
repeat

d :=max (degU ;deg T ¡ 1)
if Ud+Td+1� is invertible then return T
S :=RowSweaper(Ud)
(T ; U) := (ST ; SU)

Let k be the number of non-zero rows of Ud and �:=
�

Idk 0
0 Idr¡kx

�
(T ; U) := (�T ;�U +�0T )

Proposition 1. The algorithm HeadChopper terminates and returns a head chopper.

Proof. In the line where we compute the number k, let us decompose

T =

 
T¡

T+

!
U =

 
U¡

U+

!
;

where T¡ and U¡ are the �rst k rows of T and U , so that Ud
+ = 0. From the speci�cation of

RowSweaper, we also know that Ud
¡ has full rank k. Let us prove the following assertions:

1. The matrix TdegT
+ has full rank and degT 6 d.

2. The number k increases at every iteration and the degree d never changes.

3. The degree of T increases by one at every iteration.

The �rst time that reach the line where we compute k, we have T = �t S and S is an invert-
ible scalar matrix. In particular, both TdegT and TdegT

+ have full rank. We also cannot have
deg T= d+1, since this would apply that Ud+Td+1� is invertible. Consequently, deg T 6 d.

Now assume that TdegT
+ has full rank and deg T 6 d when we reach the line where we

compute k. Denoting T~ := � T and U~ := � U + �0 T , we then have deg T~ = max (deg T¡;
deg T++ 1) = deg T +16 d+ 1 and deg (�0 T )6 d. We also get that d= degU , whence k=/ 0.
From the fact that Ud

+ = 0, it follows that deg (� U) = d and the �rst k rows of U and � U

coincide. Combined with the facts that deg T~ 6 d + 1 and deg (�0 T ) 6 d, this shows that
max (degU~ ;deg T~¡ 1)= d, whence d does not change at the next iteration.

Moreover, the �rst k rows of �0 T vanish, whence the �rst k rows of U and U~ coincide. In
particular, these �rst k lines still don't change when multiplying with the next row sweeper S~,
which shows that k can only increase at the next iteration. Finally, the �rst k lines of T~degT~
coincide with TdegT+1

¡ =0, whereas the last r¡k lines coincide with (x T+)degT+1=TdegT
+ which

has full rank. If U~d+T~d+1� is not invertible, then this means that degT~6 d and the last r¡ k
rows of S~T~degT~ are again linearly independent. This completes the proof of our assertions.
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Since the degree of T increases by one at every iteration, there comes a point when Ud +
Td+1 � is invertible or deg T exceeds d + 1, the latter being impossible. We conclude that the
algorithm terminates and it clearly returns a head chopper. �

Let T be a head chopper for (1), let U = �¡t T A + T 0, and d := max (deg U ; deg T ¡ 1).
Write I for the set of indices i2N for which Ud+Td+1 i is not invertible. Now assume that we
are given a vector � 2K[x]r, considered as a polynomial �=

P
�i x

i with coe�cients �i in Kr.
Then the following routine HeadReduce computes a vector �~ 2K[x]r with (�~¡ �)> y 2 @M
and �~i+d=/ 0) i 2 I for all i 2N. We will call d�> ye := �~> y the head reduction of �> y. We
will show that d�e:M ]!M ] is K-linear. By construction, the image dM ]e := fdf e: f 2M ]g is
�nite dimensional and we have d�> ye¡�> y 2 @M for all �2K[x]r.

Algorithm HeadReduce(�)

repeat
if �i+d=0 for all i2N n I then return �
Let i2N n I be maximal with �i+d=/ 0
� := (Ud

>+ i Td+1
> )¡1�i+d

� :=�¡xi¡1 (U> x+ i T>) �

Proposition 2. The routine HeadReduce terminates and is correct.

Proof. Let �orig be the input value of �. Each time that we set �~ := �¡ xi¡1 (U> x+ i T>) �,
we have

(�~¡�)> y = ¡�> xi¡1 (Ux+ i T ) y = (¡�> xiT y)0 2 @M:

Consequently, the running value of � satis�es (� ¡ �orig)> y 2 @M throughout the algorithm.
This shows that the algorithn is correct.

We also have deg (�~¡�)6 i+ d and �~i+d=�i+d¡ (Ud>+ i Td+1> ) �i=0. This means that the
maximal {~2N n I with �{~+d=/ 0 (if such an {~ exists at all) satis�es {~< i. In other words, the
value of i strictly decreases during successive iterations, whence the algorithm terminates.

