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Determining the Singularities for the Observation of Three Image Lines

Sébastien Briot1, Philippe Martinet2 and François Chaumette3

Abstract— The determination of the singularity cases in the
observation of image features is a complicated problem which
is still open, apart from image points. For the first time, we
provide the singularity cases in the observation of three image
lines. We show that a concept named the “hidden robot”,
which was formerly used for understanding the singularities
of a vision-based controller dedicated to parallel robots and,
more recently which proved to be efficient for finding the
singularity cases in the observation of image points, can be
used for interpreting the singularities in the observation of three
image lines. The hidden robot concept considerably simplifies
the analysis by using geometric interpretations of the mapping
degeneracy and tools provided by the mechanical engineering
community. We prove that in the most complicated case where
three general lines in space are observed, singularities appear
when the origin of the observed object frame is either on a
quadric or a cubic surface whose location in space depends on
the configuration of the observed lines. In simpler cases where at
least two lines belong to the same plane, these two surfaces can
degenerate into simpler geometrical loci (e.g. planes, cylinders,
lines).

I. INTRODUCTION

Finding the singularity cases in the observation of image
features is crucial in visual servoing and pose estimation [1].
However, this problem is still unsolved for most of the
cases due to its considerable complexity. The singularities
were found in the case of three image points after rather
complicated mathematical computations [2], but they are still
unknown for other image features.

In order to avoid the controllability issues near singulari-
ties, authors usually propose to observe additional features.
However this leads to a non-minimal representation of the
interaction between the system and the camera, resulting
in the potential appearance of local minima [3] which are
also difficult to determine. Additionally, even adding visual
features may not ensure the absence of singularity cases [4].
Therefore, finding the singularities is crucial but it is usually
prevented by the complexity of the mathematical problem to
solve.

Recently, a concept named the “hidden robot” was intro-
duced in [5], [6]. This concept was first used to determine
the singularity cases of a vision-based controller dedicated
to parallel robots [7] but it was recently proven that it can
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be extended to more general cases, such as the observation
of n image points [8].

The basic idea shown in [6], [8] is that the singularity
cases of the mappings involved in the visual observation of
geometric primitives for estimating the pose of an object or
for visual servoing are equivalent to mappings representing
the geometric and kinematic properties of given hidden
parallel robots. By geometric property, we mean that the
solutions of the Forward Geometric Model (FGM) of the
parallel robots under consideration are also the solutions of
the 3-D localization problem associated with the considered
observations. By kinematic property, we mean that the sin-
gularities of the inverse kinematic Jacobian matrix of the
robot are the same as the singularities of the interaction
matrix that defines the link between the time variation of the
visual features and the camera velocity. The hidden robot is
indeed a tangible visualization of the mapping between the
observation space and the Cartesian space. A methodology
is proposed in [6] in order to define the hidden robot models
associated with visual servoing dedicated to parallel robots
while [8] presents an approach for finding the virtual robot
models associated with more general cases based on the
observation of geometric visual primitives.

By finding this correlation, it is then possible to study
the singularities of the interaction matrix, by using advanced
tools coming from the mechanical engineering community
(e.g. the Grassmann-Cayley algebra [9] and/or the Grass-
mann geometry [10]). The interest in using these tools is that
they are (most of the time) able to provide simple geometric
interpretations of the singularity cases. However, it should
be noted that these tools still require an experienced user.

In the present paper, we show that a virtual parallel robot is
hidden within the mapping used in the observation of image
lines [11] and, thanks to this correlation, we analyze the
singularity cases when three lines are observed. To the best
of our knowledge, this is the first time that this problem is
solved, except for obvious cases such as when the three 3-
D lines are parallel (leading to an unconstrained translation
along the direction of the lines).

As a result, the paper is organized as follows. Next section
shows that the geometric / kinematic mapping involved in the
observation of image lines is the same as the mapping re-
quired to control a particular 3–UPRC parallel robot1. Then,
in Section III, the singularities of the mapping are analyzed
and validated through simulations. Finally, conclusions are
drawn in Section IV.

