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Abstract

For an assembly line, it is required to minimize the line’s cycle time for processing a partially ordered set of the
assembly operations on a linearly ordered set of the workstations. The operation set is partitioned into two subsets,
manual and automated. The durations of the manual operations are variable and those of the automated operations
are fixed. We conduct a stability analysis for this problem. First, we derive a sufficient and necessary condition for
the optimal line balance to have an infinitely large stability radius. Second, we derive formulas and an algorithm for
calculating the stability radii for the optimal line balances. Third, we report computational results for the stability
analysis of the benchmark instances. Finally, we outline managerial implications of the stability results for choosing
most stable line balances, which save their optimality in spite of the variations of the operation durations, and for
identifying the right time for the re-balancing of the assembly line.

Keywords: Assembly line, Uncertain operation durations, Stability analysis

1. Introduction

The assembly line consists of m workstations, which are linked by a conveyor belt (or another
equipment) moving an in-process product from one workstation to the next at a constant pace. The
set V of n assembly operations is fixed. Each workstation needs to perform a specific subset of the
operations from the set V within the line’s cycle-time. All the m workstations start simultaneously
to process their own operations. A partial order on the operation set V arises due to technological
and economical considerations, which are represented by the precedence digraph G = (V, A) with
the set A of arcs. A Simple Assembly Line Balancing Problem is to find an optimal assembly line
balance, i.e. an assignment of the operations V to the m workstations such that the cycle-time is
minimal. The abbreviation SALBP-2 for denoting this problem has been introduced by Baybars

1Corresponding author. Tel: +33 (0)2 51858218; fax: +33(0)2 51358249.
e-mail addresses: tclai@ntu.edu.tw, tclai@hrbeu.edu.cn (T.-C. Lai), sotskov48@mail.ry (Yu.N. Sotskov),
alexandre.dolgui@mines-nantes.fr (A. Dolgui), ztp.oksana100@yandex.ru (A. Zatsiupa)

Preprint submitted to Elsevier January 17, 2017



(1986). The problem SALBP-2 is NP-hard (Gutjahr and Nemhauser, 1964; Wee and Magazine,
1982) since the bin-packing problem is NP-hard and is a special case of the problem SALBP-2,
where in the bin-packing problem, the digraph G = (V, A) has no arcs, A = ∅.

Throughout this paper, it is assumed that the set V consists of two specific subsets of the as-
sembly operations. The non-empty subset Ṽ ⊆ V includes all the manual operations and the
subset V \ Ṽ includes all the automated operations. The initial vector t = (t1, t2, . . . , tn) of the
operation durations is known before solving the problem SALBP-2. However, for the subset
Ṽ ⊆ V of the manual operations j ∈ Ṽ , each duration t j may vary due to different factors such
as the operator skill, motivation, learning effect, etc. In contrast to the manual operations, the
duration ti of each automated operation i ∈ V \ Ṽ is fixed. We assume that Ṽ = {1, 2, . . . , ñ}
and V \ Ṽ = {ñ + 1, ñ + 2, . . . , n}, 1 ≤ ñ ≤ n. The vectors of the operation durations are de-
noted as follows: t̃ = (t1, t2, . . . , tñ), t = (tñ+1, tñ+2, . . . , tn), t = (̃t, t) = (t1, t2, . . . , tn). Let a subset
Vbr

k , ∅ of the set V be assigned to the workstation S k, where k ∈ {1, 2, . . . ,m}. The assignment
br : V = Vbr

1

∪
Vbr

2

∪
. . .
∪

Vbr
m of the operations V to the ordered workstations (S 1, S 2, . . . , S m),

Vbr
k

∩
Vbu

l = ∅, 1 ≤ k < l ≤ m, is called a line balance, if the following two conditions hold.
Condition I. The assignment br does not violate the partial order given on the set V by the prece-
dence digraph G = (V, A), i.e. each arc (i, j) ∈ A implies that operation i ∈ V is assigned to
workstation S k and operation j ∈ V is assigned to workstation S l in a way such that 1 ≤ k ≤ l ≤ m.
Condition II. The assignment br uses all the m workstations, i.e. the subset Vbr

k is not empty for
each workstation S k, k ∈ {1, 2, . . . ,m}.

Let B(G) denote the set of all assignments br satisfying Condition I. The subset B(G,m) =
{b0, b1, . . . , bh} of the set B(G) consists of all line balances. The cycle-time c(br, t) for the line bal-
ance br with the vector t = (̃t, t) of the operation durations is determined as c(br, t) = maxm

k=1
∑

i∈Vbr
k

ti,

where the sum
∑

i∈Vbr
k

ti := t(Vbr
k ) is a workstation time. The line balance b0 is optimal with the

operation durations t = (̃t, t) if it achieves a minimal cycle-time c as follows:
Condition III. c = c(b0, t) = min {c(br, t) : br ∈ B(G,m)} .

Note that Condition II allows us to restrict a set of the line balances since the set B(G,m)
contains the optimal line balance without fail. Let B(G,m, t) denote a set of all the optimal line
balances, B(G,m, t) ⊆ B(G,m), with the vector t = (̃t, t) of the operation durations. If operation i
belongs to the set V \ Ṽ , its duration ti is fixed. Without loss of generality, we assume that ti > 0
for each automated operation i ∈ V \ Ṽ since the automated operation with the fixed zero duration
has no influence on a solution to the problem SALBP-2. The initial duration ti is a strictly positive
real number ti > 0 for each operation i ∈ V . A value of the duration t j > 0 of the manual operation
j ∈ Ṽ ⊆ V can vary during the assembly line lifespan. The varied duration t′j may be even equal to
zero, which means that the manual operation j from the set

Ṽbr
k := Vbr

k

∩
Ṽ (1)

is processed by an additional operator in parallel with the processing of other operations assigned
to workstation S k. Due to the additional operator, the processing of the manual operation j does
not increase the workstation time, i.e.

t′(Vbr
k ) =

∑
i∈Vbr

k

t′i =
∑

i∈Vbr
k \{ j}

t′i , (2)
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where t′ indicates the modified vector t′ = (̃t′, t) = (t′1, t
′
2, . . . , t

′
ñ, tñ+1, tñ+2, . . . , tn) := (t′1, t

′
2, . . . , t

′
ñ,

t′ñ+1, t
′
ñ+2, . . . , t

′
n), for which the workstation time

∑
i∈Vbr

k
t′i is calculated. The second equality in (2)

is valid because of holding equality t′j = 0. We summarize the above in the following remark.

