
HAL Id: hal-01435808
https://hal.science/hal-01435808v1

Submitted on 24 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Certified Detection of Parallel Robot Assembly Mode
under Type 2 Singularity Crossing Trajectories

Adrien Koessler, Alexandre Goldsztejn, Sébastien Briot, Nicolas Bouton

To cite this version:
Adrien Koessler, Alexandre Goldsztejn, Sébastien Briot, Nicolas Bouton. Certified Detection of
Parallel Robot Assembly Mode under Type 2 Singularity Crossing Trajectories. 2017 IEEE Inter-
national Conference on Robotics and Automation (ICRA 2017), May 2017, Singapour, Singapore.
�10.1109/ICRA.2017.7989720�. �hal-01435808�

https://hal.science/hal-01435808v1
https://hal.archives-ouvertes.fr


Certified Detection of Parallel Robot Assembly Mode under Type 2
Singularity Crossing Trajectories

Adrien Koessler1, Alexandre Goldsztejn2, Sébastien Briot2 and Nicolas Bouton1

Abstract— Increasing the size of operationnal workspace is
one of the main problems parallel robots are faced with.
Among all the proposed solutions to that, crossing Type 2
singularities using dedicated trajectory generation and multi-
model controller has a great potential. Yet, this approach is not
sufficient for the robot to operate autonomously, as assembly
mode detection during the motion currently requires additional
redundant information.

To tackle this problem, we propose an algorithm based on
Interval Analysis (IA) that is able to track the end-effector of
the robot even under assembly mode change. IA-based solvers
for the forward kinematic problem of parallel robots are well
known, but they cannot be used under assembly mode change.
Compared to those classical approaches, the major modification
introduced is the tracking of end-effector velocity in addition to
its pose. Using this new information of velocity, the algorithm
is capable to monitor the assembly mode change of the robot
happening when the singularities are crossed. The behavior and
the reliability of this algorithm are analyzed experimentally on
a five-bar planar parallel mechanism.

I. INTRODUCTION

It is acknowledged that parallel manipulators have advan-
tages in terms of rigidity, cycle time and payload-to-weight
ratio over their serial counterparts. Yet, their workspace is
usually split into several assembly modes separated by Type
2 (or parallel) singularities [1][2].

These are difficult to deal with as one (or more) manipu-
lator’s degree of freedom becomes uncontrollable. Assembly
modes separated by Type 2 singularities cannot be inter-
connected to each other using classical control algorithms,
resulting in a decrease in the size of the operationnal
workspace.

Therefore, approaches leading to operationnal workspace
enlargement have been developed, such as:
• Optimal design of parallel manipulators to maximize the

size of the operationnal workspace [3] or to eliminate
Type 2 singularities [4][5]

• Redundantly actuated robots [6][7], which is a costly
solution or robots with variable actuation modes [8][9]

• Assembly mode changing trajectories based on cusp
points detection [10]

• Dedicated trajectory generation and control to cross
directly the singularity locus [11][12]

The latter approach seems more versatile to us, as it can be
generalized to any type of parallel robot. It emerged with the

1 Universit Clermont Auvergne, CNRS, SIGMA Clermont,
Institut Pascal, F-63000 Clermont-Ferrand, France {Adrien.Koessler,
Nicolas.Bouton}@sigma-clermont.fr

2 Laboratoire des Sciences du Numérique de Nantes (LS2N),
UMR CNRS 6004, 44321 Nantes, France {Alexandre.Goldsztejn, Se-
bastien.Briot}@ls2n.fr

discovery of a physical criterion allowing the non-degeneracy
of the manipulator’s dynamic model in Type 2 singular
configurations [11]. Using this criterion, trajectory plan-
ners and dedicated multi-model Computed Torque Control
schemes [13][14] have been developed and tested, proving
their efficiency in most cases. Nevertheless, unavoidable
tracking errors with respect to this desired trajectory can
have a strong impact in the vicinity of the singularity, up
to missing the assembly mode change. Hence monitoring
the assembly mode during the robot motion is needed.

Methods to detect the assembly mode of a robot have
already been investigated. The introduction of measurement
redundancy (using passive instrumented legs or encoders
in passive joints) allows to achieve it, but the placement
of encoders needs to be chosen carefully [15]. External
measurement with vision, either to monitor directly the pose
of the platform [16] or the orientation of the legs of the
mechanism [17], has also been investigated. Both of those
approaches come at an extra cost and might be difficult to
integrate in an industrial environment.

