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Abstract 

The current paradigm, despite the successes of the excellent theories that construct it, 

quantum mechanics included, is facing many obstacles. Many principles remain unproven, 

attributes of elementary particles cannot be derived and calculated, and mysteries are un-

resolved. This situation results from the lack of a deeper underlying theoretical layer that 

explores the geometrodynamics of space.  

Our “GeometroDynamic Model of reality”, the GDM, presented here, is this required layer. 

The GDM reveals the essence of charge, elementary particles, gravitation, and inertia. It also 

relates to additional fundamental subjects. The GDM provides derivations and accurate 

calculations of the radii and masses of elementary particles. Its specificities enable us to 

suggest new experiments of validation or falsification. Some of these subjects have already 

been addressed in our recently published papers, “On the Essence of Electric Charge”, [1], 

[2], “On the Essence of Gravitation and Inertia”, [3], [4],“Where is Anti-Matter?” [5], and 

“The Photon and the Quantum Enigma” [6]. 
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 Introduction 1

 The GDM Idea  1.1

The elastic and vibrating three-dimensional Space Lattice is all there is. 

Elementary particles are Transversal or Longitudinal wavepackets of this vibrating space.   

 The GDM 1.2

The GDM is a model of the physical reality, in which space is all there is.  

 This expresses the drive to reductionism. 

The GDM explains known, but currently unexplained, phenomena. 

 This expresses the drive to understand. 

The GDM predicts new phenomena that can be confirmed experimentally.  

       This is the requirement for specificity and falsifiability. 

The GDM logically infers laws of physics.  

 No phenomenology and hence no need to ask where the laws come from.  

 The Units of the GDM  1.3

In the GDM all units are expressed by the unit of length L (cm) and the unit of time T (sec) 

only. A conversion from the cgs system of units to the GDM system enables calculations of 

known phenomena and of new, GDM-predicted, phenomena.  

 The Constants of Nature  1.4

cT = c    Velocity of transversal Space vibrations (EM waves)                  [cT]=LT
-1

 

[cL  Velocity of longitudinal Space vibrations (cL > cT)                               [cL]=LT
-1] 

          Planck Constant                 [ ]=L
5
T

-1
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G         Gravitational Constant            [G]= T
-2

 

α       Fine Structure Constant            [α]=1 

Since cL/c = π/2∙(1+ π α), see (25) in [2], we exclude cL from the list and choose α instead.  

In the GDM:  [v] = LT
-1

, [a] = LT
-2

, [H] = [G] = T
-2

, [Q] = [M] = L
3
, [EE] = [EG] = LT

-2
,  

[φE ] = [φG] = L
2
T

-2
, [F] = L

4
T

-2
,  [U] = L

5
T

-2
, see [1], [2], [3], and [4]. 

A Constant of Nature is a physical quantity that, measured locally by observers anywhere in 

space, and with any relative velocity or acceleration with respect to each other and to space, 

results in the same value (invariance). 

Note, however, that a Constant of Nature is not necessarily a constant. This fact is often 

overlooked. Our discussions on light velocity, both in SR and GR, will clarify this statement.  

 Space  2

 Space as a Lattice 2.1

By attributing a cellular structure to space we can explain its expansion, its elasticity and can 

introduce a cut-off in the wavelength of the vacuum state spectrum of vibrations. Without this 

limitation on the wavelength, infinite energy densities arise. The need for a cut-off is 

addressed by Sakharov [7], Misner et al [8], and by Zeldovich [9].  The Bekenstein Bound 

sets a limit to the information available about the other side of the horizon of a black hole 

[10].  Smolin [11] argues that: 

There is no way to reconcile this with the view that space is continuous for that implies that each finite 

volume can contain an infinite amount of information 

It is interesting to note that Riemann, quoted by Chandrasekhar in Nature [12], was of the 

opinion that space is a lattice. Relevant review introductions appear in papers [13] [14] and 

[15]. This is all we can say, and in fact, need to say about the structure of space. 
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        The Linear Dimension of a Space Cell 2.2

Let Lcell be the linear dimension of a unit cell of space. If we consider Lcell as Planck’s 

length, then: 

~
c

G
LL

2

1

3planckcell 










1.6∙10

-33
cm 

The cut-off wavelength is:  cut-off  2L, and the cut-off wavenumber is: 
offcut

offcut
λ

1
k



   

t’Hooft [16] explains the meaning of Lplanck. The GDM, however, does not use the value of 

cut-off, Lplanck or Lcell in any calculation. In the GDM the elasticity of space means a flexible 

Lcell. 