Remark 1. The initial duration ti is a strictly positive real number for each operation i ∈ V. A
value of the duration t j > 0 of the manual operation j ∈ Ṽ can vary during the assembly line
lifespan. The varied duration t′j may be equal to zero: t′j ≥ 0.

The aim of this paper is to investigate the stability of the optimal line balance with respect to
variations t̃′ , t̃ of the operation durations. The stability radius ρb0(t) of the optimal line balance
b0 is interpreted as a maximum of simultaneous and independent variations t̃′ of the durations
t̃ of operations Ṽ without violating the optimality of the line balance b0, i.e. b0 ∈ B(G,m, t) ∩
B(G,m, t′). A formal definition of the stability radius is given in Section 2.1 along with a sufficient
and necessary condition for a zero stability radius. In Section 3, it is shown that the stability radius
may be infinitely large, ρb0(t) = ∞. Formulas for calculating the stability radius ρb0(t) for the
line balance b0 ∈ B(G,m, t) are given in Section 4.1. The calculation of the stability radius is
illustrated in Sections 2.2, 3.3, and 4.3. In Section 4.2, it is shown on how to restrict a subset of
the set B(G,m)\{b0}, which must be compared with the line balance b0 ∈ B(G,m, t) for calculating
the stability radius ρb0(t). An algorithm for calculating the stability radius is presented in Section
5. Section 6 reports the computational results for the stability analysis of the benchmark instances
from the old dataset and the recent one (Otto et al., 2013) tested in (Morrison et al., 2014; Otto and
Otto, 2014). In Section 7, the managerial implications are spelled out on how to use the stability
results in the assembly industry. Concluding remarks and perspectives are discussed in Section 8.

2. Contributions of this work, previous results, and related literature

The assembly lines are widely used in a mass production for assembling components into
final products. An effectively balanced assembly line allows a factory to increase its efficiency
via reducing a production cost. Since the production conditions may change over time, the need
of a re-balancing of the assembly line may arise from time to time in order to serve customer
demands in the competitive market environment. The assembly re-balancing is tedious procedures
requiring significant costs and amounts of a manpower (Chen et al., 2004; Chica et al., 2013;
Gamberini et al., 2006). It is a stability analysis that can help us to identify the right time for
the re-balancing. In spite of its practical importance, the literature on the stability analysis of the
assembly line balances is scanty (Chica et al., 2013; Gurevsky et al., 2012, 2013; Sotskov and
Dolgui, 2001; Sotskov et al., 2005, 2006, 2015). Next, we discuss a concept of the stability radius
for the problem SALBP-2 (Section 2.1). Section 2.3 contains a brief literature review of other
results and approaches for examining the robustness and stability of the assembly line balances.
Contributions of this work are discussed in Section 2.4.

2.1. The stability radius of the optimal line balances for the problem SALBP-2

We study the following question. How much can all or some components of the vector t̃ be
simultaneously and independently modified that the line balance b0, which is optimal for the initial
vector t = (̃t, t), remains optimal for the modified vector t′ = (̃t′, t) of the operation durations?
We study the stability radius of the optimal line balance that is defined similarly to the stability
radius of the optimal schedule (Bräsel et al., 1996; Sotskov, 1991). If the stability radius of the

3



���*

HHHj

l1t1 = 7 l3-
t3 = 6

l5t5 = 3
-

l4
t4 = 2

l2t2 = 5

Figure 1: The precedence digraph G = (V, A) without transitive arcs for Example 1.

line balance b0 ∈ B(G,m, t) is strictly positive, then the line balance b0 remains optimal for all
variations t′j of the operation durations t j, j ∈ Ṽ , within the ball with this radius and center t̃. On
the other hand, if the stability radius of the line balance b0 is equal to zero, then b0 may no longer
be optimal even for infinitely small variations of the operation durations.

In contrast to a stochastic assembly line (Dong et al., 2014; Erel and Sarin, 1998; Gamberini
et al., 2006; Kahan et al., 2009), we do not assume the given probability distribution for the random
duration t j of the manual operation j ∈ Ṽ . Note also that operation durations ti, i ∈ V , are assumed
to be real numbers, in contrast to the assumption used by Scholl (1999) and many other authors that
the operation durations are integer numbers. Let Rñ denote space of all real ñ-vectors (t1, t2, . . . , tñ)
with the following metric: The distance d(̃t, t̃′) between vector t̃ = (t1, t2, . . . , tñ) and vector t̃′ =
(t′1, t

′
2, . . . , t

′
ñ) is defined as d(̃t, t̃′) = max{|ti − t′i | : i ∈ Ṽ}, where |ti − t′i | is the absolute value of the

difference ti − t′i . Let Rñ
+ denote space of the non-negative real ñ-vectors, Rñ

+ ⊆ Rñ.

Definition 1. The ball Oρ(̃t) in space Rñ with the radius ρ ∈ R1
+ and the center t̃ ∈ Rñ

+ is called
a stability ball of the line balance b0 ∈ B(G,m, t) if for any modified vector t′ = (̃t′, t) of the
operation durations with t̃′ ∈ Oρ(̃t)

∩
Rñ
+, the line balance b0 remains optimal. The maximal value

ρb0(t) of the radius ρ of the stability ball Oρ(̃t) is called a stability radius of the line balance b0.

Let W(br, t) denote the set of subsets Ṽbr
k defined in (1), k ∈ {1, 2, . . . ,m}, for which t(Vbr

k ) = c(br, t).
The following sufficient and necessary condition for a zero value of the stability radius has been
proven in (Sotskov et al., 2005).

