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Nonspherical armoured bubble vibration†

G. Prabhudesai, I. Bihi, F. Zoueshtiagh, J. Jose, and M. Baudoin ∗

In this paper, we study the dynamics of cylindrical armoured bubbles excited by mechanical vi-
brations. A step by step transition from cylindrical to spherical shape is reported as the intensity
of the vibration is increased, leading to a reduction of the bubble surface and a dissemination of
the excess particles. We demonstrate through energy balance that nonspherical armoured bub-
bles constitute a metastable state. The vibration instills the activation energy necessary for the
bubble to return to its least energetic stable state: a spherical armoured bubble. At this point,
particle desorption can only be achieved through higher amplitude of excitation required to over-
come capillary retention forces. Nonspherical armoured bubbles open perspectives for tailored
localized particle dissemination with limited excitation power.

1 Introduction
Armoured bubbles, i.e. bubbles coated with a dense layer of par-
tially wetting particles, exhibit fascinating properties such as in-
creased stability toward dissolution1,2 or the ability to sustain
non-spherical shapes3. These bubbles can be massively produced
by bulk emulsification techniques4–6 or by bubble injection in
a suspension of particles7, but with a limited control over the
bubbles properties. Recently microfluidic techniques have been
considered to produce some calibrated armoured bubbles of tai-
lored shapes, sizes and composition8. Some of these techniques
simply rely on the natural inclination of particles to be adsorbed
at air/liquid interfaces9,10, while others exploit fancy chemical-
or temperature-mediated processes11,12 or the deep modifica-
tion of liquid/air interface dynamics in particle covered capil-
lary tubes13,14. In parallel, much effort has been devoted to the
characterization of armoured bubbles properties, and in particu-
lar their stability toward dissolution1,2, their lifetime when ex-
posed to surfactant15 or their mechanical strength when submit-
ted to ambient overpressure16. Surprisingly, less effort has been
devoted to the study of the response of armoured bubbles to me-
chanical vibrations17,18, while bubbles are known to be outstand-
ing resonators19–23, with high quality factors and remarkably low
resonance frequencies20. Recently, Poulichet et al.17,18 investi-
gated the acoustically driven oscillation of particle-coated bub-
bles. They showed that these oscillations can lead to the tailored
expulsion of the particles from the surface at sufficient acoustic
power. To the best our knowledge, the response of their nonspher-
ical counterpart to mechanical vibrations has not been reported
so far in the literature.
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In this paper, we characterize the dynamics of cylindrical ar-
moured bubbles excited with vertical vibrations produced by a
vibration exciter. We show that the vibration leads to a step by
step transition of the bubble shape from cylindrical to spherical as
the amplitude of the vibration is increased. This shape evolution
leads to a decrease of the surface of the armoured bubble and thus
a release of excess particles in the liquid. This evolution is shown
to be highly dependent on the excitation frequency: lower exci-
tation amplitude is required near the Minnaert bubble resonance
to trigger this transition. We demonstrate through energy balance
that nonspherical armoured bubbles constitute a metastable state.
The bubble vibration enables the release of the mechanical con-
straint between the particles which maintains the bubble shape
and thus lets it evolve toward the least energetic stable state: a
spherical armoured bubble. This transition does not require to
overcome capillary retention forces and thus enables particle dis-
semination with reduced excitation power. Once the armoured
bubble is spherical, massive particle desorption is only observed
when the kinetic energy instilled from the surface vibration over-
comes the capillary retention forces. The required power in this
case is thus larger than for nonspherical bubble and should in-
crease as the particle dimensions are decreased as demonstrated
through dimensional analysis.

2 Materials and methods

Cylindrical armoured bubbles of tailored radius Rc = 0.49± 0.01
mm and length Lc = 8.5±0.5 mm are produced with the method
introduced in ref. 13: First, glass capillary tubes of radius Rt = 501
µm are cleaned by successive sonication in acetone and alcohol.
Then the tubes are treated with piranha solution (sulfuric acid +
hydrogen peroxide) to clean organic residues off the glass. They
are then kept in DI Water in a sealed recipient before use. Prior
to the particle dispersion, they are dried for 1 hour in an oven
at 120◦C. Second, Rilsan (Polyamide 11) particles of mean ra-
dius Rp = 15±1 µm are scattered into the tube by gently blowing
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them with an air jet. Third, a DI water liquid finger is pushed
at constant flow rate (Q = 0.2 ml/h) with a syringe pump inside
the tube leading to the formation of a long cylindrical armoured
bubble through the process described in ref. 13.