1In the following of the paper, P, U, R, C will stand for passive
prismatic, universal, revolute and cylindrical joints, respectively. If the letter
is underlined, the joint is considered active.
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Fig. 1. Observation of a line

II. THE ROBOT MODEL HIDDEN IN THE
OBSERVATION OF LINES

Before presenting the architecture of robot hidden in the
observation of three lines, we make some brief recalls on the
computation of the related interaction matrix.

A. Interaction matrix of three image lines

In the following section of the paper, we use the standard
pin hole model with focal length equal to 1 for the repre-
sentation of the camera model. However, any other model
based on projective geometry could be used.

A 3-D line Li of Plücker coordinates [UT
i LT

i ]T in the
camera frame (Ui being a unit vector characterizing its
direction while Li = Ui×X, X being the coordinates of any
point Mi belonging to Li) is projected in the image plane
on a 2-D line `i of Plücker coordinates [uT

i lTi ]T (ui being
a unit vector characterizing its direction while li = ui × x,
x being the coordinates of any point mi belonging to `i)
(Fig. 1). From [12], we know that

ui =

uxiuyi
uzi

 =

 Lyi/∆
−Lxi/∆

0

 , li =

lxilyi
lzi

 =

Lxi/∆
Lyi/∆
Lzi/∆

 (1)

where Li = [Lxi Lyi Lzi]
T and ∆ =

√
L2
xi + L2

yi.
By differentiating these equations, the classical equations

linking the velocities l̇i (and as a result the velocities u̇i) to
the twist τT

c = [υT
c ω

T
c ] of the camera in its relative motion

with respect to the observed object frame (υc being the
translational velocity and ωc the rotational velocity expressed
in the camera frame) are

l̇i = Miτ c (2)

where Mi = [MT
i1 M

T
i2 M

T
i3]T with

Mi1 =


lxilyiUzi/∆
l2yiUzi/∆

−lyi(lxiUxi + lyiUyi)/∆
lxilyilzi
l2yilzi
−lyi



T

(3)
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Fig. 2. Observation of three lines lying on a body B

Mi2 =


−l2xiUzi/∆
−lxilyiUzi/∆

lxi(lxiUxi + lyiUyi)/∆
−l2xilzi
−lxilyilzi

lxi



T

(4)

Mi3 =


(Uyi + lyilziUzi)/∆
−(Uxi + lxilziUzi)/∆
lzi(lxiUyi − lyiUxi)/∆

lyi(l
2
zi + 1)

−lxi(l2zi + 1)
0



T

(5)

In order to fully servo the relative motion between an ob-
ject and a camera, at least three lines fixed on the object must
be observed [11] (Fig. 2). Thus, considering the observation
of three lines L1, L2 and L3, the interaction matrix linking
the velocities l̇i of the lines `i (i = 1, 2, 3) grouped in the
vector ṡ = [l̇T1 l̇T2 l̇T3 ]T to the camera twist τ c by the relation

ṡ = Mτ c (6)

is thus given by

M =
[
MT

1 MT
2 MT

3

]T
(7)

Singularities appear when the matrix M is rank deficient.
Looking at the analytical form of M, it is clear that deter-
mining the singularities of M through the determinant of
MTM seems to be out of reach.

Note that we have used above the Plücker representation
of lines, but following results are not dependent of the choice
of the representation (Cartesian, cylindrical) [12].

B. Hidden robot model

In this section, we show that a virtual parallel robot is
hidden within the mapping used in the observation of image
lines by considering what follows. First, from the single
measure of the location of a line `i in the image plane, it
is impossible to know the location of its corresponding 3-
D line Li. The only information that we can extract from
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Fig. 3. A UPRC kinematic chain

this measure is that the 3-D line Li lies on the interpretation
plane Pi passing through `i and the optical center O. As a
result, the measure of `i gives the location of the plane Pi.
Furthermore, from the same single measure, the orientation
of the observed body B cannot be deduced (we need the
three measures of the positions of lines `1, `2 and `3, see
Fig. 2).