 The Elastic Space 3

 Deformed Spaces versus Bent Manifolds 3.1

We relate to space not as a passive static arena for fields and particles but as an active elastic 

entity, which is the, one and only, entity that exists. Physicists have different, sometimes 

conflicting, ideas about the physical meaning of the mathematical objects of their models. The 

mathematical objects of General Relativity, as an example, are n-dimensional manifolds in 

hyper-spaces with more dimensions than n. These are not necessarily the physical objects that 

General Relativity accounts for, and n-dimensional manifolds can be equivalent to n-

dimensional elastic spaces. Rindler [17] uses this equivalence to visualize bent manifolds, 

whereas Steane [18] considers this equivalence to be a real option for a presentation of reality. 

Callahan [19], being very clear about this equivalence, declares: “…in physics we associate 

curvature with stretching rather than bending”. After all, in General Relativity gravitational 

waves [20] are space waves and the attribution of elasticity to a 3D space is thus a must. 

The deformation of space is the change in size, of its cells. The terms positive deformation 

and negative deformation, around a point in space, are used to indicate that space cells grow 
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or shrink, respectively, from this point outwards. Positive deformation is equivalent to 

positive curving and negative deformation to negative curving. 

  Space Density 4

Space density  is defined as the number of space cells per unit volume. Space density in a 

zone of space without deformations (far away from masses and charges) is denoted 0. 

Let dn be the number of space cells in a given volume dV. Since dn = ρ0dV and also dn=ρdV’ 

we get: 







dn
'dV

dn
dV

0

          Hence:   
dV

dVdV' 
= 

ρ

ρρ0   

In Appendix A of [1] we prove that the relative volumetric change equals the divergence of 

the Elastic Displacement Vector u: 

dV

dVdV' 
u      Thus: 

ρ

ρρ0 u             

This proof is a corner stone in the GDM electromagnetism. 

It is based on the strain tensor uik , which is defined as: 

























ki

ll

i

k

k

i
ik

xx

uu

x

u

x

u

2

1
u    

 The Small Deformation Strain Tensor as a Fundamental Metric Tensor 4.1

The authors of [21], see also [1], conclude: 

“……. the small deformation strain tensor could be used as a fundamental metric 

tensor, instead of the usual fundamental metric tensor.”  

Note, however, that space deformation is a local feature of curvature, whereas a manifold 

curvature can also be a global feature of curvature (like that of a closed spherical surface). 
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 The Vibrating Space  5

In the GDM electromagnetic waves are merely elastic transversal waves of space, but not in 

the classical sense. We show that, by giving up the concept of inertial mass as a fundamental 

attribute [3], we arrive at the quantization of these elastic vibrations of space [6]. 

 Elastic Waves – a Reminder 5.1

The equation of equilibrium in an elastic media, with displacement vector, u, (53.6) in [22], is 

the Navier equation:  

    0
t

m2
2

2







u
uu                (4) 

 and  are the elastic Lamé coefficients, and m is the media mass density.  

Mass in the GDM is only a practical attribute [3]. The relevant fundamental attribute is 

energy U or energy density   . Hence, for space as the elastic media, m represents the energy 

density of vibrations: 

m
2c


               (5) 

To solve equation (4), we adopt the Kelvin [22] method and decompose u as follows: 

TL
uuu                              Where: 

00
TL
 uu         Therefore: 

f
TL

  uu  

 stands for the scalar potential and f for the vectorial potential. This decomposition is true 

under the boundary condition u → 0 at ∞.  The known equations for uL and uT  are obtained 

by substituting TL uuu    in (4).  