Denoting by d�e the returned value of �, let us show that the map � 7! d�e is K-linear. The
projection �: K[x]r!K[x]r de�ned by �(�) =

P
i2NnI �i+d x

i+d is certainly K-linear. Let us
prove that d�e=d�e+d�e for all �; �2K[x]r and �=�+�, by induction over i=max(deg�(�);
deg �(�))¡ d. If �(�)= �(�) = 0, then we have nothing to prove. Otherwise, i2N n I, and we
have �i+d=/ 0 or �i+d=/ 0. Let P = xi¡1 (U> x+ i T>), Q= (Ud

>+ i Td+1
> )¡1, �~= �¡PQ�i+d,

�~= �¡PQ�i+d and �~= � ¡PQ�i+d= �~+ �~. If �i+d=/ 0, then we replace � := �~ in the main
loop, so d�e = d�~e. If �i+d = 0, then we clearly have d�e = d�~e. Similarly, d�e = d�~e and
d�e=d�~e. Nowmax(deg�(�~);deg�(�~))<i+d, whence d�e=d�~e=d�~e+d�~e=d�e+d�e by the
induction hypothesis. Using a similar induction, one may show that dc �e= d�e for all c2K. �

Remark 3. The algorithmHeadReduce is not very e�cient. The successive values of � can be
regarded as the coe�cients of a polynomial �2K[x]r such that the returned vector �~ satis�es
(�~¡ �)> y = (¡�> T y)0. Instead of computing the coe�cients of � one by one, it is faster to
evaluate (¡�>T y)0 in a relaxed manner [7], while ensuring that �~i+d=0 for all i2N n I.

Remark 4. It is straightforward to adapt HeadReduce so that it returns � 2 K[x]r with
(�~¡ �)> y= (¡�> T y)0 instead of �~. This information is useful for the application to creative
telescoping.
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Remark 5. The algorithm HeadReduce also works for matrices �2K[x]r�c with c columns.
This allows for the simultaneous reduction of several elements inM , something that might again
be interesting for the application to creative telescoping.

5. Tail reduction

Head reduction essentially allows us to reduce the valuation in x¡1 of elements in M via the
subtraction of elements in @M . Tail reduction aims at reducing the valuation in � in a similar
way. More generally, we may wish to reduce the valuation in any divisor  2K[x] nK of �.

So consider a divisor  2K[x] nK of � and notice that  is necessarily square-free. We let
L=K[x]<deg = fa2K[x]:deg a<deg  g. We also introduce L� =K[x]/( ), which comes with
the projection K[x]!L�; a 7! a�= amod  . If  is irreducible, then we notice that L� is a �eld.
In general, L� is a �nite product of �elds. We �nally denote the  -adic completion of K(x) by
K(x) . So the elements a of K(x) are in�nite series a=

P
i>� ai 

i with � 2Z and ai2L. We
denote by val a the valuation of a in  and notice that val �= 1. Elements of K(x) 

r�r can
both be regarded as matrices with entries in K(x) or as elements of the  -adic completion of
K(x)r�r. In particular we may regard such elements as series in  with coe�cients in Lr�r.

As before, we have (T y)0=U y for any matrix T 2 �tK[x;  ¡1]r�r and U = �¡t TA+T 0. For
any matrix C 2Lr�r and i2Z, we also have

(C iT y)0 =  i¡1 (C (U + i  0T )+C 0T ) y:

Recall that  0 is invertible in L� since  is square-free. Regarding U  + i  0 T as a series in  , let
v=min (val U ; val T ¡ 1)2Z and let � be a formal indeterminate. We say that T is a  -tail
chopper for (1) if U�v +  0� T�v+1 � is invertible as a matrix in L�(�)r�r. If  is irreducible, then
we may compute such a tail chopper using the following adaptation of HeadChopper:

Algorithm SpecialTailChopper(�; t;A;  )

(T ; U) := (�t Idr; A+ t �0 �t¡1 Idr)
repeat

v :=min (val U ; val T ¡ 1)
if U�v+  0� T�v+1� is invertible then return T
Lift S� :=RowSweaper(U�v) into S 2Lr�r

(T ;U) := (ST ; SU +S 0T )

Let k be the number of non-zero rows of U�v and � :=
 

Idk 0

0 Idr¡k ¡1

!
(T ;U) := (�T ;�U +�0T )

Proposition 6. If  is irreducible, then the routine SpecialTailChopper terminates and
is correct.

Proof. Analogous to the proof of Proposition 1. �

Remark 7. It can be shown that we may rather take � :=
�

Idk 0
0 Idr¡k

�
in the algorithm,

thereby avoiding denominators; see also Lemma 8 below.