Finally the bubble is extracted from the tube and injected inside
a rectangular plexiglas closed chamber of height 20 mm, length
75 mm and width 55 mm filled with DI Water, by applying a larger
flow rate of Q = 5 ml/h. The bubbles are cut at the appropriate
length by twisting the capillary sideways while keeping it hori-
zontal. This cuts the bubble on the open end of the capillary.

Fig. 1 Scheme of the experimental setup

Then the chamber is vibrated vertically with a Bruel & Kjaer
4809 vibration exciter driven by a sinusoidal Voltcraft FG 250D
function generator whose signal is amplified with a 2718 Bruel
& Kjaer amplifier. The amplitude of the excitation A is measured
with an IEPE Deltatron type 4519-002 Bruel & Kjaer accelerome-
ter. The evolution of the bubble shape is recorded with a Hama-
matsu C9300 high resolution camera mounted on an Olympus
SZX7 macroscope, while the fast bubble oscillations are captured
with a Photron SA3 high speed camera. Finally images are treated
with ImageJ software and the evolution of the bubble shape is
quantified by using the roundness shape descriptor Ro = 4S/πL2

m,
with S the apparent surface of the bubble (in the pictures), and Lm

the length of the bubble major axis. This shape descriptor gives
a measure of the deviation of the bubble from a circular shape,
with Ro = 1 as the bubble becomes perfectly spherical.

3 Experimental results
3.1 Shape evolution
The vertical vibration of the cylindrical armoured bubbles at
a given amplitude A (0.1 µm< A < 50 µm) and frequency fe
(0.5kHz< fe < 4kHz) leads to an isovolume evolution of its shape
through a reduction of its surface and a release of excess par-
ticles in the liquid (see Fig. 2 to 4 and Movie S1). When the
power is turned on, the bubble shape evolves at first over charac-
teristic times < 1min and then evolves slowly toward an asymp-
totic shape, which depends on the excitation amplitude A and the
excitation frequency fe (see Fig. 5). As the amplitude of exci-
tation is increased gradually, this asymptotic shape is more and
more spherical, eventually leading to a spherical armoured bub-
ble (Ro→ 1) (see Fig. 2 and 4). This transition is nevertheless

Fig. 2 Evolution of a cylindrical armoured bubble of length Lc = 8.5 mm
and radius Rc = 0.5 mm vibrated vertically with a vibration exciter at fre-
quency fe = 1 kHz and at an amplitude A indicated at the top of each
picture. Each picture is taken after two minutes of excitation.

Fig. 3 Evolution of a cylindrical armoured bubble of length Lc = 8.5 mm
and radius Rc = 0.5 mm vibrated vertically with a vibration exciter at fre-
quency fe = 2.5 kHz and at an amplitude A indicated at the top of each
picture. Each picture is taken after two minutes of excitation. In the final
picture, all the particles initially at the surface of the bubble have been
disseminated in the liquid.

Fig. 4 Evolution of a cylindrical armoured bubble of length Lc = 8.5 mm
and radius Rc = 0.5 mm vibrated vertically with a vibration exciter at fre-
quency fe = 3 kHz and at an amplitude A indicated at the top of each
picture. Each picture is taken after two minutes of excitation.
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Fig. 5 Transient evolution of the roundness Ro of a cylindrical armoured
bubble excited at 1 kHz as function of time (in min). The squares show
the evolution of the bubble roundness when the amplitude A is increased
step by step every 10 min from A = 9.7 µm to A = 51.7 µm. The circles
show the evolution when the amplitude is directly set up to 51.7 µm.

not regular as a function of the excitation amplitude A: Under a
frequency-dependent threshold, the bubble keeps its cylindrical
shape (see Fig. 5 and 6). Above this threshold, the bubble shape
evolves at first weakly as the amplitude of the excitation is in-
creased and then undergoes a sharp transition toward a spherical
shape for a critical amplitude ≈ Ac, defined here as the amplitude
necessary for the bubble to achieve a roundness of 0.4 (see Fig.
6).
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Fig. 6 Evolution of the Roundness as a function of the excitation am-
plitude for different excitation frequencies fe. For each frequency, the
roundness is measured sequentially after 2 minutes of excitation at each
amplitude.