An interesting alternative is based on interval analysis. IA
is a field of mathematics that treats variables as intervals,
meaning that the variable’s value must lie between the lower
bound and the upper bound of the interval [18]. Thus, it
can be very useful for reliable computations in bounded-
error context. Numerous applications of IA can be found in
robotics [19] and control, such as mobile robot localization
[20][21], robot kinematic calibration [22], robust control
[23], positioning precision analysis and synthesis [24][25].
In parallel robotics in particular, methods to compute the
aspects of the workspace have been discovered [26] [27].

Merlet has applied IA to solve the Forward Kinematic
(FK) problem of a Gough-Stewart platform [28], using the
equations of the inverse kinematics and a start point. Thanks
to constraint propagation techniques, his algorithm showed
ability to distinguish the different solutions of FK problem
even when the platform is close to Type 2 singularities. Such
a technique, which is time-efficient and does not require
additional sensors, is highly interesting in an industrial
context. Yet it has to be adapted to assembly mode changing
detection, as it does not handle it: if the robot reaches a
Type 2 singularity and exits it, the algorithm will compute
enclosures of the pose that diverge, and therefore will not be
able to state in which assembly mode it exited [28].

Hence, our goal is to provide an IA-based algorithm that
is able to track the assembly mode of a robot attempting to
cross Type 2 singularities.



Notations: In the following, bracketed symbols are used
to denote interval enclosures of the corresponding quantities.
For instance, a scalar a ∈ R car be enclosed by the interval
[a] = [a,a] ∈ IR such as a ≤ a ≤ a, where IR is the set
of scalar real intervals. An interval vector is the cartesian
product of the scalar interval of each component. For in-
stance, a vector p = (p1 · · · pn)

T ∈ Rn admits a bracketing
[p] = [p1, p1]× ·· · × [pn, pn] ∈ IRn. This explains why a
vector of intervals is generally called a box.

II. POSE AND VELOCITY TRACKING ALGORITHM

A. Kinematic modelling of parallel mechanisms

This section aims to briefly recall the kinematic equations
of a parallel manipulator with n degrees of freedom and
driven by n actuators. The position and the speed of the
manipulator can be fully described using:
• q and q̇ that represent respectively the vector of active

joints variables and active joints velocities,
• x and ẋ that are the end-effector pose parameters and

their derivatives with respect to time, respectively.
In the following, the sampling time is ts with time step k,
while xk = x(kts), ẋk = ẋ(kts), qk = q(kts) and q̇k = q̇(kts).

The loop-closure equation of the mechanism can then be
written as [29]:

f(x,q,ξξξ ) = 0 (1)

where ξξξ is the vector of geometrical parameters. The first-
order kinematic equation is:

Jx(x,q,ξξξ ) ẋ+Jq(x,q,ξξξ ) q̇ = 0 (2)

where Jx and Jq are the (n× n) Jacobian matrices of the
robot.

B. Outline of the algorithm

Tracking the pose given joint values information q̂k is
usually done by solving (1) using a local solver, usually
a Newton method, and the previous pose as initial condi-
tion. This is however unreliable, especially near singularities
(See [29], chapter 4). IA gives rise to a reliable variant of this
tracking process [28]: Given an enclosure [q]k on the joint
coordinates at step k, one can compute an enclosure [x]k of
the pose solving (1) with an IA-based solver. Merlet [28]
also proposed to use the previous pose enclosure [x]k−1 and
an upper bound on the speed of the end-effector, given here
under the form of an enclosure of all possible speed vectors
[vmax]∈ IRn, to obtain an initial domain [x]k for the IA-based
solver:

xk = xk−1 +
∫ ts

0
v(t)dt ∈ [x]k−1 + ts[vmax] =: [x]k. (3)

This initial domain drastically simplifies and speeds up the
solving process, since it is usually quite small and contains
only the solution corresponding to the tracked trajectory. As
mentioned in the previous section, this IA-based tracking
process fails and computes divergent enclosures in the vicin-
ity of singularities [28].

f1

f2

i

X

Y

O

Fig. 1: An example of crossing attempt. i is the initial
configuration, f are the possible final configurations. The
dotted line represents the singularity locus, the arrows the
possible trajectories.