Theorem 1. For the optimal line balance b0, the equality ρb0(t) = 0 holds if and only if there exists
another optimal line balance bs ∈ B(G,m, t), bs , b0, such that the condition (3) does not hold:

W(b0, t) ⊆ W(bs, t). (3)

2.2. Example 1

Assume that m = 4, n = 5, ñ = 2, t = (̃t, t) = (t1, t2, t3, t4, t5) = (7, 5, 6, 2, 3). The set Ṽ = {1, 2}
consists of the manual operations. The set V \ Ṽ = {3, 4, 5} consists of the automated operations.
The precedence digraph G = (V, A) is presented in Fig. 1, where transitive arcs are omitted for
simplicity. The following ten line balances exist for Example 1. b0: V = {1}∪{3}∪{2}∪{4, 5};
b1: V = {1}∪{3}∪{2, 4}∪{5}; b2: V = {1}∪{2, 3}∪{4}∪{5}; b3: V = {1, 3}∪{2}∪{4}∪{5};
b4: V = {1}∪{3}∪{2, 5}∪{4}; b5: V = {1}∪{2, 3}∪{5}∪{4}; b6: V = {1, 3}∪{2}∪{5}∪{4};
b7: V = {1}∪{3}∪{4}∪{2, 5}; b8: V = {1}∪{3, 4}∪{2}∪{5}; b9: V = {1, 3}∪{4}∪{2}∪{5}.

The cycle-times for the line balances B(G,m) are as follows: c(b0, t) = 7, c(b1, t) = 7, c(b2, t) =
11, c(b3, t) = 13, c(b4, t) = 8, c(b5, t) = 11, c(b6, t) = 13, c(b7, t) = 8, c(b8, t) = 8, c(b9, t) = 13.
There are two optimal line balances, B(G,m, t) = {b0, b1}. We test the condition of Theorem 1
for the line balance b0. The sets W(bi) for both optimal line balances are as follows: W(b1, t) =
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{Ṽb1
1 , Ṽ

b1
3 } = {{1}, {2}}, W(b0, t) = {Ṽb1

1 } = {{1}}. One can convince that condition (3) holds, i.e. the
set W(b1, t) is a subset of the set W(b0, t): {{1}} ⊂ {{1}, {2}}. Due to Theorem 1, the stability radius
of the line balance b0 is strictly positive: ρb0(t) > 0. We test the condition of Theorem 1 for the
line balance b1 ∈ B(G,m, t). There exists another optimal line balance b0 such that condition (3)
does not hold, namely, the set W(b0, t) is not a subset of the set W(b1, t): {{1}, {2}} * {{1}}. Due to
Theorem 1, the stability radius of the line balance b1 is equal to zero: ρb1(t) = 0.

2.3. A survey of the robustness and other stability results

At the design stage of the assembly line, the following Simple Assembly Line Balancing Prob-
lem, which is dual to the problem SALBP-2, has to be solved: To minimize a cardinality of the
ordered set (S 1, S 2, . . . , S m) of the workstations that must process the partially ordered set V of the
operations within the fixed cycle-time c. The abbreviation SALBP-1 is used to denote this problem
(Baybars, 1986; Scholl, 1999; Battaı̈a and Dolgui, 2013). A sufficient and necessary condition for
a zero stability radius for the problem SALBP-1, and formulas for calculating the stability radii
have been proven in (Sotskov et al., 2006). The enumerative algorithms for constructing optimal
and stable line balances have been developed in (Sotskov et al., 2015). Gurevsky et al. (2012)
considered the stability analysis for the problem SALBP-E, which is to find a line balance b0 such
that the product m × c(b0, t) is minimal. A lower bound on the stability radius of the optimal line
balance for the problem SALBP-E was derived. The stability analysis for a more general assem-
bly line was developed in (Gurevsky et al., 2013), where several workplaces were associated with
the workstation, the operations assigned to the workstation were partitioned into blocks, where
the operations grouped into the same block have to be processed simultaneously. Hamta et al.
(2013) addressed a multi-objective optimization of the assembly line balancing problem, where
each operation duration was uncertain. The heuristic algorithm was developed as a combination
of a particle swarm optimization with a variable neighborhood search. Chica et al. (2013) studied
the time and space assembly line balancing problem involving the joint minimization of the cycle
time, the number of workstations, and the workstation area. The authors introduced robustness
functions to measure how robust the assembly line is when the production plans are changed as
demands change.

In (Corominas et al., 2008), the re-balancing of the assembly line at the motorcycle plant was
studied. The company found that it was necessary to re-balance the assembly line since it needed
to increase the production in the months of spring and summer. The goal was to minimize the
number of temporary workers required for the given cycle time and permanent workers. The
assembly line re-balancing was also considered in Gamberini et al. (2009, 2006).

In (Toksari et al., 2008), the learning effect was studied for the assembly line balancing prob-
lem, where the workers acquire more experience by repeatedly performing the same assembly
operations and thus the operation duration shortens at later production periods. It was shown how
solutions can be obtained for special cases of the straight-type and U-type line balancing problems
with a learning effect. The learning effects for the assembly line balancing problem were also
studied in Chakravarti (1988); Guo et al. (2009); Hamta et al. (2013).

A mixed-model U-type assembly line was studied in (Dong et al., 2014), where both the opera-
tion assignment and the production sequence affect the workload variance among the workstations.
A stochastic programming was used, where the operation durations were stochastic variables with
a normal distribution and the objective was to minimize an expectation of the work overload time
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for the given cycle-time and workstations. The problem of balancing U-type assembly line under
uncertainty was addressed in (Hazir and Dolgui, 2015). The robust optimization was employed
that considered the worst-case scenarios. To avoid an over-pessimism, it was assumed that a subset
of the operation durations may take their largest possible values. Hazir and Dolgui (2013) dealt
with the assembly line balancing problem under uncertainty using a robust optimization, where
intervals of the operation durations were given. Yilmaz and Yilmaz (2015) addressed the bal-
ancing of the multi-manned assembly line with load constraints and conventional ones, where a
remedial constraint was provided to balance the load density of the operations for each worker.
The mathematical model combines the minimization of multi-manned workstations, the operator
number, and the difference of operation load densities. In (Qian and Fan, 1992), it was allowed
that more than one operator can work simultaneously in the workstation. A genetic algorithm was
proposed for solving this problem. In Sivasankaran and Shahabudeen (2014), a recent survey on
the assembly line balancing is reported, where problems are classified based on the number of
models, nature of operation durations (deterministic or stochastic), and type of the assembly line.
An exhaustive review of the literature with an original taxonomy of line balancing problems, for
assembly, disassembly and machining lines, is proposed in Battaı̈a and Dolgui (2013). The sug-
gested taxonomy is based on the following five elements: task attributes, workstation attributes,
constraints to be respected, criteria used.