3.2 Minnaert resonance frequency
This critical amplitude Ac highly depends on the excitation fre-
quency fe (see Fig. 7) and decreases by several orders of mag-
nitude close to the Minnaert resonance frequency of the bubble
fM = 3.26×R−1

s , with Rs = (3/4π V )−1/3 the radius of a spherical
bubble of same volume V = πR2

cLc as the initial cylindrical ar-

moured bubble. Indeed we verified that the bubble undergoes a
isovolume shape transformation (less than 4% of volume change
have been measured between the initial and final state, including
errors in the estimation of the volume from the 2D pictures of
the bubble). The precedent formula gives a value of the Minnaert
resonance frequency of fM = 2.8±0.1 kHz.

It is interesting to note that two extremely different behaviors
are observed around the Minnaert frequency: At 3 kHz the transi-
tion from cylindrical to spherical shape is achieved with the weak-
est excitation amplitude. The evolution of the bubble shape starts
at very low excitation amplitude (A= 0.1 µm�Ac) and then goes
on progressively when the amplitude is increased, until a spher-
ical armoured bubble is obtained (see Fig. 4 and Fig. 6). At 2.5
kHz, no shape evolution is observed until the critical amplitude
Ac is reached. Then, when A = Ac the bubble directly evolves into
a particle-free spherical bubble with a release of all surrounding
particles in the liquid (see Fig. 3, Fig. 6 and movie S2).
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Fig. 7 Critical excitation amplitude Ac required for the bubble to reach
a roundness Ro = 0.4 as a function of the excitation frequency fe. Two
experiments have been carried out for each frequency.

4 Discussion
4.1 Cylindrical bubbles: a metastable state
Nonspherical armoured bubbles constitute a metastable state.
This can be shown by computing the interfacial energy required
for a quasi-static and isovolume transformation of a spherical ar-
moured bubble into a nonspherical one. Such a transformation
necessarily requires an increase in the particles-covered interface
of the bubble since the spherical shape minimizes the bubble sur-
face. We can compute the energy ∆E, which is necessary for the
migration of a particle from the liquid to an extended air-liquid
interface (see Fig. 8). In the calculation below we assume that the
particles are hydrophilic (with a liquid-air-particle contact angle
0≤ θp ≤ π/2), spherical and that their radius Rp is much smaller
than the radius of curvature of the bubble.

The energy ∆E is simply the difference between the interfacial
energy Eb of the particle integrated at the air-liquid interface and
the interfacial energy Ea of the particle lying in the liquid:

∆E = Eb−Ea (1)
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Fig. 8 Sketch illustrating the migration of a particle lying in the liquid to
an extended meniscus.

The interfacial energy Ea in configuration (a) is:

Ea = γLPAa
LP (2)

with γLP the interfacial energy per unit area of the liquid-particle
interface and ALP = 4π R2

p the liquid-particle interface in the con-
figuration (a). The interfacial energy Eb in the configuration (b)
is the sum of the gas-particle (GP), liquid-particle (LP) and gas-
liquid (GL) interfacial energies:

Eb = γGPAb
GP + γLPAb

LP + γGLAb
GL (3)

with γ and A the interfacial energies per unit area and the areas
of the corresponding interfaces. Since the particles intersect the
liquid-air interface with a contact angle θP (to minimize inter-
facial energy), we deduce from simple geometric considerations
that:

Ab
GP = 2πR2

p(1− cosθP) (4)

Ab
LP = 2πR2

p(1+ cosθP) (5)

Then, due to their shape and arrangement, the particles cover
only a fraction φ of the gas-liquid interface, called the specific
surface area. Thus, the gas-liquid interface that is necessary to
incorporate a new particle is πR2

P/φ , with φ < 1. If we subtract
the surface occupied by the particle itself, we obtain:

Ab
GL = πR2

P/φ −πR2
P sin2

θP. (6)

If we now combine equations 1 to 6, we obtain:

∆E = πR2
p [2γGP(1− cosθP)+2γLP(1+ cosθP)