From a mechanical engineer point of view, these geometric
properties can be obtained by the kinematic architecture
depicted in Fig. 3. This architecture is made of an actuated
cardan (or universal (U )) joint rotating around point O and
fixed on the camera frame at that point. The U joint is
followed by a passive prismatic (P ) joint whose direction
zi is reciprocal to the axes xi and yi of the cardan joint.
Then, the passive P joint is attached at its other extremity
to a passive revolute (R) joint whose axis is directed along
yi. Finally, the last link (moving platform, equivalent to the
observed body B) is connected to the R joint by a passive
cylindrical (C) joint whose axis ai is orthogonal to the axis of
the R joint. Thus, we have a leg with a UPRC architecture
linking the camera frame to the observed object frame. To
this leg, we associate a vector qi = [αi βi]

T , where αi

and βi represent the rotation angles of each revolute joints
composing the U joint (Fig. 3). With such a leg, the observed
body B is constrained to translate along Li and to rotate
around it. As a result, the vectors Ui and Li associated with
the Plücker coordinates of the line Li are collinear with the
axes ai and yi, respectively (Fig. 3).

It should be mentioned that the rotational component of
the C joint in this leg is necessary because we know that
line Li is attached to a rigid element (the observed body B)
whose orientation cannot be defined by considering a single
measure `i. Without taking into account this information, the
displacement of the line Li can be obtained by a leg with
a UPR architecture, i.e. a kinematic chain with two passive
degrees of freedom (instead of four for the UPRC leg).

Considering now that:

• the three observed 3-D lines L1, L2 and L3 have mo-

~x

~y

O

B

~z

The three
active cardan
joints are grouped
at the same point

Passive
cylindrical
joints

Passive
prismatic
joints

Passive
revolute
joints

Passive
cylindrical
joint

Passive
revolute
joint

Passive
revolute
joint

1L2L

3L

Fig. 4. The hidden robot model corresponding to the observation of three
lines lying on a body B: a 3–UPRC parallel robot with all active cardan
joints merged at the point O (for reason of clarity of drawings, the axes of
the cardan joints are not represented)

tions whose geometric properties can be parameterized,
for each of them, by a UPRC mechanical architecture
depicted above,

• L1, L2 and L3 are fixed on the same body B,
• there is a global diffeomorphism between the configu-

ration of the line `i and the U joint rotations qi; as a
result, li is a singularity-free observation of the U joint
motions qi,

then the relative motion between the body B and the camera
frame has the same geometric and kinematic properties as
the motion of a 3–UPRC parallel robot (Fig. 4), i.e.
• the solutions of the FGM of the 3–UPRC parallel robot

are also the solutions of the 3-D localization problem
when three 3-D lines are observed by a perspective
camera.

• the singularities of the inverse kinematic Jacobian ma-
trix of the robot are the same as the singularities of the
interaction matrix (7).

To prove the last item, let us consider what follows. The
inverse kinematic Jacobian matrix Jinv of the robot links the
actuators velocities q̇ = [q̇T

1 q̇T
2 q̇T

3 ]T to the platform twist
τ p through the relation

q̇ = Jinvτ p (8)

Jinv is of dimension (6×6). Moreover, as mentioned above,
there is a global diffeomorphism between the measure of the
image line configuration `i and the U joint rotations qi. As
a result,

q̇ = Gṡ (9)

where G is a (6 × 9) block-diagonal matrix which cannot
be rank-deficient. Finally, by combining (6) and (9) with the
screw transformation relation linking the camera twist τ c



(expressed with respect to the object frame) to the observed
object twist τ p (expressed with respect to the camera frame)
by [3]

τ c = H τ p, where H =

[
−I3 [ctp]×
03×3 −I3

]
(10)

(in which I3 is the (3× 3) identity matrix, 03×3 is a (3× 3)
zero matrix, and [ctp]× is the cross-product matrix associated
to the 3-D vector ctp characterizing the translation between
the camera and the observed object frames), we found:

Jinv = GMH (11)

Then, as matrices G and H are never rank-deficient, we
obligatorily have a loss of rank of M if and only if Jinv is
rank-deficient. Therefore, the conditions of singularity of the
hidden robot inverse kinematic Jacobian matrix Jinv are the
same as the singularity conditions of the interaction matrix
M.