2.4. Contributions of this work for practitioners

In the labor-intensive assembly line, the durations of the manual operations are variable de-
pending on the operator qualifications, experiences, the learning effect etc. As a result, the line
balance b0 ∈ B(G,m), which is optimal for the problem SALBP-2 with the operation durations
t = (̃t, t), may lose its optimality even for slightly modified operation durations. In such a case, the
need to solve the problem SALBP-2 may arise again in order to re-balance the assembly line due
to the changes of the operation durations. Each re-balancing of the assembly line in process takes
time and incurs an additional expenditure. The assembly line modification has to start when the in-
come from it will be larger than the total expenditure caused by the modification. So, an evaluation
of the factual expenditures and benefits should be conducted for the re-balancing decision.

This work shows that the above expenditures and benefits may be evaluated based on the set
B(G,m, t) of the optimal assembly line balances and calculating their stability radii ρb0(t), b0 ∈
B(G,m, t). If factual variations of the operation durations are no larger than the stability radius
ρb0(t) of the current assembly line balance b0, then the modification of the line balance b0 is
not needed. Moreover, using the optimal line balance b0 with the largest stability radius ρb0(t)
allows the factory to use the optimal line balance b0 for a longer time without any re-balancing.
Furthermore, if the re-balancing is needed, it may be realized easily via using the constructed
set B(G,m, t) of the optimal line balances (or k-best line balances if the optimal line balance is
unique, |B(G,m, t)| = 1). Since the problem SALBP-2 is NP-hard, an exact algorithm for solving
the problem must estimate (either implicitly or explicitly) the objective values c = c(br, t) for the
line balances br ∈ B(G,m). We propose to make these estimations explicitly via constructing
the set B(G,m). Using the constructed set B(G,m), one can solve the problem SALBP-2 exactly,
investigate the stability of the optimal line balances, and select the most stable line balance b0 that
remains optimal for all variations t̃′ of the operation durations within the stability ball Oρ(̃t) with
the largest radius ρ = ρb0(t).

6



Using the proven results, we developed Algorithm RAD for constructing the set B(G,m) of the
line balances, the set B(G,m, t) of the optimal line balances, and calculating their stability radii.
The computational experiments on a laptop showed that the CPU-time for constructing the set
B(G,m, t) along with calculating stability radii ρbr (t) for the line balances br ∈ B(G,m, t) is not
large for a small-size assembly line and for some moderate-size assembly lines.

3. An infinite stability radius of the optimal line balance

Theorem 1 gives the sufficient and necessary condition for a zero stability radius. To present
a criterion for the infinitely large stability radius, we need to introduce the simple assembly line
balancing problem SALBP∗-2, which has the same input data as the original problem SALBP-2
has, except that the initial vector t∗ of the operation durations is now as follows: t∗ = (̃t∗, t) :=
(0, 0, . . . , 0, t̃n+1, t̃n+2, . . . , tn). The line balance bu ∈ B(G,m) is optimal for the problem SALBP∗-2,
if bu ∈ B(G,m, t∗).

3.1. The main notations

The notations used in this study are listed as follows:

7



m total number of workstations
S k workstation S k ∈ {S 1, S 2, . . . , S m}
V the set of assembly operations
n total number of assembly operations
Ṽ the set of manual operations, Ṽ ⊆ V
ñ total number of manual operations, 1 ≤ ñ ≤ n
G = (V, A) precedence digraph with arc set A
t = (t1, t2, . . . , tn) vector of the operation durations, t = (̃t, t)
t̃ = (t1, t2, . . . , tñ) durations of the manual operations, these durations are variable
t = (tñ+1, tñ+2, . . . , tn) durations of the automated operations, these durations are fixed
Vbr

k the subset of operations assigned to the workstation S k

in the line balance br, Vbr
k , ∅

Ṽbr
k the subset of manual operations assigned to the workstation S k

in the line balance br, Ṽbr
k = Vbr

k

∩
Ṽ

B(G) the set of all assignments of the operations V to the m
workstations, which do not violate the partial order
given on the set V by the digraph G = (V, A)

B(G,m) = {b0, b1, . . . , bh} the set of all line balances, B(G,m) ⊂ B(G)
B(G,m, t) the set of optimal line balances with vector t of

the operation durations, B(G,m, t) ⊆ B(G,m)
c(br, t) cycle-time c = c(br, t) for the line balance br with the vector

t = (̃t, t) of the operation durations, c(br, t) = maxm
k=1
∑

i∈Vbr
k

ti

t(Vbr
k ) workstation time, t(Vbr

k ) =
∑

i∈Vbr
k

ti

d(̃t, t̃′) distance between vector t̃ = (t1, t2, . . . , tñ) and
vector t̃′ = (t′1, t

′
2, . . . , t

′
ñ), d(̃t, t̃′) = max{|ti − t′i | : i ∈ Ṽ}

Oρ(̃t) stability ball with the radius ρ of the optimal line balance
in space Rñ of the real vectors t̃ = (t1, t2, . . . , tñ)

ρb0(t) stability radius of the line balance b0 ∈ B(G,m, t), i.e. the
maximal value of the radius ρ of the stability ball Oρ(̃t), t = (̃t, t)

W(br, t) the set of subsets Ṽbr
k such that t(Vbr

k ) = c(br, t).