We propose here to extend this IA-based tracking process
by tracking the end-effector velocity in addition to its pose.
Using the end-effector velocity information, we might be
able to tell in which assembly mode the robot has exited
the singularity. For instance, imagine that the robot’s end-
effector follows a path intersecting a Type 2 singularity; it
may cross the singularity or ”bounce” on it. If we add the
information that the speed along this path did not change its
sign during the whole transfer, it is obvious that the robot
did cross the singularity. This is the type of information that
we need to create within our algorithm.

An example is shown on Fig. 1. With the knowledge that
the end-effector only had negative velocity along the Y -axis,
the only feasible final configuration is f2.

The end-effector speed is tracked similarly to its pose.
An initial domain for the end-effector velocity at step k
is computed using the enclosure at step k− 1 and a given
maximal acceleration [amax] ∈ IRn:

ẋk = ẋk−1 +
∫ ts

0
a(t)dt ∈ [ẋ]k−1 + ts[amax] =: [ẋ]k. (4)

This enclosure can be safely intersected with [vmax]. Then
using an enclosure [q̇]k of the joint velocity, this initial
domain is sharped by solving (2) using an IA-based solver.
In fact, this velocity enclosure can be used to improve the
initial pose enclosure (3): Since 0∈ [amax] we have ts[amax] =
[0, ts][amax], and therefore for all t ∈ [(k−1)ts,kts]

ẋ(t) = ẋk−1 +
∫ t

0
v(t)dt ∈ [ẋ]k−1 +[0, ts][amax] = [ẋ]k, (5)

i.e., the end-effector velocity enclosure (4) at time kts is
actually an enclosure of the velocity for all t ∈ [(k−1)ts,kts].
As a consequence, (3) can be improved as follows:

[x]k := [x]k−1 + ts[ẋ]k. (6)

As previously, the solver will fail sharpening the initial
end-effector pose and velocity domains in the vicinity of
singularities, since the matrix Jx in (2) is ill-conditionned.
Thus, in such configurations, the maximal acceleration is the



only information that can be used to enclose the end-effector
velocity. It follows from (4) that the width of its enclosure
will grow approximately as kts ‖[amax]‖. Despite its constant
growth, it is expected that the velocity enclosure will give
enough information to remove all the parasite solutions to the
FK problem, thus allowing to detect the current assembly
mode. For instance, in the situation of Figure 1, the end-
effector velocity enclosure can remain negative in spite of
its constant growth during the singularity crossing provided
that the speed is high enough.

C. Description of the algorithm

Algorithm 1 provides the pseudo-code of the end-effector
pose and velocity tracking algorithm. The procedure read
reads measurement of the joint coordinate and velocity (the
latter being usually approximated using possibly filtered
finite differences). It returns true in case of successful
acquisition, false otherwise when the motion is finished.
The procedure contract uses standard IA-based algorithms
(numerical constraint propagation, including the interval
Newton and the interval Gauss-Seidel operators [18], the
forward-backward contractor [30], etc.) in order to contract
the domains [x]k and [ẋ]k subject to the given constraints.
The domains [ξξξ ], [εεεq] and [εεε q̇] are considered as parameters
of the constraint system and are not contracted.

The inputs of the algorithm are:
• The kinematic model f, from which are computed the

derivatives Jx and Jq. These expressions are suitable to
perform interval evaluations and numerical constraint
programming.

• Interval enclosures [x]0 and [ẋ]0 of the initial end-
effector pose and velocity.

• Upper bounds on the end-effector velocity and accel-
eration given under the form of interval enclosures
[vmax] and [amax] of all possible end-effector velocity
and acceleration vectors.

• An enclosure [ξξξ ] of the geometric parameters.
• The joint and joint velocity measurement error bounds
[εεεq] and [εεε q̇], given under the form of intervals which
contain all possible errors.

• The sampling time ts.
Provided that the initial enclosure and the bounds involved

in the algorithm are valid, the IA-based constraint solving
process ensures that the true end-effector pose and velocity
are enclosed correctly for all times. The next section discuss
in detail the DexTAR parallel robot, its model and the bounds
that will be used in the experiments.