For uL: 
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  0
t

m2
2

2

2 L

L







u
u         or:        0

tc

1
2

2

2

2 L

L

L







u
u  

which is the vector wave equation for waves which move at a speed cL, where: 

2

1

m

2
c

L







 
               (6) 

Since 0
L
u  this is the contractional /dilational, longitudinal wave.  

For uT:      0
t

m
2
T

2

T
2 






u
u          or: 

0
tc

1
2

T

2

2

T

T

2 





u
u  

This is again a vector wave equation for waves with speed cT, where: 

2

1

T
m

c 






 
                (7) 

Since ·uT = 0,  uT and cT, correspond to the shear, transverse wave. 

 On the Transversal and Longitudinal Wave Velocities 5.2

Historically, to account for the absence of electromagnetic longitudinal waves, Cauchy (19
th

 

century) suggested that 02μλ  , see [23] P.108. Hence 2μλ  , but the bulk modulus is 


3

2
k  and since   a negative compressibility (1/k) of the aether was required.  

In the GDM, material (non-zero rest energy) elementary particles are circulating longitudinal 

wavepackets [2]. This circulation is complex [2] and its basic motion is at the longitudinal velocity 

cL > cT = c. Hence we require: 

λ+2μ > μ    or   λ+μ > 0    see (6) and (7).  
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In [2] we show that cL= 1.6068 c  hence  (λ+2μ)/ μ = 1.6068
2
 = 2.5818  and:   λ = 0.5818 μ 

 On the Transversal Wave Velocity - Light Velocity 6

For a homogeneous and isotropic space density ρ0, far away from masses and charges, light 

velocity c is notated c0. In a deformed/curved zone of space, close to a mass, for example, a 

distance from us where ρ > ρ0, light velocity c is not c0. This contention seems, on the face of 

it, to contradict the understanding that light velocity is a constant of nature. It does not - light 

velocity is indeed a constant of nature, but it is not a constant. To understand this statement 

the reader is referred to Sections 12 and 13, where we clarify the term “constant of nature”. 

The GDM considers the space lattice to be an elastic media and its vibrations EM waves [1]. 

The Navier equation governs elastic media. Its solution for elastic transversal waves gives the 

expression (7) for light velocity: 

c = √(𝜇/𝑚 )               (7) 

where μ is a Lamé coefficient and m is the mass density of the media. Since space is massless 

we take m as: 

 m = ϵs /c0
2
               (8) 

where   ϵs is the standard space energy density as faraway observers measure, and  c0 is the 

relevant light velocity. Inserting (8) into (7) gives: 

c = c0√(μ/ϵs )              (9) 

Thus [μ] = [ϵs], and we can rename the numerator and use ϵ instead of μ. Thus (9) becomes: 

c = c0√(ϵ/ϵs )            (10) 

By using (8) we have turned (7), an equation that determines c, into an equation that 

determines the ratio c/c0 . This ratio ϵ/ϵs is the ratio between the energy density ϵ, in a 
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specific zone of space, and the energy density ϵs.  

Light velocity in a Euclidian zone of space where  𝛜 < 𝛜𝐬 

In the space zone between Casimir plates (Section 10) ϵ < ϵs. Hence we expect the 

experimental result for c, in this zone, to be  c < c0. 

Light velocity in a curved zone of space 

Space density ρ0, far away from charges and masses, is homogenous and isotropic, but around 

a mass space is contracted [3] and ρ > ρ0 . As a result the energy density per space cell, in this 

contracted zone of space, is smaller than at a distance. This reduced energy affects the space 

cell by lowering the tension on its structure. A lower tension means a higher permittivity and 

permeability [24] [25] and hence a lower space vibrational velocity – light velocity. This is 

the GDM understanding of the GR result for light velocity obtained by the Schwarzschild 

metric, see [3] and Section 15. For a local observer, in the contracted zone, where ρ > ρ0 , 

necessarily himself and his yardstick are shorter.  