3.2. A sufficient and necessary condition for the infinite stability radius

Theorem 2. Assume that for each manual operation i ∈ Ṽ, there exists a line balance bu ∈ B(G,m)
with Vbu

l = {i}. The stability radius ρb0(t) of the line balance b0 ∈ B(G,m, t) is infinite, if and only
if b0 ∈ B(G,m, t∗) and Vb0

k = {i} for each manual operation i ∈ Ṽ and some workstation S k.

Proof. Sufficiency. Let b0 ∈ B(G,m, t∗) and Vb0
k = {i} for each operation i ∈ Ṽ and some work-

station S k. We have to prove that ρb0(t) = ∞. First, we show that increasing the duration ti

of any manual operation i ∈ Ṽ cannot violate the optimality of the line balance b0. Inequality
c(b0, t) ≤ c(br, t) holds for any line balance br ∈ B(G,m) since b0 ∈ B(G,m, t). Due to continuous
increasing the duration ti, namely, t′i = ti + ∆, equality c(b0, t′) = c(br, t′) will be reached for some
value ∆ := ∆i ≥ 0 with setting t′j = t j for all other operations j , i. Further increasing the duration
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of operation i, namely, t′′i = t′i + θi = ti + ∆i + θi, implies

c(b0, t′′) = t′′(Vb0
u ) = t′′i + θi ≤ t′′(Vbr

k(i,br)) ≤ c(br, t′′), (4)

where t′′j = t j for all other operations j ∈ V \ {i}. Hereafter, S k(i,br) denotes the workstation S k(i,br) ∈
S such that i ∈ Vbr

k(i,br). The first inequality in (4) is valid since |Vbr
k(i,br)| ≥ 1 and since Vb0

k = {i} for
any manual operation i ∈ Ṽ due to the condition of Theorem 2. Thus, it is proven that increasing
the duration ti by any large value ∆i + θi cannot violate the optimality of the line balance b0 ∈
B(G,m, t′′).

By a contradiction, we shall prove that decreasing the duration ti of any manual operation i ∈ Ṽ
cannot violate the optimality of the line balance b0. Assume that due to decreasing the durations
ti of manual operations i ∈ Ṽ by values εi with 0 ≤ εi ≤ ti, a vector tε is obtained from the
initial vector t: tεi = ti + εi, i ∈ Ṽ , tεj = t j, j ∈ V \ Ṽ , such that the line balance b0 loses its
optimality, i.e. b0 < B(G,m, tε), where tε = (tε1, t

ε
2, . . . , t

ε
n). In other words, there exists a line

balance bw ∈ B(G,m) \ {b0} such that c(b0, tε) > c(bw, tε) = min{c(br, tε) : br ∈ B(G,m)}. The
condition Vb0

k = {i} being valid for any manual operation i ∈ Ṽ implies

c(b0, tε) = max
{

max
i∈Ṽ
{tε(Vb0

k(i,b0))},max
j∈V\Ṽ
{tε(Vb0

k( j,b0))}
}
, max

i∈Ṽ

{
tε(Vb0

k(i,b0))
}
≤ max

i∈Ṽ

{
tε(Vbw

k(i,bw))
}

for each line balance bw ∈ B(G,m) \ {b0}. Hence, inequality

c(b0, tε) > min
bw∈B(G,m)\{b0}

c(bw, tε) (5)

holds if and only if
max
j∈V\Ṽ

{
tε(Vb0

k( j,b0))
}
> min

bw∈B(G,m)\{b0}
c(bw, tε). (6)

Due to Vb0
k = {i}, i ∈ Ṽ , we obtain that for any workstation S k( j,b0) ∈ S with j ∈ V \ Ṽ , there is

no a manual operation i ∈ Ṽ such that i ∈ Vb0
k( j,b0). Hence, equality tε(Vb0

k( j,b0)) = t∗(Vb0
k( j,b0)) holds for

each workstation S k( j,b0) ∈ S with j ∈ V \ Ṽ . As a result we obtain

max
j∈V\Ṽ

{
tε(Vb0

k( j,b0))
}
= max

j∈V\Ṽ

{
t∗(Vb0

k( j,b0))
}
. (7)

Since any component of the vector tε is not greater than the corresponding component of the
vector t∗, we obtain tε(Vbw

k( j,bw)) = t∗(Vbw
k( j,bw)) for each operation j ∈ V . Hence, minbw∈B(G,m)\{b0} c(bw, tε) ≥

minbw∈B(G,m)\{b0} c(bw, t∗). From the inequalities (4), (5), (6), and the equality (7), we obtain

max
i∈V\Ṽ

{
t∗(Vb0

k( j,b0))
}
> min

bw∈B(G,m)\{b0}
c(bw, t∗). (8)

The inequality (8) implies c(bw, t∗ > minbw∈B(G,m)\{b0} c(bw, t∗). Hence, b0 < B(G,m, t∗) that
contradicts to the condition of Theorem 2. Sufficiency is proven.

Necessity. Assume that ρb0(t) = ∞. First by a contradiction, we prove that the assumption
ρb0(t) = ∞ implies b0 ∈ B(G,m, t∗). Note that the vector t∗ = (̃t∗, t) belongs to the stability
ball Oρ(̃t) of the line balance b0 ∈ B(G,m, t) (Remark 1) and the distance d(̃t, t̃∗) between vector
t̃ = (t1, t2, . . . , tñ) and vector t̃∗ = (t∗1, t

∗
2, . . . , t

∗
ñ) is equal to maxi∈Ṽ ti. Therefore, if b0 < B(G,m, t∗),
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Figure 2: The precedence digraph G = (V, A) without transitive arcs for Example 2.