III. CASE STUDY: ASSEMBLY MODE CHANGE OF A
FIVE-BAR ROBOT

A. Robot kinematic analysis

For the purpose of the experiments, a five-bar planar
parallel robot is used: the DexTAR, manufactured by the
company Mecademic. The design of the robot is described
in [3]. A picture of the robot and a scheme are presented in
Fig. 2. It exhibits the two joint inputs q1, q2 (corresponding
to motors located at A1, A2) and the seven geometrical

Algorithm 1: Pose and velocity tracking algorithm
Input: f : Rn×Rn×Rm→ Rn;

[x]0, [ẋ]0, [vmax], [amax] ∈ IRn; [ξξξ ] ∈ IRm;
[εεεq], [εεε q̇] ∈ IRn; ts > 0;

1 k← 0;
2 while read(q̂k, ˆ̇qk) do
3 [q]k← q̂k +[εεεq];
4 [q̇]k← q̂k +[εεεq];
5 constract [x]k and [ẋ]k subject to (1) and (2);
6 [ẋ]k+1← ([ẋ]k + ts[amax])∩ [vmax];
7 [x]k+1← [x]k + ts[x]k;
8 k← k+1;
9 end

A1

q1+δ1

A2

q2+δ2

B1

B2

E(x, y)

`11

`12
`22

`21

d

X

Y

O

Fig. 2: DexTAR geometry

parameters taken into account: five lengths `11, `21, `12, `22,
d and two angular offsets δ1, δ2. The output is the motion
of the end-effector E, described by the pose x = (x y)T and
the velocity ẋ = (ẋ ẏ)T .

The system of equations for geometric loop closure (1) is
given by, for i = 1,2:

fi = (x± d
2
−`i1 cos(qi1))

2+(y−`i1 sin(qi1))
2−`2

i2 = 0. (7)

Enclosures [ξξξ ] of the values of the geometrical parameters
ξξξ are obtained through calibration procedure. It is performed
using a Leica AT901 laser tracker. The adapted DETMAX
algorithm described in [31] gave the 50 optimal poses to
be used for calibration. Using a least-square routine [32],
estimated values ξ̂i were obtained for parameters. Under the
assumption that the measurement noise is white and that the
identification matrix is deterministic, an estimate σ̂i of the
standard deviation of each paramenter was also computed.

TABLE I: Geometrical parameters values

ξi unit [ξi] nominal
`11 mm [89.832,89.995] 90
`21 mm [89.929,90.115] 90
`12 mm [89.899,90.050] 90
`22 mm [89.877,90.084] 90
d mm [117.843,118.107] 118
δ1 rad [-0.004,0.004] 0
δ2 rad [-0.004,0.004] 0



For every parameter ξi, the interval [ξi] = [ξ̂i − 5σ̂i; ξ̂i +
5σ̂i] was consequently set. Nominal values and parameter
intervals are presented in Table I.

Daney remarked that such a result can be rigorously
verified by using a purely geometric IA-based solver [33].
If the interval [ξi] are valid, it is ensured that the enclosure
[x] computed by (1) cannot be equal to the empty set at
any point of the trajectory. Sweeping the whole workspace
(singularity locus included), we verified it was never the case
in our application, thus validating the presented results.

Determining the bounds [vmax] and [amax] is by far the most
challenging problem in relation with our algorithm. To the
best of our knowledge, no method exist to determine the full-
cycle maximum values of end-effector velocity and acceler-
ation for parallel mechanisms, as the problem degenerates
in Type 2 singular configurations. For our experimentations,
the real value of end-effector acceleration norm ‖ẍ‖max is
monitored using an inertial unit, so that an upper bound for
end-effector acceleration can be deduced. The maximal ac-
celeration measured during the three experiments presented
in the next section are respectively 65.5 m · s−2, 79.9 m · s−2

and 50 m · s−2. The bounds [amax] chosen are respectively
[−80,80]× [−80,80], [−80,80]× [−80,80] and [−70,70]×
[−70,70]. We have no information of the maximal speed, and
have used [vmax] = [−∞,+∞]× [−∞,+∞] in all experiments,
showing that this information is not crucial for the success
of the IA-based tracking.

Finally, the homing process of the DexTAR gives rise
to [x]0 = [0.07,0.110] × [0.048,0.088] (m) and [ẋ]0 =
[−0.1,0.1]× [−0.1,0.1] (m · s−1). The sampling time is ts =
0.001s and [εεεq] = [− π

34000 ,
π

34000 ]× [− π

34000 ,
π

34000 ] (rad) is
given by the coder precision. The joint velocity is classically
approximated by a finite difference ˆ̇qk =

q̂k−q̂k−1
ts

with error

bound [εεε q̇] =
2[εεεq]

ts
.