+γGL

(
1/φ − sin2(θP)

)]
−
[
γLP4π R2

p

]
From the definition of the contact angle cosθP = (γGP− γLP)/γGL,

we finally obtain:

∆E = γGLπR2
P

[
1
φ
− (1− cosθP)

2
]

(7)

Since 0≤ (1−cosθP)
2 ≤ 1 (for hydrophilic particles) and 1/φ > 1,

we have∗:
∆E > 0

This energy is positive indicating that the quasi-static transfor-
mation of a spherical bubble into a nonspherical one costs some
energy. In other words a nonspherical bubble is not a stable state
and would return to its least energetic state, i.e. a spherical ar-
moured bubble in the absence of other constraint. Nevertheless,
as discussed initially in ref. 3, the jamming between the particles
prevents this evolution and maintain the bubble in a metastable
state.

In the present experiments, the bubble vibration instills the ac-
tivation energy required to induce this transition. Indeed, during
the expansion phase of the bubble oscillation, the particles are no
more in contact, and are thus freed from their interparticle me-
chanical constraint. In addition, the kinetic energy instilled to the
particles by the vibration of the surface contribute to the release
of the particles. This enables the bubble shape reconfiguration
into a spherical armoured bubble.

4.2 Particle expulsion from spherical armoured bubbles

Spherical armoured bubbles on the other hand constitute a stable
state. Indeed, a bubble without particles is a minimum surface en-
ergy configuration. Then, if a particle lying in the liquid migrates
on the already existing liquid-air interface, the energy necessary
for this migration ∆E∗ is simply24:

∆E∗ = ∆E−
πR2

P
φ

γGL =−γGLπR2
P (1− cosθP)

2 < 0

which is negative, indicating that the minimization of surface en-
ergy leads to an adsorption of the particles which come into con-
tact with the air-liquid interface. This principle was used in ref.
9,10,16 to create armoured bubbles.

Thus the desorption of particles lying at the surface of a spher-
ical armoured bubble requires to overcome capillary retention
forces as noticed by Poulichet and Garbin17,18. These authors
showed experimentally that localized particle desorption occurs
for weak oscillations of spherical armoured bubbles but that the
massive release of particles in the liquid requires higher ampli-
tudes of vibrations.

We can estimate the kinetic energy that is necessary to over-
come the capillary barrier, by simply equating Ec = 1

2 mPV 2
p and

|∆E∗|, with mp = 4/3πρpR3
p the mass of the particles, ρp their

density, Vp = 2π fe∆Rs their velocity at the oscillating interface,
and ∆Rs the radial variation of the bubble.

We performed experiments on individual spherical armoured
bubbles of radius Rs = 1.25 mm covered with Rilsan particles of

∗NB: The calculation of the energy required for the migration of a hydrophobic parti-
cle from the gas to the air-liquid interface, also gives ∆E > 0
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radius Rp ≈ 15µm, density ρp ≈ 1050 kg m−3, contact angle θP ≈
70◦ 13, lying in water with surface tension γGL ≈ 70 mN m−1 (see
e.g. movie S3). Massive particle detachment was observed when
the bubble oscillation magnitude reaches ∆Rs/Rs ≈ 10% of the
initial radius of the bubble. This leads to Ec/|∆E∗| ≈ 0.4. For
the experiments performed at 2.5kHz (see e.g. Movie S2), the
ratio Ec/|∆E∗|measured when massive desorption of the particles
occurs is approximatively equal to 2. These experiments are thus
consistant with this criterion.

It is also interesting to note that this simple criterion is in quali-
tative agreement with the data provided by Poulichet et al.18. In-
deed, in their experiments, the latex particle size and density are
respectively Rp = 250 nm and ρp = 1040 kg m−3, the air-liquid-
particle contact angle is θp ≈ 45o 17, the frequency of excitation
is fe = 40 kHz, the surface tension is γGL ≈ 70 mN m−1 and the
amplitude of oscillation required for the particles dispersion is
typically 50 µm. This leads to a ratio Ec/|∆E| required for particle
dispersion of ≈ 3.