then ρb0(t) ≤ maxi∈Ṽ ti < ∞ that contradicts to the above assumption ρb0(t) = ∞. Next, we prove
that from the assumption ρb0(t) = ∞ and the condition of Theorem 2, it follows that Vb0

k = {i} for
each operation i ∈ Ṽ and some workstation S k ∈ S . Contrarily, we assume that there is a manual
operation i ∈ Ṽ such that Vb0

k(i,b0) \ {i} , ∅. For each operation i ∈ Ṽ , there exists the line balance
bu ∈ B(G,m) such that Vbu

l = {i}, l ∈ {1, 2, . . . ,m} (the condition of Theorem 2). We choose any
large numberΘu withΘu > c(bu, t) and consider the modified vector t′ = (̃t′, t) such that t′i = ti+Θu

and t′j = t j for all operations j ∈ {1, 2, . . . , n} \ {i}. The condition b0 ∈ B(G,m, t) implies

c(b0, t) ≤ c(bu, t) < Θu. (9)

Due to (9), we obtain

c(b0, t′) = max
{
c(b0, t),Θu + t(Vb0

k(i,b0))
}
= Θu + t(Vb0

k(i,b0)), (10)

c(bu, t′) = max {c(bu, t),Θu + ti} = Θu + ti. (11)

Due to (10) and (11) and taking into account i ∈ Vb0
k(i,b0), where Vb0

k(i,b0) \ {i} , ∅, and t j > 0
for each operation j ∈ V (Remark 1), we obtain c(b0, t′) = Θu + t(Vb0

k(i,b0)) > Θu + ti = c(bu, t′).
Hence, b0 < B(G,m, t′) that implies ρb0(t) ≤ d(̃t, t̃′) = Θu < ∞ contradicting the above assumption
ρb0(t) = ∞. This completes the proof. �

Returning to Example 1, we test the condition of Theorem 2 for the line balance b0. The
modified problem SALBP∗-2 has the same input date as the original problem has, except that
the initial vector of the operation durations is now as follows: t∗ = (0, 0, 6, 2, 5). The problem
SALBP∗-2 has the same set of the line balances B(G,m) = {b0, b1, . . . , b9} as Example 1 has. The
minimal cycle-time for the problem SALBP∗-2 is equal to 6. The condition of Theorem 2 holds
for the line balance b0. Indeed, equality Vb0

k = {i} holds for each i ∈ Ṽ: Vb0
1 = {1}, Vb0

3 = {2}.
The condition b0 ∈ B(G,m, t∗) holds since c(b0, t∗) = 6. Due to Theorem 2, we conclude that the
stability radius of the line balance b0 is infinite, ρb0(t) = ∞. Thus, the line balance b0 ∈ B(G,m, t)
is better for the assembly industry than the line balance b1 ∈ B(G,m, t), since the line balance b0

remains optimal for all variations t̃, while even small variations of the durations i ∈ Ṽ may deprive
the optimality of the line balance b1.

3.3. Example 2

Assume that m = 4, n = 5, ñ = 2, t = (̃t, t) = (t1, t2, t3, t4, t5) = (5, 8, 3, 4, 7). The set
Ṽ = {1, 2} contains the manual operations. The set V \ Ṽ = {3, 4, 5} contains the automated
operations. The precedence digraph G = (V, A) is presented in Fig. 2, where transitive arcs are
omitted. There exist ten line balances for Example 2 as follows: b0: V = {1}∪{2}∪{3, 4}∪{5};
b1: V = {1}∪{2}∪{3}∪{4, 5}; b2: V = {1}∪{2, 3}∪{4}∪{5}; b3: V = {1, 2}∪{3}∪{4}∪{5};
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b4: V = {1}∪{3}∪{2}∪{4, 5}; b5: V = {1}∪{3}∪{2, 4}∪{5}; b6: V = {1, 3}∪{2}∪{4}∪{5};
b7: V = {1}∪{3, 4}∪{2}∪{5}; b8: V = {1}∪{3}∪{4}∪{2, 5}; b9: V = {1, 3}∪{4}∪{2}∪{5}.

The minimal cycle-time c for the optimal line balance is equal to 8 and the following four
line balances are optimal: b0: V = {1}∪{2}∪{3, 4}∪{5}; b6: V = {1, 3}∪{2}∪{4}∪{5}; b7: V =
{1}∪{3, 4}∪{2}∪{5}; b9: V = {1, 3}∪{4}∪{2}∪{5}. The sets W(bi) for the optimal line balances
are as follows: W(b0, t) = {{2}}, W(b6, t) = {{1}, {2}}, W(b7, t) = {{2}}, W(b9, t) = {{1}, {2}}. The
condition (3) does not hold for the line balance b6, W(b6, t) = {{1}, {2}} * {{2}} = W(b0, t) ∈
B(G,m, t), and for the line balance b9, W(b9, t) = {{1}, {2}} * {{2}} = W(b0, t) ∈ B(G,m, t). Due
to Theorem 1, the stability radii of the line balances b6 and b9 are equal to zero. We test the
condition of Theorem 2 for the line balance b0. The equality Vb0

k = {i}, k ∈ {1, 2, 3, 4}, holds for
each i ∈ Ṽ = {1, 2}, namely, Vb0

1 = {1} and Vb0
2 = {2}. The problem SALBP∗-2 has the same input

date as Example 2 has, except the initial vector is now determined as follows: t∗ = (0, 0, 3, 4, 7).
Since the precedence digraph is the same, the problem SALBP∗-2 has the line balances B(G,m) =
{b0, b1, . . . , b9} as Example 2 has. The minimal cycle-time for the problem SALBP∗-2 is equal to
7. The condition of Theorem 2 holds for the line balance b0 ∈ B(G,m, t): Vb0

1 = {1}, Vb0
2 = {2}.

Condition b0 ∈ B(G,m, t∗) holds since c(b0, t∗) = 7. Due to Theorem 2, the stability radius of the
line balance b0 is infinite: ρb0(t) = ∞. For the optimal line balance b7 ∈ B(G,m, t) = {b0, b7},
for each manual operation i ∈ Ṽ , equality Vb7

k = {i} holds: Vb7
1 = {1}, Vb7

3 = {1}. Condition
b7 ∈ B(G,m, t∗) holds since c(b7, t∗) = 7. Due to Theorem 2, we obtain ρb7(t) = ∞.