B. Trajectory Generation and Control

As the goal is to cross Type 2 singularities to perform our
tests, an adapted controller is needed. The choice we made
is the trajectory generator and the multi-model Computed
Torque Controller (CTC) developed by Pagis in [13].

Adapting CTC schemes to singularity crossing is tricky,
since it relies on the inverse dynamic model (IDM) which
degenerates in Type 2 singularities. Yet, a physical criterion
can be used to keep the model consistent. It states that the
acceleration undergone by the robot’s end-effector must be
normal to the direction of the uncontrolled motion of the
end-effector. The reader is referred to [11] for comprehensive
discussion about this criterion.

This result was used by Pagis [13] to create a trajectory
generator dedicated to crossing Type 2 singularities. In
addition, a multi-model computed torque control scheme
was created by the same author, in which a nondegenerating
expression of the IDM is used in the neighbourhood of the
singularity locus. Complete information can be found in [34].

This control algorithm, left unmodified, is implemented
in Matlab/Simulink development environment. A Quanser

Q-PID FPGA is used to run the control programs and to
communicate with the robot.

IV. EXPERIMENTS

A. Tracking Algorithm Implementation

The algorithm is implemented in C++ language and com-
piled using MinGW. The program uses the IBEX library [35]
to perform interval computations. Experiments were carried
out on a quad-core Intel i7 processor at 2.40 GHz.

Contractors are also implemented by IBEX. (7) is
solved using the composition C f of a Newton iteration
[36] (CtcNewton) and a Forward-Backward contractor
(CtcFwdBwd) based on HC4revise algorithm [30]. The
velocity equation is implemented through symbolic differen-
tiation of (7), and related contractor CJ is obtained through
an interval Gauss-Seidel method (See [18], Chapter 7). C f
and CJ are composed and iterated using CtcFixPoint
contractor. Experiments proved those choices to be simple
and time-efficient: more advanced algorithms as Acid or
shaving operators did not improve the contraction.

B. Algorithm Behaviour

The first experiment consists in tracking a straight tra-
jectory. It gives a good insight on the way the algorithm
operates.

In this experiment, the desired trajectory crossing Type
2 singularity locus is directed along negative Y -axis of the
plane represented in Fig. 2. Fig. 3 shows the end-effector
pose enclosures [x]k. When approaching the singularity locus,
the enclosures tend to become loose. For a short time after
the crossing, the enclosures [x]k contains both solutions to
the FK problem. Afterwards, the width of the boxes shrink
rapidly due to an efficient contraction of the IA-based solver
and the new assembly mode change is detected.

The fact that the assembly mode is detected can be
explained from velocity information, as said in section II.
Fig. 4 explains it: It displays the enclosure of the end-effector
velocity ẏ along the Y -axis, and its integral

∆y(k) =
∫ kts

kits
ẏ(t)dt (8)

where ki = 12000 is the time step when the crossing trajec-
tory begins. ∆y represents the displacement that is undergone
by the end-effector. The figure shows that at time step
k = 12103, when the pose boxes shrink, the real displacement
value lies in ∆y(k) = [−205.4,−57.0] (mm). This allows to
eliminate the possible FK solution corresponding to assembly
mode 1, whose estimated displacement is only −31.3 mm
using nominal values for ξξξ .

Fig. 5 shows the sizes of each interval during the crossing
phase. It can be seen that all intervals grow before and
right after the crossing. Still, a contraction occurs when
the singularity is crossed, and the intervals locally shrink,
most notably the interval [x]. The explanation is geometrical:
in a singular configuration, the distal elements 12 and 22
are fully stretched along the x-axis, thus the interval on



New Assembly
Mode Detected

Boxes Containing
Both FKP Solutions

Motion
Direction

Singularity Locus

y (m)

0.14

0.12

0.10

0.08

0.06

0.04

0.02

x (m)-0.02 0 0.02

Fig. 3: Pose boxes [x] along the trajectory, reliably enclosing
the real pose of the end-effector

this coordinate gets tiny. The shrinking on other intervals
arises from the couplings during the contraction phase, as
the tightened interval [x] is used to contract the others. After
some time, a sudden decrease in interval widths is observed:
This corresponds to the moment when the algorithm has
found the right solution to the FK problem.