In other words, light velocity is a variable depending on the reference frame of the observer. 

However, GR shows that this dependence is such that every observer in a deformed or non-

deformed space will get, by taking measurements, the same local result for light velocity. This 

invariance is the essence of the concept of a “constant of nature”, see Section 15.2.   

 On Time 7

We do not know what time is. All we know is that the rate of a clock can be used to define a 

unit of time. A local clock can be a box with two opposite ideal mirrors that reflect a beam of 

light back and forth. The time of flight back and forth is our unit of time. This unit of time, 

according to the Lorentz transformation, becomes longer if the box moves parallel to the 

beam, and/or if it is placed in a gravitational field where light velocity is slower [6]. 
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Measuring time is merely the comparison of the rates of clocks. Time by itself has no 

fundamental meaning in the GDM. 

Our time coordinate, in units of distance, is  x = ct. Relating to our 4D reality as a 3D Space 

and 1D Time, the following notations are common in the literature;   x4 = ct , x4 = ict   or   

x4 = -ict. It is now clear that we can relate to space density in a broader sense that includes the 

rates of clocks (time) at each and every point.  

  The Bulk Modulus of Space 8

The Bulk Modulus is:  


3

2
k   

In [2] we show that cL= 1.6068 c  hence  (λ+2μ)/ μ = 1.6068
2
 = 2.5818  and:  

λ = 0.5818 μ   In this case: 

k = 1.2485 μ 

i.e., the space bulk modulus is positive. Taking space “mass” density as  m
2

S

c


 , where S is 

the energy density of space vibrations (the vacuum state), and substituting this value for m in (7) 

gives =S . Hence: 

k = 1.2485S        (11) 

The bulk modulus, is defined as: 

k = stress/strain = − dp/(dV/ V)        (12) 

Relating to dp, the increment of pressure, as 1/3  and using (11) gives: 
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 /S = − 3.7455 dV/V 

The minus sign relates to pressure from outside of the volume V and on the volume V, 

whereas we are interested in the internal pressure. Hence for us: 

 /S =  3.7455 dV/V        (13) 

Thus vibrational energy added to a zone of space dilates it, and if subtracted - contracts it. 

Sakharov [7] was the first to suggest that the elasticity of space is determined by the vacuum 

state energy density, see also [8] and [9]. Thus, the density ρ0 of un-perturbed space is 

determined by its vibrational energy density S. According to Sakharov [7], space density is 

ρ rather than ρ0 if the energy density is  , rather than S. Note that >S is related to 

dilation whereas: <S  is related to contraction.  

Note that in the GDM:   [S] = [k] = L
2
.  

And again: a lower vibrational energy density of space results in contraction (a larger space 

density), whereas a higher energy density results in dilation (a smaller space density).  

An example for a case, in which >S  is the focal zone of an energetic pulsed laser. Space, 

in this case, is dilated momentarily and acts like a diverging lens. To calculate the amount of 

this dilation and optical divergence it creates, we have to know S, see Section 11.2. 

 Blackbody Radiation and the Vacuum State – a Reminder 9

By 1900, Planck had derived the equation for the spectrum of blackbody radiation: 

 
1e

hν8
νρ

kT

hν

3




      using the average energy per radiator: 

1e

U

kT 





,    the relation hνε  , 

and the number of modes of vibration per unit volume, 
2

3

8πν

c
. 
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In 1912, Planck returned to the subject and published his “Second Theory”, in which he 

explicitly assumed that all energies between the level (n-1) h and n h are, on average: 

    hnhh1nn
2

1

2

1
         Hence the average energy per radiator is:  

hν

1e

hν
U

2

1

kT

hν




           (14) 

Namely, in the limit T  0  the energy U  0  and when T = 0 then U = ½hν.  Thus the 

concept of Zero Point Energy (ZPE), Zero Point Fluctuation (ZPF) or Vacuum State 

Energy, was born. 

In 1914 Planck thought that the ZPF had no experimental significance. For further references 

to these issues, see [26]. In the current paradigm, this concept, which relates to each field 

separately, is unclear and leads to perplexing results, as presented in [27].  