4. The calculation of stability radii for the optimal line balances

Theorems 1 and 2 give criteria for the extreme values of the stability radii: ρb0(t) = 0 or
ρb0(t) = ∞. In Sections 4.1 and 4.2, we show how to calculate the stability radius if 0 < ρb0(t) < ∞.

4.1. Formulas for calculating the stability radius

Assume that for the line balance b0 ∈ B(G,m, t), there does not exist the line balance bs ∈
B(G,m, t), bs , b0, such that the condition (3) does not hold. Due to Theorem 1, the stability
radius ρb0(t) is strictly positive. Assume also that ρb0(t) < ∞. Let the sign ⊕ denote a direct
summation of two sets Ṽb0

u and Ṽbr
k , i.e. Ṽb0

u ⊕ Ṽbr
k :=

{
Ṽb0

u
∪

Ṽbr
k

}
\
{
Ṽb0

u
∩

Ṽbr
k

}
. Let tuk

(0) be equal

to zero and
(
tuk
(0), t

uk
(1), . . . , t

uk
(wuk)

)
denote a non-decreasing sequence of the durations of the operations

from the set Ṽbr
k \ Ṽb0

u , where wuk = |Ṽbr
k \ Ṽb0

u |.

Theorem 3. If b0 ∈ B(G,m, t) with 0 < ρb0(t) < ∞, then

ρb0(t) = min {∆(b0, t), δ(b0, t)} , where (12)

∆(b0, t) = min
bs∈B(G,m,t)\{b0}

u
min

|Ṽb0
u ⊕Ṽbs

k |≥1

k
max

t(Vb0
u )<c(bs,t)=t(Vbs

k )
max

β=0,1,...,wuk−1

c(bs, t) − t(Vb0
u ) −∑βα=0 tuk

(α)

| Ṽb0
u ⊕ Ṽbs

k | −β
, (13)

δ(b0, t) = min
br∈B(G,m)\B(G,m,t)

u
min

|Ṽb0
u ⊕Ṽbr

k |≥1

k
max

t(Vbr
k )>c(b0,t)

max
β=0,1,...,wuk−1

t(Vk
br ) − t(Vu

b0) −∑βα=0 tuk
(α)

| Ṽb0
u ⊕ Ṽbr

k | −β
. (14)
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The proof of Theorem 3 is given in Appendix A, where it is shown that the real number ∆(b0, t)
(δ(b0, t), respectively) is equal to the minimal variation of the manual operation durations allowing
to decrease the workstation time of the bottleneck workstation of another optimal line balance bs

(of the non-optimal line balance br). If the set B(G,m, t) is a singleton, B(G,m, t) = {b0}, then due
to Theorem 1 we obtain ρb0(t) > 0 and Theorem 3 implies the following claim.

Corollary 1. If B(G,m, t) = {b0} and ρb0(t) < ∞, then ρb0(t) = δ(b0, t).

In formulas (13) and (14), a denominator of the fraction in the right-hand side may be equal
to zero. If we assume that a positive number divided by 0 is the infinity, then formula (12) gives
the infinity in the right-hand side, ρb0(t) = ∞. However, the more simple criterion for the infinite
stability radius is given in Theorem 2. In Section 4.2, it is shown how to restrict the set of line
balances that have to be compared with the line balance b0 for calculating the stability radius ρb0(t).

4.2. The redundant line balances for calculating the stability radius

Due to Theorem 3, a calculation of the stability radius ρb0(t) > 0 is reduced to the time-
consuming calculation on the set B(G,m). In order to restrict the set of line balances br ∈
B(G,m) \ {b0}, with which the optimal line balance b0 may be compared for calculating ρb0(t),
one can use the upper bound on the following value:

δ(b0, br, t) :=
u

min
|Ṽb0

u ⊕Ṽbs
k |≥1

k
max

t(Vbr
k )>c(b0,t)

max
β=0,1,...,wuk−1

t(Vbr
k ) − t(Vb0

u ) −∑βα=0 tuk
(α)

| Ṽb0
u ⊕ Ṽbr

k | −β
, (15)

which is given in Theorem 3 in the right-hand side of the equality (14).

Lemma 1. Assume that b0 ∈ B(G,m, t), br ∈ B(G,m) \ {b0}, ñbr = max
{
|Ṽbr

k | : k ∈ {1, 2, . . . ,m}
}
.

There is no need to compare the line balance b0 with the line balance br if inequality

δ(b0, bg, t) ≤
c(br, t) − c(b0, t)
min
{
ñ, ñbr + ñb0

} (16)

holds for the line balance bg ∈ B(G,m) \ {b0, br}.

The proof of Lemma 1 is given in Appendix B, where it is assumed that the line balance b0

is already compared with the line balance bg, and the bound ρb0(t) ≤ δ(b0, bg, t) := ρ is obtained.
Due to Lemma 1, the line balance br ∈ B(G,m) \ {b0} may make smaller the achieved stability ball
Oρ(̃t) only if the inequality (16) does not hold. For each optimal line balance bg ∈ B(G,m, t) \ {b0},
the right-hand side of the inequality (16) is equal to zero since c(bg, t) − c(b0, t) = 0 for each line
balance bg ∈ B(G,m, t). Therefore, while calculating ρb0(t), one has to compare the line balance
b0 with all optimal line balances bg ∈ B(G,m, t) \ {b0}. We obtain the following

Corollary 2. If |B(G,m, t)| ≥ 2, then the optimal line balance b0 ∈ B(G,m, t) has to be compared
with all other optimal line balances bg ∈ B(G,m, t) \ {b0} in the course of calculating the stability
radius ρb0(t) using Theorem 3.

The implementation of Lemma 1, Corollary 2, Theorems 1 and 3 is demonstrated on the calcu-
lation of the stability radii for the following example.
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Figure 3: The precedence digraph G = (V, A) without transitive arcs for Example 3.