If  is not necessarily irreducible, then we may still use the routine SpecialTailChopper
to compute a  -tail chopper, but function calls RowSweaper(U�v) may potentially fail, as
explained at the end of section 3. Nevertheless, whenever failure occurs, we may compute an
explicit non trivial factorization  =  1  2. This allows us to recursively compute a  1-tail
chopper T1 and a  2-tail chopper T2. In order to recombine T1 and T2 into a  -tail chopper, we
need several lemmas.
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Lemma 8. Let T be a  -tail chopper for (1). Then  � T is a  -tail chopper as well, for any �2Z.

Proof. Let U = �¡t T A + T 0 and v = min (val U ; val T ¡ 1). Also let  y =  0 /  ,
T~ = T  �, U~ = �¡t T~A + T~

0
= (U + �  y T )  � and v~ = min (val U~; val T~ ¡ 1). Setting

D(�)=Uv+ 
0 Tv+1 � andD~(�)=U~v+�+ 0 T~v+�+1 �=D(�+�), the fact thatD�(�) is invertible

as a matrix in L�(�)r�r implies that D~�(�)=D�(�+�) is invertible. Hence D~(�)=/ 0 and v~=v+ �.

We �nally have D~(�)=U~v~+  0T~v~+1� and D~�(�) is an invertible matrix in L�(�)r�r. �

Lemma 9. Let T 2 �tK[x;  ¡1]r�r be a tail chopper for (1) and  . Denote U = �¡t T A+ T 0

and v=min (val U ; val T ¡ 1). Let T~2 �tK[x;  ¡1]r�r be such that

val (T~¡T ) > v+max (1; t¡ val A):

Then T~ is a  -tail chopper for (1).

Proof. Denoting U~ = �¡t T~A + T~
0 and w = min (val (U~ ¡ U); val (T~ ¡ T ) ¡ 1), we have

w > val (T~ ¡ T ) + min (¡1; val A ¡ t) > v. Hence v~ := min (val U~ ; val T~ ¡ 1) = v and

D(�) :=Uv+ 
0 Tv+1 �=U~v~+ 

0 T~v~+1 � :=D~(�). This shows in particular thatD~�(�) is invertible
as a matrix in L�(�)r�r. �

Lemma 10. Let  1 and  2 be two non scalar divisors of � with gcd( 1;  2)= 1 and  =  1  2.
For i = 1; 2, let Ti 2 �t K[x]r�r be such that Ti is a  i-tail chopper for (1) and denote
Ui= �¡t TiA+Ti

0. Assume that v :=min (val 1U1;val 1T1¡ 1)=min (val 2U2;val 2T2¡ 1) and
let p=v+1+max (1; t¡val 1A; t¡val 2A). Now consider T 2 �tK[x]r�r with T �T1 (mod 1

p)
and T �T2 (mod  2

p). Then T is a  -tail chopper for (1).

Proof. For i=1;2, our assumptions imply that val i(T ¡Ti)> p>max(1; t¡val iA), whence T
is a  i-tail chopper for (1) by Lemma 9. Let Hi(�) := [(U + i

0 T �)  i
¡v] rem i be the remainder

of the Euclidean division of (U +  i
0 T �)  i

¡v by  i. Then we notice that Hi(�) coincides with
the coe�cient of  iv in the  i-adic expansion of U + i

0 T �. Using that T �Ti (mod  i
p), we also

have Hi(�) = [(Ui +  i
0 Ti �)  i

¡v] rem  i. In particular, Hi(�)mod  i admits an inverse Vi(�)
in (K[x]/( i))(�)r�r.

Now let H(�) := [(U +  0T�)  ¡v] rem  . Computing modulo  1, we have

H1(�) � (U +  1
0 T�)  1

¡v

�  2
v (U +  1

0  2T (� 2
¡1))  ¡v

�  2
v (U +  0T (� 2

¡1))  ¡v

�  2
vH(� 2

¡1) (mod  1);

whence

H(�) �  2
¡vH1(� 2) (mod  1)

H(�) �  1
¡vH2(� 1) (mod  2):

Now gcd( 1;  2) = 1, so the Chinese remainder theorem implies the existence of a matrix
V (�)2 (K[x]/( ))(�)r�r with V (�)�  2vH1(� 2) (mod  1) and V (�)�  1vH1(� 1) (mod  2).
It follows that H(�) V (�) � 1 (mod  1) and H(�) V (�) � 1 (mod  2), showing that
H(�) V (�) � 1 (mod  ). Since H(�) is the leading coe�cient of the  -adic expansion of
U +  0T�, we conclude that T is a  -tail chopper. �

We are now in a position to state an improved version of SpecialTailChopper that works
for general square-free  . The computed  -tail chopper T always belongs to �tK[x]r�r.
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Algorithm TailChopper('; t; A;  )

Try computing T :=SpecialTailChopper('; t; A;  )
if no error occured then return T t¡val T

Compute a non trivial factorization  =  1  2
T1 :=TailChopper('; t; A;  1), U1 := �¡tT1A+T1

0

T2 :=TailChopper('; t; A;  2), U2 := �¡tT2A+T2
0

v1 :=min (val 1U1; val 1T1¡ 1), v2 :=min (val 2U2; val 2T2¡ 1)
v :=max (v1; v2), T1 :=T1  1

v¡v1, T2 :=T2  2
v¡v2

p := v+1+max (1; t¡ val 1A; t¡ val 2A)
Compute T 2 �tK[x]r�r with T �T1 (mod  1

p)and T �T2 (mod  2
p)

return T

Proposition 11. The routine TailChopper is correct.