The spectral and energy density of the vacuum state is therefore:  
3

3

3

2

c

hνπ4

c

νπ8
hν

2

1
n  , 

which is (Average energy of a mode) x (Number of modes per unit volume). Or: 

 
32

3

c2
n







                      (15) 

which is independent of space density ρ.  

The energy of a single space cell, however, is inversely proportional to ρ. The proportionality 

of  n  to 
3
 is Lorentz invariant.  The vacuum state spectrum is the only one with such 

invariance.  This is, therefore, the only spectrum that does not enable an observer to 

detect their motion. This spectrum, therefore, appears in all inertial systems as homogeneous 

and isotropic. The issue of an observer, accelerated with respect to the vacuum state, is 

discussed in [28].  
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 Experimental Evidence for the Existence of the Vacuum State 10

We can learn about the vacuum state only indirectly, from effects like the Casimir effect, see 

[29] or the Lamb shift, see [30] P. 405. 

Two metal plates in a vacuum chamber are mounted parallel to each other and a small 

distance, d, apart, Fig. (1). The plates conduct, therefor, they reflect EM waves. For a wave to 

be reflected there must be a node of the electric field – a point of zero electric amplitude – at 

the surface of the plate.  

The maximum wavelength permissible between the plates (perpendicularly) is twice the 

distance, d, between them.  The energy density outside the plates is therefore larger than 

inside, thus creating an attractive force between the plates (energy density is equivalent to 

pressure). 

 

Fig. (1) The Casimir Effect 

The force observed in the Casimir experiment has two components.  At high temperature, 

thermal radiation gives rise to a force directly proportional to the temperature and inversely 

proportional to d
3
.  This force disappears at absolute zero, as does the thermal radiation itself.  

The force associated with the vacuum state “radiation” is independent of temperature and 

inversely proportional to d
4
. Note that the energy flows out when the plates are being attracted 

and energy conservation is thus maintained.  

 

 

Attractive Force 
d 

Conductive Plates

Vacuum
elctromagnetic

field

Conductive Plates 

Vacuum Electromagnetic Field 
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 Estimates of the Vacuum State Energy Density 11

 Space Vacuum State Energy Density - the QM Calculation 11.1

Calculating the number of modes of vibration per unit volume in a three-dimensional space, 

and taking into account both directions of polarization, yields the vacuum state spectral 

energy density per unit volume: 

 n
32

3

c2





          (16) 

The energy density contained in a given spectral range is given by:  

     4
1

4
232 c8

dn
2

1




 






           See [30] P.399.      (17) 

According to
 
[31] P.49, in the range of the visible spectrum, 700 – 400 nm: 

-3cmerg220~               While the energy density one meter from a 100 Watt lamp is: 

-39 cmerg10270~  
    a difference of nine orders of magnitude. 

According to [7] P. 1202, for Lcutoff = Lplanck, 
c

2 cutoff
2


  and 01  , the energy density for 

the whole vacuum state spectrum is:     S -3112 cmerg104.2~  .     This perplexing situation is 

discussed in [27]. In comparison, the energy density of the baryonic matter of the universe is     

~10
-10

erg cm
-3

.   

 An Estimation of S Based on the Highest Gamma Ray Energy Ever Detected 11.2

The H.E.S.S. Gamma ray observatory in the Namibian desert [31] is able to detect (via 

Cherenkov radiation) rare, high energy, gamma rays.  

Gamma rays with energies of up to 100 TeV are routinely detected. However, gamma rays 

with higher energies have not been found.  
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1Tev = 1∙10
12

ev = 1.602erg. This energy corresponds to ω = 1.6∙10
27

sec
-1

,  λ = 1.2∙10
-16

cm. 

For a possible 500 TeV gamma ray (higher than the above 100 TeV rays) we would get: 

ω = 8∙10
29

sec
-1

,  λ = 2.04∙10
-19

cm, whereas λPlanck = 2LPlanck= 3.2∙10
-33

cm. 