Out of 20 tries, the average execution time of the algorithm
is 5.97 s for a 6.66 second long trajectory, on an off-line
implementation. This execution time is encouraging for a
real-time application.

C. Algorithm operating range

When a singularity is crossed successfully by the robot,
there are two outputs possible for the algorithm: either it
states that the assembly mode has changed, or it cannot state
on the assembly mode. Of course, the second case does not
give useful information on the behavior of the manipulator.
During the tests, it has been observed that the algorithm often
falls into the second case when playing slower trajectories.

To prove this, several trajectories are created and played
by the robot. They all follow the same path as in the
previous experiment and they all succeed in crossing the
Type 2 singularity. However, their respective desired velocity
at singularity vsing differs. The outputs for our experiment are
the maximal widths of [x] and [ẋ] along the whole trajectory,
respectively denoted by mx and mẋ. They are shown in
Table II. It is also mentioned if the algorithm was able to
detect the change in assembly mode.

Results show that the faster the trajectory, the tighter
the intervals, both for pose and velocity. It also tends to

TABLE II: Operation range experiment result

vsing (m/s) 1.458 1.354 1.264 1.185 1.053
mx (mm) 47.18 49.15 53.45 178.30 178.23
mẋ (m/s) 4.248 4.440 4.746 517.51 455.98

AM detected? yes yes yes no no

confirm the point that was made to conclude Section II-B:
Faster trajectories are more likely to get their assembly mode
change detected. The explanation is that at slow crossing
speeds, more time is spent around the singularity, where the
algorithm is unable to contract the intervals. Thus, [ẋ] grows
at the rate kts ‖[amax]‖ so that [∆y] contains both solutions
to FK problem, making it impossible to conclude on the
assembly mode like it was done in section IV-B.

The behaviour of the algorithm has to be explained in
the case where the new assembly mode is never detected.
The result for the slowest trajectory is plotted on Fig. 6.
It confirms that the boxes [x] grow up to the geometrical
limits of the five-bar mechanism, always enclosing the two
different solutions to the direct geometric problem. Boxes
[ẋ] are not shown for concision matters, but they follow a
simple behaviour in that case: they grow up to infinity at the
rate amax, since no contraction is occuring anymore.

D. Reliability and eventual false positives

It was already mentionned that using valid bracketings
for all the parameters, the algorithm should give reliable
enclosures on x and ẋ. Two cases have been observed: either
the enclosure only contains one solution to the FGM, or it
contains both. The goal of this experiment is to prove that the
enclosures remain reliable even in a case of failed crossing
trajectory.

We define as false positive the fact that the algorithm states
that a crossing attempt succeeded whereas it failed in reality.
This is the worst situation that can exist, as the supervision
of the robot will wrongly think that the robot is operating
normally. To test this, we add an overconstraint on the torque
output of the control scheme, despite using a trajectory that
respects the crossing criterion. It results in an unsuccessful
crossing attempt where the end-effector of the robot appears
to bounce on the singularity locus.

The result is presented on Fig. 7, where the robot fails
to cross the singularity. It can be seen that the algorithm
keeps choosing the right solution to the FK problem (that
is, the one above the singularity locus), i.e. it keeps track
of the end-effector pose, thus certifying the reliability of our
algorithm: no false positive was detected.

V. CONCLUSION

In order to enlarge the reachable workspace of parallel
robots and to improve their reconfigurability, several methods
have been developed. Using dedicated motion generators
and control algorithms to cross Type 2 singularities is an
interesting solution to this problem, as it can be widely
generalized to all robots. However, the robot is not aware
of which assembly mode it is currently in, limiting its
autonomy.



(a) Velocity enclosure [ẏ] along the trajectory. (b) Displacement enclosure [∆y] along the trajectory.

Fig. 4: Velocity information. The exact singular configuration is denoted by the solid black line.

(a) Pose intervals widths. (b) Velocity intervals widths.

Fig. 5: Interval widths during singularity crossing. The exact singular configuration is denoted by the solid black line.

An algorithm that is able to solve this problem is proposed.
As IA-based FK solvers cannot deal with singularity cross-
ing, end-effector velocity tracking was introduced, allowing
the algorithm to successfully detect assembly mode change.
The reliability of the algorithm has been proven experimen-
tally on a five-bar planar parallel robot. Its behaviour has
been analyzed.