III. SINGULARITY ANALYSIS
A. General conditions of singularity

Singularities on the inverse Jacobian matrix Jinv of a
parallel robot (also called Type 2 or parallel singulari-
ties [13]) appear when at least two solutions of the FGM are
identical [10]. As mentioned in Section II, these singularities
are analogous to the singularities of the interaction matrix.

In Type 2 singularities, parallel robots gain one (or more)
uncontrollable motion. Kinematically speaking, there exists
a non-null vector ts defined such that Jinvts = 0 while
q̇ = 0, i.e. the actuators are fixed (which means that ts
is in the null space of Jinv). As known in mechanics,
if a rigid body got an uncontrollable motion, this means
that it is not fully constrained by the system of wrenches
applied on it, i.e. the static equilibrium is not ensured. As
this uncontrollable motion appears only in a singularity, this
means that locally the system of actuation wrenches, i.e.
wrenches transmitted from the actuators to the platform by
the legs, is degenerated [10].

For a given leg i, any actuation wrench denoted by ξij is
reciprocal to the unit twists denoted ζik characterizing the
displacements of the passive joints [14], i.e. ξTijζik = 0 for
any j and k. This means that the virtual power developed
by the wrench ξij along the direction of motion ζik is null;
in other words, the actuator j of the leg i cannot transmit a
wrench ξij to the platform along the direction ζik.

Let us consider a UPRC leg belonging to our 3–UPRC
hidden robot. In the frame Fi : (Mi, xi, yi, zi) (Mi being
the point of intersection between the axis of the prismatic and
revolute joints) attached to the leg, the unit twist defining the
motion of the passive P joint is expressed as (see Fig. 3):

ζi1 =
[
0 0 1 0 0 0

]T
(12)

while
ζi2 =

[
0 0 0 0 1 0

]T
(13)

is the unit twist defining the motion of the passive R joint
and

ζi3 =
[
cos γi 0 − sin γi 0 0 0

]T
(14)

ζi4 =
[
0 0 0 cos γi 0 − sin γi

]T
(15)

are the unit twists defining the motions of the passive C
joint, γi being the angle between xi and ai (and thus Ui),
both axes being contained in Pi (Fig. 3).

In these twists, the three first components represent the
direction of the translation velocity while the three last
components represent the direction of the rotational velocity.

As a result, the unit actuation wrenches ξij = [fTij mT
ij ]

T

expressed in the frame Fi are

ξi1 : fi1 = [0 1 0]T , mi1 = 03×1 (16)

ξi2 : fi2 = 03×1, mi2 = [sin γi 0 cos γi]
T (17)

in which fij represents the direction of the force exerted on
the platform and mij the direction of the moment. As a
result, ξi1 is a pure force directed along yi and ξi2 is a pure
moment reciprocal to ξi1 and Ui which is included in the
plane Pi (Fig. 3).

Thus, for the three robot legs, the system of actuation
wrenches is given by ξ = [ξ11 ξ21 ξ31 ξ12 ξ22 ξ32]. There
exists some tools able to define the conditions of degeneracy
of a wrench system among which are the Grassmann geome-
try [10] and the Grassmann-Cayley algebra [9], [15]–[17]. In
what follows, we use the Grassmann-Cayley algebra in order
to find the singularity conditions related to our problem.
Indeed, as any wrench of the wrench system ξ can be seen
as the Plücker representation of a line2 [10], the Grassmann-
Cayley algebra makes it possible to compute the determinant
of the wrench system ξ as an expression involving twelve
points selected on the six lines (corresponding to the six
wrenches). This expression is a linear combination of 24
monomials [9], each monomial representing the volume of
a tetrahedron whose extremities correspond to four of the
considered twelve points. By a smart selection of the twelve
points, due to the experience of the user, it is possible to
vanish a large number of the monomials and thus to simplify
the expression of the determinant of the wrench system.