The highest gamma ray energy detected might be an indication of the linear dimension of a 

space cell, i.e., the λ cut-off. In this case, the energy density of space is (λ/ λPlanck)
4
 ~ 10

56
 

smaller than the known:  

S -3112 cmerg10~            (18) 

A possible new estimation for the energy density of space is thus: 

S -356 cmerg10~            (19) 

In comparison: a 100 joule laser pulse, in a focal zone with a waist radius ~ 10
-3

cm and a 

similar length dz, creates an energy density, ϵ ~ 10
18

erg cm
-3

. Note that the length dz of the 

zone (on the line of propagation) is dependent on the pulse duration dt:    dz = c∙dt. 

  “Rest” and Motion 12

Matter is not alien to space; material elementary particles (non-zero rest energy) are 

longitudinal wavepackets of contracted, or dilated, space, which are the bivalent elementary 

electric charges. Their fields are strains in space, expressed by the Elastic Displacement 

Vector. Every disturbance in space must move at the velocity of its elastic waves, c or cL. As 

a consequence there is no state of rest. “Rest” is defined, therefore, as a situation in which a 

disturbance, although moving at velocity c or cL, is on a closed track [3]. This orbital 

movement, Dirac’s Zitterbewegung [32], is the spin of elementary particles [3]. A 

“translational” motion at a constant velocity v, relative to space, is motion on a spiral. An 

accelerated motion is that on a spiral, with an ongoing contraction of its radius [3].  
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 Space is a Special Frame 13

Space is a special frame. Velocity and acceleration relative to space are measured by the 

Cosmic Microwave Background (CMB) Doppler shift. The idea that space is a special frame 

is encompassed in the Lorentzian interpretation of the Special Theory of Relativity. See 

Section 14. 

 The Cosmic Microwave Background (CMB) 13.1

At large, the CMB is isotropic and homogenous blackbody radiation, with a peak temperature 

of 2.7k. The CMB was predicted theoretically by Gamow and discovered accidentally by 

Penzias and Wilson [33]. In 1989 the CMB was again measured, this time by the Cosmic 

Background Explorer (COBE) satellite [34], see Fig. (2). 

An observer’s motion relative to the background radiation is accompanied by a Doppler shift. 

This shift enables the measurement of the observer’s velocity relative to the radiation bath 

(i.e., space’s vibrations) “attached” to space. 

 
1 2 

1 0 

8 

6 

4 

2 

0 5 4 3 2 1 0 . 9 0 . 8 0 . 7 0 . 6 

W a v e l e n g t h   ( m m ) 

2 . 7     k 
o 

 

Fig. (2) The Cosmic Background 

 Velocity Relative to Space  13.2

A CMB anisotropy was first observed by Smoot et al [35], and interpreted as the result of the 

above Doppler shift [36]. 

Fig. (3) shows the vector of the velocity of planet Earth relative to the universe [37]. Recently, 

the velocity of the Earth around the Sun and its rotational velocity have been derived from the 

Doppler shift.  
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Earth’s velocity relative to space, see Fig. (3), is:  v = 371.0 ±0.5 km sec
-1

. This velocity is 

towards a point whose equatorial coordinates are:  (α,δ) = (11.20
h
 ±0.01

h
,  -7.22

0
 ±0.08

0
),   

[38]. This direction points, approximately, from the cluster of galaxies, Aquarius, towards the 

cluster Leo-Virgo.  

Say the peak of the background radiation is green. An observer, seeing green in all directions, 

knows they are at rest relative to space. An observer, seeing blue in one direction, red in the 

opposite direction, and green on the sides, knows they are moving in the direction of the blue. 

Similarly, we can also make a distinction regarding acceleration.  