4.3 Analysis of the dynamics observed near the Minnaert
resonance frequency

The analysis detailed in the two previous subsection provides in-
sightful elements, which help in understanding the two different
behaviors observed at 2.5 kHz and 3 kHz, near the Minnaert res-
onance frequency of the spherical bubble. When the bubble is ex-
cited at 2.5 kHz, no shape modification is observed when A < Ac

and then brutally, all particles are ejected from the interface when
A = Ac = 1 µm. While at 3 kHz, the shape evolution starts at low
amplitude A = 0.2 µm<< Ac and reaches a spherical armoured
bubble shape at A = 1 µm. This suggests that 2.5 kHz is closer to
the resonance frequency of the spherical bubble and that 3 kHz
is closer to the resonance frequency of the cylindrical armoured
bubble. Indeed, at 2.5 kHz, the bubble response is weak (since the
excitation differs from the cylindrical armoured bubble resonance
frequency) until the vibration is sufficient to induce a shape trans-
formation. As the shape becomes more and more spherical, the
bubble amplitude increases up to an amplitude that is sufficient
to overcome capillary retention forces, resulting in the release of
all interfacial particles in the liquid. At 3 kHz, the bubble starts
responding at low amplitude of excitation (since the excitation
frequency is close to the cylindrical armoured bubble resonance
frequency), but as the bubble shape evolves, the excitation fre-
quency differs from the resonance frequency, requiring more and
more power to enable a shape evolution of the bubble. When the
spherical shape is reached, the excitation amplitude of A = 1 µm
is not sufficient to overcome the capillary retention forces and
thus the bubble keeps its armour.

4.4 Nonspherical bubbles: powerfull vectors for particles
transport and dissemination with reduced activation
power

All the experimental and theoretical results provided in this pa-
per indicate that particles dissemenation can be achieved with
less power with nonspherical than with spherical armoured bub-
ble. The dimensional analysis below suggests that this tendency

should increase as the size of the bubble and particles are de-
creased.

Let’s consider a spherical bubble of radius Rs covered with par-
ticles of radius Rp excited at its resonance frequency fM (for
maximum efficiency) oscillating at an amplitude of oscillation
∆R̄s = ∆Rs/Rs sufficient to disseminate the particles. The equality
Ec = |∆E∗| leads to:

1/2
[
ρp× (4/3πRp)

3
]
×
[
Rs ∆R̄s×3.26 R−1

s

]2
= γGLπR2

P (1−cosθP)
2

If the density and wetting properties of the particles are kept con-
stant and only the size of the bubble and particles are changed,
one obtain:

∆R̄s ∝ R−1
p

The bubble amplitude of oscillation required for particles dissem-
ination does not seem to depend on the bubble size but is nev-
ertheless inversely proportional to the size of the particles. This
means that for smaller particles, a larger relative amplitude of os-
cillation is required to untrap the particles located at the surface
of a spherical armoured bubble. While for a cylindrical bubble,
the same relative amplitude of oscillations would enable the re-
lease of particles since there is no need to overcome capillary re-
tention forces, but only to suppress the contact between the par-
ticles. This might be essential for medical applications. Indeed,
contrast agents currently used in the body have a typical size of
a few microns and active material of typically a few nanometers
are generally required for efficient dissemination in the body. It
might thus become difficult to overcome capillary retention forces
at this scale.

5 Conclusion and perspectives

In this paper, the response of nonspherical armoured bubbles to
mechanical vibrations was studied experimentally and analyzed
theoretically. In particular, it was shown that a nonspherical ar-
moured bubble constitute a metastable state, which evolves to-
ward its minimum energy state, i.e. a spherical armoured bubble,
as its surface is vibrated. This shape evolution leads to a reduc-
tion of the bubble interface and consequently a release of the ex-
cess particles. Once the spherical shape is reached, the massive
release of particles from the interface requires that the kinetic
energy instilled to the particles by the vibration of the bubble sur-
face exceeds the desorption energy. Scaling laws indicate that the
release of particles from spherical armoured bubbles becomes ex-
tremely challenging as the size of the bubbles is decreased. Thus
nonspherical armoured bubbles appear as a tremendous alterna-
tive for controlled particle dissemination at small scales with lim-
ited input power. Applications can be envisioned in medicine for
in-vivo active drug delivery through the use of robust acoustical
methods precedently developed for ultrasound contrast agents.
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