Regarding our particular case, the Grassmann-Cayley alge-
bra was used in [17] to prove that, if the system of wrenches
is composed of a pair of three forces ξ11, ξ21, ξ31 and
of three moments ξ12, ξ22, ξ32, conditions of singularities
appear if and only if :

f1 = fT11(f21×f31) = 0 or f2 = mT
12(m22×m32) = 0 (18)

which means that the vectors f11, f21 and f31 (m11, m21

and m31, resp.) lie in the same plane (or are collinear to
the same vector c). As a result, the mechanism is not able to
resist to forces f (moments m, resp.) orthogonal to this plane
(or in any directions orthogonal to c) and thus translations
(rotations, resp.) are gained along the direction of f (around
the axis of m, resp.).

From these two conditions, it is possible to find the
configurations of the end-effector (the observed body) in the
camera frame leading to singularities. Examples of singular

2A pure force will be represented by a line in the 3-D space while a pure
moment will be a line in the projective space at infinity.



configurations, depending on the arrangement of the lines on
the observed body, are detailed below.

B. Singularity loci

Thanks to the particular geometric properties of the system
to analyze (invariance of robot leg configurations for any
rotation around O), it is possible to simplify the singularity
analysis by fixing the platform orientation. Thus, all expres-
sions below will be given for the “zero” platform orientation.
For another given platform orientation (parameterized by
the rotation matrix R), singularity loci will be found by
parameterizing the variables X , Y and Z characterizing
the position of the origin of the object frame Fb in the
camera frame (see Figs. 5 and 6) when considering the “zero”
platform orientation thanks to new variables X ′, Y ′ and Z ′

representing the position of the origin of the object frame
for the considered “non-zero” platform orientation such that[

X Y Z
]T

= R
[
X ′ Y ′ Z ′

]T
(19)

1) Three coplanar lines with no common intersection
point: In such a case, the three lines intersect in points M1,
M2 and M3 (Fig. 5(a)) (we disregard the case where at least
two lines are parallel, which is considered in Section III-
B.5). We define the frame Fb : (Q, xb, yb, zb) attached
to the observed body B such that Q is the center of the
circumcircle of the triangle ∆M1M2M3 and xb is collinear
to
−−−→
QM1. Moreover, for the analysis, we fix the orientation of

the body so that Fb can be obtained from the camera frame
by a translation of vector

−−→
OQ. As a result,

−−→
OQ = [X Y Z]T ,

−−−→
QM1 = [ρ 0 0]T ,

−−−→
QM2 = ρ[cosφ sinφ 0]T ,

−−−→
QM3 = ρ[cosψ sinψ 0]T

(20)

where φ, ψ are two angles defined in Fig. 5(a) and ρ is the
radius of the circle.

Then, from section III-A, we know that

fi1 ∝ Ui ×
−−→
OMi, mi2 ∝ Ui ×

−→
fi1 (21)

leading to, from (18), and after some tedious developments,

f1 = 0⇔Z = 0

f2 = 0⇔Z(X2 + Y 2 − ρ2) = 0
(22)

Condition Z = 0 means that the plane containing the lines
L1, L2 and L3 also contains the camera center O, which
is not critical in practice. In such a case, all three lines
project in a single line in the image plane and the pose of
the object cannot be determined. Condition X2 + Y 2 = ρ2

means that the camera center O lies on the cylinder whose
axis is perpendicular to the plane containing all three points
M1, M2 and M3 and which includes the three points. These
conditions are the same as the singularity cases where three
image points are observed [2], which is indeed not a surprise
due to the equivalence of both problems.
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Fig. 5. Observation of three coplanar lines