An observer moving in a circle notices that tangentially to the circle there is no symmetry, the 

horizon in one direction looks red, and in the other, blue.   
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Fig. (3) Earth Velocity Relative to the Space 

Coleman and Glashow [39], [40], also adopted this idea that space is a special frame. 
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 On Special Relativity (SR)  14

 The Common Understanding 14.1

Two inertial frames, S1 and S2, move with a relative velocity v to each other. Two observers, 

Ob1 in S1 and Ob2 in S2, have a subjective, but symmetric, perception about the reality. Ob1 

finds that a standard yardstick in S2 appears shorter by 1/γ and a standard unit of time appears 

longer by γ, where γ = (1+v
2
/c

2
)
-1/2

. Ob2 finds that this is exactly what happens in S1; indeed 

a symmetric situation. Therefore we do not anticipate any real change in the yardstick length 

or the unit of time in S1 or S2. After all, S1 and S2 are inertial systems, and there is no force 

to induce a change. The common understanding of this situation is that the perception of 

space and time is subjective – that each observer relates a contracted space and a prolonged 

time to the other observer. The GDM opposes this understanding and suggests in Section 14.2 

an alternative. 

Note that, in the Minkowski 4D spacetime, the line element   ds
2
 = −c

2
dt

2
+dx

2
+dy

2
+dz

2
     is 

invariant to the Lorentz Transformation (LT). Hence both Ob1 and Ob2 observe the same ds
2 

and necessarily agree on the same objective reality. 

 The GDM Understanding 14.2

In the GDM, space is a universal special frame, and there is meaning to “rest” and motion 

with respect to this frame, see our model of the elementary particle in [3]. According to this 

model the radii of the electron/positron: R = 1/  ∙R0    and  r = 1/  ∙ r0  and its energy U = γU0 , 

(zero subscript denotes - at “rest”), are dependent on the relative velocity to space. This 

change, of the radii and energy of the electron, is a real Lorentzian change, which also 

occurs as the contraction in length of macroscopic bodies, (this issue will be addressed 

elsewhere). Thus S1 and S2 are not identical if their respective velocities relative to space are 
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not identical, i. e., the above features, radii and energy of the electron, are not the same in S1 

and S2. 

Note that in the GDM, far from masses and charges, spacetime is the same for all observers. 

Thus observers of both S1 and S2 can observe each other’s length of a yardstick and rate of a 

clock, to be dependent on their relative velocity. But they can also derive and calculate the 

real length of their yardsticks and the real rate of their clocks, by measuring the CMB 

Doppler-shifts, which give their velocities relative to space. To the question; is it possible to 

distinguish experimentally between the common understanding of SR and that of the GDM, 

the answer is affirmative, but out of the scope of this paper. 

 Light Velocity as a Constant of Nature 14.3

An observer moves parallel to a light beam, at a velocity v relative to space. If he moves in 

the direction of the beam the relative velocity to the beam is c – v. If he moves in the opposite 

direction it is c + v.  

In both cases the observer’s yardstick is contracted by 1/γ , and the rate of his clock is 

prolonged by γ. These are real changes that give, in both cases the same measured value, c, 

for light velocity. This invariance justifies the consideration of c as a constant of nature. 

 On General Relativity (GR)  15

 Light Velocity as a Constant of Nature 15.1

In GR light velocity is a variable depending on the observer’s reference frame, and at the 

same time it is a “constant of nature”. GR shows that this dependence, on the frame, is such 

that every observer in a deformed or non-deformed space will get, by taking measurements, 

the same local result for light velocity, because the yardstick is deformed and so is also the 

unit of time, see Section 15.2. This invariance is the essence of the concept of a “constant of 

nature”.  
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 The Metric and Light Velocity 15.2

Schwarzschild, in 1916, was the first to find a solution to Einstein’s field equation - a general 

spacetime metric - for the exterior of a spherically-symmetric star of radius R, i.e., for  r > R:   

 22222
rr0r

22
00

2 dθsindθrdrgdtdr2gdtcgds       (20) 

where the metric elements 00g , 0rg  and grr are functions of r and t. 

According to [41], Chapter 10, the line element ds
2  

is: 

 22222rc

2GM

22rc

2GM

2 dθsindθrdredtceds
22




      (21) 

We denote a gravitational scale factor, a: 

a = rc

GM
2

e ~ (1+GM/rc
2
) >1         (22) 

For the surface of the sun or the edge of our galaxy: GM/ rc
2
 ~ 10

-6
 and thus GM/ rc

2
 << 1. 