The experiments have notably shown that the output
created by the algorithm in not useful when the crossing
trajectory is too slow. This seems logical, as inertia is needed
too in reality to achieve a successful crossing. Nonetheless,
using the algorithm as it is remains possible in an industrial
context, since robots are generally put to the limit of their
acceleration capabilities.

Several perspectives for further investigation have been
identified. An obvious improvement would be to implement
this algorithm in real-time to detect assembly mode while
a trajectory is playing on the robot. Reversing the inputs
and outputs of the algorithm can help programming a robust
motion generator that creates only trajectories which ensure
a sucessful crossing of the Type 2 singularities. Both of these
perspectives are under investigation.

REFERENCES

[1] C. Gosselin and J. Angeles, “Angeles 90 -Singularity Analysis of
Closed-Loop kinematic Chains.pdf,” IEEE Transactions on Robotics
and Automation, vol. 6, no. 3, pp. 281–290, 1990.

[2] M. Conconi and M. Carricato, “A New Assessment of Singularities
of Parallel Kinematic Chains,” in Advances in Robot Kinematics:
Analysis and Design, pp. 3–12, 2008.

[3] A. Figielski, I. A. Bonev, and P. Bigras, “Towards development of a
2-DOF planar parallel robot with optimal workspace use,” in IEEE
International Conference on Systems, Man and Cybernetics, pp. 1–6,
2007.

[4] M. Carricato, Singularity-free fully-isotropic translational parallel
manipulators. PhD thesis, 2001.

[5] G. Gogu, “Structural synthesis of fully-isotropic translational parallel
robots via theory of linear transformations,” European Journal of
Mechanics A/Solids, vol. 23, pp. 1021–1039, 2004.

[6] J.-P. Merlet, “Redundant Parallel Manipulators,” Laboratory Robotics
and Automation, vol. 8, no. 1, pp. 17–24, 1996.

[7] A. Müller, “Redundant Actuation of Parallel Manipulators,” in Parallel
Manipulators, Towards New Applications, pp. 87–108, 2008.

[8] V. Arakelian and V. Glazunov, “Mechanism and Machine Theory
Increase of singularity-free zones in the workspace of parallel ma-
nipulators using mechanisms of variable structure,” Mechanism and
Machine Theory, vol. 43, pp. 1129–1140, 2008.

[9] N. Rakotomanga, D. Chablat, and S. Caro, “Kinetostatic Performance
of a Planar Parallel Mechanism with Variable Actuation,” in Advances
in Robot Kinematics, pp. 1–10, 2008.

[10] M. Zein, P. Wenger, and D. Chablat, “Singular Curves in the Joint
Space and Cusp Points of 3-RPR Parallel Manipulators,” Mechanism
and Machine Theory, vol. 43, no. 4, pp. 480–490, 2008.

[11] S. Briot and V. Arakelian, “Optimal Force Generation in Parallel
Manipulators for Passing through the Singular Positions,” The Inter-
national Journal of Robotics Research, vol. 27, no. 8, pp. 967–983,
2008.

[12] S. K. Ider, “Inverse dynamics of parallel manipulators in the presence
of drive singularities,” Mechanism and Machine Theory, vol. 40,
pp. 33–44, 2005.

[13] G. Pagis, N. Bouton, S. Briot, and P. Martinet, “Design of a Controller



Boxes Containing
Both FKP Solutions

Motion
Direction

y (m)

x (m)

Sing.
Locus

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0

-0.02 0 0.02

Fig. 6: Pose boxes [x] when the algorithm fails to detect
assembly mode change

for Enlarging Parallel Robots Workspace through Type 2 Singularity
Crossing,” in Proceedings of the 2014 IEEE International Conference
on Robotics and Automation, 2014.

[14] M. Ozdemir and S. K. Ider, “A switching inverse dynamics controller
for parallel manipulators around drive singular configurations,” Turkish
Journal of Electrical Engineering & Computer Science, vol. 24,
pp. 4267–4283, 2015.

[15] L. Tancredi, De la simplification et la résolution du modèle
géométrique direct des robots parallèles. PhD thesis, 1995.

[16] P. Martinet, J. Gallice, and D. Khadraoui, “Vision Based Control Law
using 3D Visual Features,” in Comitees, Econometrica, pp. 497–502,
1996.

[17] E. Ozgür, N. Bouton, N. Andreff, and P. Martinet, “Dynamic Control
of the Quattro Robot by the Leg Edgels,” in Proceedings of the IEEE
International Conference on Robotics and Automation, 2011.