2) Three coplanar lines with a common intersection point:
We define the frame Fb : (Q, xb, yb, zb) attached to the
observed body B such that Q is the intersection point of all
three lines and xb is collinear to U1 (Fig. 5(b)). Again, we
fix the orientation of the body so that Fb can be obtained
from the camera frame by a translation of vector

−−→
OQ. Thus,

−−→
OQ = [X Y Z]T , U1 = [1 0 0]T ,

U2 = [cosφ sinφ 0]T , U3 = [cosψ sinψ 0]T
(23)

where φ, ψ are two angles defined in Fig. 5(b).
Then, from section III-A,

fi1 ∝ Ui ×
−−→
OQ, mi2 ∝ Ui ×

−→
fi1 (24)

leading to, from (18),

f1 = 0 for any object configuration

f2 = 0⇔Z(X2 + Y 2) = 0
(25)

Thus, if three coplanar lines intersect in a single point,
the rank of the interaction matrix is never full, i.e. at
least one degree of freedom (a translation towards the
intersection point) of the object cannot be controlled, as
already known [11]. Moreover, additional degrees of freedom
become uncontrollable if
• Z = 0, which means as previously that the plane

containing the lines L1, L2 and L3 also contains the
camera center O.

• X2 + Y 2 = 0, which means that the camera center
O lies on the line which passes through Q and which
is perpendicular to all vectors Ui, which is the same
condition as when f1 = 0.

3) Three lines in space with a common intersection point:
Here, the three lines are spatial, not orthogonal and intersect
in a common point. We define the frame Fb : (Q, xb, yb, zb)
attached to the observed body B such that xb is collinear to
U1, yb is in the plane containing U1 and U2, while Q is the
intersection point of the lines. As a result,

−−→
OQ = [X Y Z]T , U1 = [1 0 0]T ,

U2 = [a b 0]T , U3 = [c d e]T
(26)

where a, b, c, d and e are variables parameterizing the
direction of the lines.
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fi1 and mi2 can be found thanks to expression (24), and
from (18) we obtain,

f1 = 0 for any object configuration

f2 = 0⇔b(adeY 3 + ((−ad2 + bcd+ ae2)Z

+ (ac− bd)eX)Y 2 − e(bcX2 + (ad− bc)Z2

+ 2beXZ)Y + ((−ad2 + bcd− ae2)X2Z

+ (bd+ ac)eXZ2)) = 0

(27)

Thus, if three spatial lines intersect in a single point, the
rank of the interaction matrix is never full, i.e. at least
one degree of freedom (a translation) of the object cannot
be controlled, as already known [11]. Moreover, additional
degrees of freedom become uncontrollable if the origin of
the body frame belongs to a cubic surface parameterized by
f2 = 0.

Note also that in the case where the three lines are
orthogonal, the equation f2 = 0 degenerates into XY Z = 0.

4) Three orthogonal lines in space: Here, the three lines
are orthogonal and do not intersect. We define the frame
Fb : (Q, xb, yb, zb) attached to the observed body B such
that xb is collinear to U1, yb is collinear to U2 and zb is
collinear to U3. Moreover, the distance between L1 and L2

is equal to 2a, between L2 and L3 is equal to 2b, and between
L1 and L3 is equal to 2c, while Q is the barycenter of the
lines (Fig. 6(a)). As a result,

−−→
OP1 = [X (Y − c) (Z − a)]T , U1 = [1 0 0]T

−−→
OP2 = [(X − b) Y (Z + a)]T , U2 = [0 1 0]T

−−→
OP3 = [(X + b) (Y + c) Z]T , U3 = [0 0 1]T

(28)

where Pi is a point belonging to Li.
Then, we have

fi1 ∝ Ui ×
−−→
OPi, mi2 ∝ Ui ×

−→
fi1 (29)

which leads to, from (18),

f1 = 0⇔aXY + bY Z − cXZ − abc = 0

f2 = 0⇔acX − abY + bcZ −XY Z = 0
(30)