We rewrite (21) as:         

 2222222222 dθsindθrdradtcads           (23) 

We relate to space as a 3D elastic, deformable media, rather than a bent manifold. Thus, we 

understand that a standard yardstick has the same number of space cells along its length, 

anywhere in space.  

The metric in equation (23) is derived by a faraway observer OB1– far away from the center 

of a mass, M, that serves as the origin of his co-ordinates. 

For OB1, a radial distance interval, dl, close to a mass, contains a smaller number of his 

yardstick units, dr, than dr0, the number of the local observer OB2 yardstick units that dl 

contains. This is the result of the OB2 yardstick contraction, which is also the contraction of 

his local space. Hence:          
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dr0 = adr           (24) 

where a >1.       

For OB1, a time interval, dτ, contains a larger number of time units, dt, than the number of 

time units, dt0, for OB2. And indeed, from the synchronization of clocks, Rindler [42] p.184 

arrives at the conclusion, that: 

dt0 = a
-1

dt           (25) 

where a >1. 

The 4D spacetime interval between two events; the “emission” of a short pulse of light at 

point A and its “arrival” at point B is    ds
2 

= 0     [42] p.236. Hence using (23):   

22222 dradtca    = 0    or: 

a
-1

cdt = adr   or: 

dr/dt = a
-2

c           (26) 

This, dr/dt = c’, is the light velocity close to the mass M. Light velocity, far away from the 

mass M, is c and   dr/dt = c’< c. This, dr/dt = c’, is a local real and slower light velocity since, 

according to (22), a >1.  

Note that in the literature dr/dt in equation (26) is called coordinate speed of light. This is a 

misleading name, since dr/dt  is a real speed.  

We contend that light velocity is not constant; it depends on space density ρ, but it is a 

constant of nature, as we show: 

Substituting (24) and (25) in (26) gives: 

dr/dt = a
-1

dr0/adt0 = a
-2

dr0/dt0 =  a
-2

c           and hence: 

dr0/dt0 = c             (27) 
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We thus conclude that OB1 and OB2 measuring light velocity in their own zones of space 

will arrive at the same result: 

Light velocity in the OB1 zone of space = Light velocity in the OB2 zone of space (28)  

This invariance attributes the title “a constant of nature” to light velocity, despite the fact 

that in different zones of space it behaves differently. 

 The Elementary Particles of the First Generation in the GDM 16

Photon  

Photom (Anti-Photom) 

Electron (Positron) 

Neutrino (Anti-Neutrino) 

 

Note that Quarks, in the GDM, are “twisted” Electrons (Positrons). 

Photoms are the ground state (vacuum state) particles (quantized vibrations of space) of the 

electromagnetic field. Photom is a photon at the bottom. 

 Subjects that the GDM Already Addressed 17

On the Essence of Electric Charge   Part 1: Charge as Deformed Space hal-01401332    (2016) 

On the Essence of Electric  Part 2: How Charge Curves Space                hal-01402667   (2016) 

On the Essence of Gravitation and Inertia   Part 1: Inertia and Free Fall of an Elementary 

Particle                hal-01404143 (2016) 

On the Essence of Gravitation and Inertia  Part 2: The Curving of Space by an Elementary 

Particle              hal-01405460   (2016) 

Where is Anti-Matter?                  hal-01423547   (2016) 

The Photon and the Quantum Enigma           hal-01423548   (2016) 

The papers can be found by inserting shlomo barak in the HAL Search: 

HAL (https://hal.archives-ouvertes.fr)  

https://hal.archives-ouvertes.fr/
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 Summary 18

The GDM infers the laws of physics logically from the attributes of the elastic space lattice 

(no phenomenology).  Thus, there is no need to ask where these laws of physics come from. 

We are, however, left with the riddle of where space, finite or infinite, comes from, and what 

role we, as humans, play in it. 
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