[18] R. E. Moore, B. R, and C. M, Introduction to Interval Analysis, vol. 22.
2009.

[19] J.-P. Merlet, “Interval Analysis and Reliability in Robotics,” Interna-
tional Journal of Reliability and Safety, vol. 3, pp. 104–130, 2009.

[20] F. Le Bars, A. Bertholom, S. Jan, and L. Jaulin, “Interval SLAM for
underwater robots; A new experiment,” IFAC Proceedings Volumes
(IFAC-PapersOnline), pp. 42–47, 2010.

[21] L. Jaulin, “Range-Only SLAM with Occupancy Maps: a Set-
Membership Approach,” IEEE Transactions on Robotics, vol. 27,
no. 5, pp. 1004–1010, 2011.

[22] D. Daney, N. Andreff, G. Chabert, and Y. Papegay, “Interval method
for calibration of parallel robots: Vision-based experiments,” Mecha-
nism and Machine Theory, vol. 41, no. 8, pp. 929–944, 2006.

[23] J. Vehı́, I. Ferrer, and M. A. Sainz, “A Survey of Applications of
Interval Analysis to Robust Control,” in Proceedings of the 15th
International Federation of Automatic Control World Congress, no. 1,
pp. 389–400, 2002.

[24] M. R. Pac and D. O. Popa, “Interval Analysis for Robot Precision

y (m) x (m)

Singularity Locus

Motion
Direction

Motion
Direction

Turnaround
Point

0.16

0.15

0.14

0.13

0.12

0.11

0.10

0.09

0.08

-0.01 0 0.01

Fig. 7: Pose boxes [x] along the failed trajectory

Evaluation,” in Proceedings of the 2012 IEEE International Confer-
ence on Robotics and Automation, pp. 1087–1092, 2012.

[25] A. Goldsztejn, S. Caro, and G. Chabert, “A three-step methodology for
dimensional tolerance synthesis of parallel manipulators,” Mechanism
and Machine Theory, vol. 105, pp. 213–234, 2016.

[26] D. Oetomo, D. Daney, B. Shirinzadeh, and J.-P. Merlet, “An Interval-
Based Method for Workspace Analysis of Planar Flexure-Jointed
Mechanism,” Journal of Mechanical Design, vol. 131, no. 1, pp. 1–11,
2008.

[27] S. Caro, D. Chablat, A. Goldsztejn, D. Ishii, and C. Jermann, “A
branch and prune algorithm for the computation of generalized aspects
of parallel robots ,” Artificial Intelligence, vol. 211, pp. 34–50, 2014.

[28] J. P. Merlet, “Solving the Forward Kinematics of a Gough-Type Par-
allel Manipulator with Interval Analysis,” The International Journal
of Robotics Research, vol. 23, no. 3, pp. 221–235, 2004.

[29] J. P. Merlet, Parallel Robots (Second Edition). 2006.
[30] F. Benhamou, F. Goualard, L. Granvilliers, and J.-F. Puget, “Revising

hull and box consistency,” in Proccedings of the 16th International
Conference on Logic Programming, pp. 230–244, 1999.

[31] A. Joubair and I. A. Bonev, “Comparison of the efficiency of five
observability indices for robot calibration,” Mechanism and Machine
Theory, vol. 70, pp. 254–265, 2013.

[32] W. Khalil, Modeling, Identification and Control of Robots. 2004.
[33] D. Daney, Y. Papegay, and A. Neumaier, “Interval Methods for

Certification of the Kinematic Calibration of Parallel Robots,” in
Proceedings of the 2004 IEEE International Conference on Robotics
& Automation, no. April, pp. 1913–1918, 2004.

[34] G. Pagis, N. Bouton, S. Briot, and P. Martinet, “Enlarging parallel
robot workspace through Type-2 singularity crossing,” Control Engi-
neering Practice, vol. 39, pp. 1–11, 2015.

[35] J. Ninin, “Global Optimization based on Contractor Programming
: an Overview of the IBEX library,” in Proceedings of the 2015
International Conference on Mathematical Aspects of Computer and
Information Sciences, 2015.

[36] E. R. Hansen and G. W. Walster, “Nonlinear Equations and Optimiza-
tion,” Computers Math. Applic., vol. 25, no. 10, pp. 125–145, 1993.