Expression f1 represents a quadric surface while expression
f2 is a cubic surface (Fig. 7).
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Fig. 7. Example of singularity loci when three perpendicular lines are
observed (computed for a = 3.13, b = 3.13, c = −3.13)

5) Three lines, two of them being parallel: Here, the
lines `1 and `2 are parallel. We define the frame Fb :
(Q, xb, yb, zb) attached to the observed body B such that
xb is collinear to U1 = U2, yb is lying in the plane P
containing L1 and L2. Q is at the intersection of P and the
line L3. From Fig. 6(b), we define

−−→
OP1 = [X (Y − a) Z]T , U1 = [1 0 0]T

−−→
OP2 = [X (Y + b) Z]T , U2 = [1 0 0]T

−−→
OP3 = [X Y Z]T , U3 = [c d e]T

(31)

where c, d, e are variables parameterizing the direction of
the line L3.

Then, fi1 and mi2 being found from (29), by using the
singularity conditions (18), we obtain

f1 = 0⇔Z(dZ − eY ) = 0

f2 = 0⇔Z(X(d2 + e2)− cY d− cZe) = 0
(32)

Here, singularities are equations of planes:

• Z = 0, which occur when the plane P containing L1

and L2 also contains the optical center,
• eY − dZ = 0 is the plane containing U1, U3 and the

optical center,
• X(d2 + e2) − cdY − ceZ = 0 is the plane containing

(U1 ×U3), U3 and the optical center.

The two first cases are degenerated cases where two 3-D
lines are contained in the same interpretation plane (i.e. the
plane passing through the camera center and the image line),
leading to the same image line for the two 3-D lines.

6) Three general lines in space: This is the most general
case. We do not provide here the expressions which are
more complex than in the previous cases but they are still
exploitable and can be found in a technical report [18].

As in the case of the three perpendicular lines, condition
f1 = 0 provides the expression of a quadric surface while
f2 = 0 leads to a cubic surface.
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Fig. 9. Inverse of the condition number of the interaction matrix M
obtained when observing three lines in the general case.

C. Illustrative examples

1) Singularities when observing three general lines in
space: In order to show the exactness of our results, we
first perform simulations in the case where the three lines
have a general configuration (Section III-B.6). The three
general lines are parameterized as follows. We define the
frame Fb : (Q, xb, yb, zb) attached to the observed body B
such that xb is collinear to U1, yb is lying in the plane P
containing L1 and L2. Then, the line Li is parameterized
by its direction Ui and a point Pi lying on it by taking the
following expressions:

−−→
OP1 = [(X − b) (Y − c) (Z − a)]T , U1 = [1 0 0]T

−−→
OP2 = [(X − b) (Y − c) (Z + a)]T , U2 = [d e 0]T

−−→
OP3 = [(X + b) (Y + c) Z]T , U3 = [f g h]T

(33)

where d, e, f , g and h are variables parameterizing the direc-
tion of the lines L2 and L3, and X , Y , Z are the coordinates
of Q in the camera frame. For simulation purpose, we set
a = b = c = 1 m and d = e = 1, f = −1, g = h = 1. Then,
a relative motion between the object frame and camera frame
origins is imposed and is parameterized by the following
functions characterizing the location of Q in the camera
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Fig. 10. Relative motion of the camera with respect to the three observed
orthogonal lines.
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Fig. 11. Inverse of the condition number of the interaction matrix M
obtained when observing three orthogonal lines.

frame:

X = 1−0.5s, Y = 1− 0.5s,

Z = 0.75− 2.25s
(34)

with s ∈ [−.1 0.05] a linearly increasing function. The
relative motion of the camera with respect to the observed
lines is shown in Fig. 8. In such simulation, when s =
0, the point O reaches the configuration XO = 0.05 m,
YO = 0.05 m and Zs = 0.225 m in the object frame (see
Fig. 8) which is a point lying on the quadric surface whose
expression can be found in the technical report [18]. As
a result, the rank-deficiency of the matrix M appears for
s = 0, which is shown on Fig. 9 in which the inverse of the
condition number is null only for s = 0.