Proof. If no error occurs, then T  t¡val T 2 �t K[x]r�r is a  -tail chopper by Lemma 8.
Otherwise, the recursive calls yield a  1-tail chopper T12 �tK[x]r�r and a  2-tail chopper T22
�tK[x]r�r. Applying Lemma 8 twice more, we get that the corrected T~1 :=T1  1

v¡v12�tK[x]r�r

and T~2 :=T2  1
v¡v12 �tK[x]r�r are still tail choppers. Moreover, setting U~i := �¡t T~iA+T~i

0 and
v~i :=min

¡
val iU~i;val iT~1¡1

�
for i=1;2, the arguments from the proof of Lemma 8 imply that

v~1= v1+(v¡ v1)= v= v2+(v¡ v2)= v~2. We conclude by Lemma 10. �

Assume now that a �-tail chopper T is known for (1). Let U = �¡t T A + T 0 and v :=
max (val� U ; val� T ¡ 1). Write I for the set of indices i 2 Z for which U�v + �0� T�v+1 i is not
invertible. Let �2K[x; �¡1]r�K[x]�

r , considered as a series in � with a �nite number of non-zero
coe�cients in Lr. Then the following routine TailReduce computes a vector �~2K[x; �¡1]r with
(�~¡�)> y 2 @M and �~i+v=/ 0) (i2I _ i+ v> 0) for all i2Z. We call b�> yc := �~> y the tail
reduction of �> y. The map b�c:M!M isK-linear . By construction, b�> yc¡�> y2@M for all
�2K[x; �¡1]r and there exists a lower bound B such that val b�> yc>B for all �2K[x; �¡1]r.

Algorithm TailReduce(�)

repeat
if �i+v=0 for all i <¡v with i2/ I then return �
Let i <¡v with i2/ I be minimal with �i+v=/ 0
Lift ��:= (U�v

>+ i �0� T�v+1
> )¡1��i+v into �>2 (Lr)>

� :=�¡ �i¡1 (U> �+ i �0T>) �¡ �iT> � 0

Proposition 12. The routine TailReduce terminates and is correct.

Proof. Analogous to the proof of Proposition 2. �

6. Normalizing the reduction

Given a system (1) of di�erential equations, Propositions 1 and 11 show how to compute head
and �-tail choppers for (1). The algorithms HeadReduce and TailReduce then allow us to
compute the head reduction df e 2M ] of any f 2M ] and the tail reduction bf c 2M of any
f 2M . The head reduction extends to f 2M by setting df e= df ]e + f [ for any f 2M . We
�nally obtain a con�ned reduction [�]:M!M by setting [f ] = dbf ce for all f 2M . It remains
to be shown how we can turn this reduction into a normal con�ned reduction J�K:M!M .
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Consider the �nite dimensional K-vector space [M ] := f[f ]: f 2M g. Let d=max fdegx �]:
�> y 2 [M ]g 2N and v =min fmin fval� �: �> y 2 [M ]g;¡1g 2 ¡N. Let 
 be the K-subvector
space of M of all f = �> y 2M with degx �]6 d+ 1 and val� �> v + 1. We notice that f 2

for any f = �> y 2M with f 02 [M ]. Now let V := @
\ [M ] and let W be a supplement of V
in [M ] so that [M ] =V �W . We may compute bases of V and W using straightforward linear
algebra. The canonical K-linear projections �V : [M ]!V and �W : [M ]!W with �V + �W = Id
are also computable. We claim that we may take JfK :=�W([f ]) for every f 2M .

Proposition 13. The mapping J�K:M!M ; f 7!�W([f ]) de�nes a computable normal con�ned
reduction on M.

Proof. The mapping J�K is clearly a computable con�ned reduction on M . It remains to be
shown that Jf 0K= 0 for all f 2M . Now [f 0]¡ f 02 @M , so [f 0]2 @M and there exists a g 2M
with g 0 = [f 0]. Since g 0 2 [M ], it follows that g 2 
 and g 0 2 @
 \ [M ] = V . In other words,
[f 0] = g 02V and Jf 0K=�W([f 0]) = 0. �
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