2) Singularities when observing three orthogonal lines in
space: A second simulation is performed in order to show
now the singularities when observing three orthogonal lines
in space (see Section III-B.4). For simulation purpose, we
take the following values of the parameters a, b and c in (28):
a = b = 0.5 m, c = 1.5 m. Then, a relative motion between
the object frame and camera frame origins is imposed and is
parameterized by the following functions characterizing the



location of Q in the camera frame:

X = 1−0.5s, Y = 1− 0.5s,

Z = 2− s (35)

with s ∈ [−1 1] a linearly increasing function. The relative
motion of the camera with respect to the observed lines is
shown in Fig. 10. In such simulation, when s = 0, the point
O reaches the configuration XO = 0.5 m, YO = 0.5 m and
ZO = 1 m in the object frame (see Fig. 10) which is a point
lying on the cubic surface whose expression is given in (30).
As a result, the rank-deficiency of the matrix M appears for
s = 0, which is shown on Fig. 11 in which the inverse of
the condition number is null only for s = 0.

IV. CONCLUSION
In this paper, we determined the singularity cases for the

observation of three image lines thanks to a tool named the
“hidden robot concept”. We showed that the hidden robot
concept allows for considerable simplification of the analysis,
leading to the computation of new singularity cases. Indeed,
the hidden robot is a tangible visualization of the mapping
between the observation space and the Cartesian space. As
a result, the singular configurations of the hidden robot
corresponded to the singularities of the interaction matrix.

Indeed, the concept of hidden robot allowed to change the
way we defined the problem. By doing so, we were able to
replace the degeneracy analysis of the velocity transmission
between inputs (velocity of the observed features) and out-
puts (camera twist), by its dual but fully equivalent problem
which was to analyze the degeneracy in the transmission of
wrenches between the inputs of a virtual mechanical system
(virtual actuators of the hidden robot whose displacement
was linked to the motions of the observed features) and its
outputs (wrenches exerted on the virtual platform, i.e. the
observed object).

Then, by using geometric interpretations of the mapping
degeneracy and tools provided by the mechanical engineer-
ing community such as the Grassmann-Cayley algebra, we
were able to find rather simple geometric interpretation of
the interaction matrix degeneracy. We proved that in the
most complicated cases where three general lines in space
are observed, singularities appear when the origin of the
observed object frame is either on a quadric or a cubic
surface. In simpler cases where at least two lines belong
to the same plane, these two surfaces can degenerate into
simpler geometrical loci (e.g. planes, cylinders, lines).

Future works concern the analysis of the singularity cases
in the observation of n lines, and research about the singular-
ities when observing other primitives (spheres, circles, and
eventually of combination of different primitives), or when
using several cameras.
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tation, Université Laval, QC, Canada, nov 2002.

[15] P. Ben-Horin and M. Shoham, “Application of Grassmann-Cayley
algebra to geometrical interpretation of parallel robot singularities,”
Int. Journal of Robotics Research, vol. 28, no. 1, pp. 127–141, 2009.

[16] N. White, Handbook of Geometric Computing. Springer, 2008, vol. 8,
ch. Grassmann-Cayley algebra and robotics applications, pp. 629–656.

[17] D. Kanaan, P. Wenger, S. Caro, and D. Chablat, “Singularity analysis
of lower mobility parallel manipulators using Grassmann-Cayley al-
gebra,” IEEE Transactions on Robotics, vol. 25, no. 5, pp. 995–1004,
2009.

[18] [Online]. Available: https://hal.archives-ouvertes.fr/hal-01400575