4.3. Example 3

Assume that m = 3, n = 6, ñ = 3, t = (̃t, t) = (t1, t2, t3, t4, t5, t6) = (2, 5, 1, 4, 5, 3). The set
Ṽ = {1, 2, 3} includes manual operations. The set V \ Ṽ = {4, 5, 6} includes automated operations.
The digraph G = (V, A) is presented in Fig. 3, where the transitive arcs are omitted. If all operation
durations are integers, the following lower bound on the minimal cycle-time c is valid:

min {c(br, t) : br ∈ B} = c ≥


n∑
i=1

ti

m

 , (17)

where ⌈a⌉ denotes the smallest integer number that is greater than or equal to the real num-
ber a. One can convince that the line balance b0 : V = {2, 6}∪{1, 4}∪{3, 5} is optimal since⌈∑n

i=1
ti
m

⌉
=
⌈∑6

i=1
ti
3

⌉
=
⌈

20
3

⌉
= 6 = c(b0, t), which imply that c(b0, t) is equal to the right-

hand side of the inequality (17). Similarly, one can be convinced that there are four optimal
line balances as follows: b0: V = {2, 6}∪{1, 4}∪{3, 5}; b1: V = {2, 6}∪{3, 4}∪{1, 5}; b2:
V = {2, 6}∪{4}∪{1, 3, 5}; b3: V = {2, 6}∪{1, 3, 4}∪{5}.

Other line balances are non-optimal for the vector t = (4, 1, 6, 3, 7, 4) of the operation durations.
For the optimal line balances bi, i ∈ {0, 1, 2, 3}, the sets W(bi, t) are as follows: W(b0, t) = {{2}};
W(b1, t) = {{2}}; W(b2, t) = {{2}, {1, 3}}; W(b3, t) = {{2}}. For the line balance b2, there ex-
ists a line balance b0 ∈ B(G,m, t) such that the condition (3) does not hold: {{2}, {1, 3}} =
W(b2, t) * W(b0, t) = {{2}}. Due to Theorem 1, we obtain ρb2(t) = 0. For the line balance
b0, we obtain {{2}} = W(b0, t) ⊆ W(b1, t) = {{2}}, {{2}} = W(b0, t) ⊆ W(b2, t) = {{2}, {1, 3}},
{{2}} = W(b0, t) ⊆ W(b3, t) = {{2}}, where {b1, b2, b3} = B(G,m, t) \ {b0}. Due to Theorem
1, the line balance b0 ∈ B(G,m, t) is stable: ρb0(t) > 0. Similarly, we can obtain inequal-
ities ρb1(t) > 0 and ρb3(t) > 0. Using Theorem 3, we calculate stability radii ρb0(t), ρb1(t),
ρb3(t). Due to Corollary 2, we have to compare the line balance b0 with the line balances b1,
b2, and b3, which are also optimal for the vector t = (2, 5, 1, 4, 5, 3). Using the formula (15),
we calculate δ(b0, b1, t) = 1, δ(b0, b2, t) = 2, δ(b0, b3, t) = 1. Using the bound (16) with the
left-hand side δ(b0, b1, t) = 1 and Lemma 1, one can be convinced that to calculate a value
δ(b0, t) given in (14), it is sufficient to compare the line balance b0 with seven line balances: b4:
V = {6}∪{2, 3, 4}∪{1, 5}; b5: V = {2, 3, 6}∪{4}∪{1, 5}; b6: V = {2, 3, 6}∪{4, 5}∪{1}; b7:
V = {3, 6}∪{2, 4}∪{1, 5}; b8: V = {6}∪{2, 4}∪{1, 3, 5}; b9: V = {2, 6}∪{4, 5}∪{1, 3}; b10:
V = {2, 3, 6}∪{1, 4}∪{5}. Using the formula (15), we calculate δ(b0, b4, t) = 3

2 , δ(b0, b5, t) = 1,
δ(b0, b6, t) = 1, δ(b0, b7, t) = 3

2 , δ(b0, b8, t) = 3
2 , δ(b0, b9, t) = 1, δ(b0, b10, t) = 1. Using the formula

(14), we obtain δ(b0, t) = min
{

3
2 , 1, 1,

3
2 ,

3
2 , 1, 1

}
= 1. Similarly using Theorem 3, one can obtain

ρb0(t) = min {δ(b0, t),∆(b0, t)} = min {1, 1} = 1. The stability ball Oρ(t̃) with the largest radius
ρ = ρb0(t) = 1 and center t̃ = {2, 5, 1} for the line balance b0 ∈ B(G,m, t) is presented in Fig. 4.
Similarly, one can calculate ρb1(t) =

1
2 and ρb3(t) =

1
3 .
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Figure 4: The stability ball Oρ(t̃) with radius ρ = ρb0 (t) = 1 and center t̃ = {2, 5, 1} for the line balance b0 ∈ B(G,m, t).

5. An algorithm for the calculation of stability radii for the optimal line balances

If the set B(G,m) is constructed, it is not difficult to find the set B(G,m, t), having chosen the
line balances from the set B(G,m) with the minimal cycle-time. Using Theorem 1, one can choose
all unstable optimal line balances B0(G,m, t) ⊆ B(G,m, t). Using Theorem 2, one can choose all
optimal line balances B∞(G,m, t) with infinite stability radii if they exist. Next, we present an
algorithm for constructing sets B(G,m), B(G,m, t), B0(G,m, t), B∞(G,m, t), and calculating the
stability radii for all optimal line balances. The fist step of this algorithm uses the algorithm for
constructing the set B(G,m) developed in (Sotskov et al., 2015).

Algorithm RAD
Input: The set Ṽ of the manual operations, the set V \ Ṽ of the automated operations, the

digraph G = (V, A), the workstation number m, the operation durations t = (̃t, t).
Output: The set B(G,m) of the line balances, the set B(G,m, t) of the optimal line balances,

the set B0(G,m, t) of the unstable line balances, the set B∞(G,m, t) of the optimal line balances
with infinite stability radii, the stability radii ρbi(t) for all optimal line balances.

Step 1. Construct the set B(G,m) using the algorithm described in (Sotskov et al., 2015).
SET k = 1, B0(G,m, t) = ∅, B∞(G,m, t) = ∅.

Step 2. Choose all line balances B(G,m, t) = {b1, b2, . . . , bq} with a minimal cycle-time c
from the set B(G,m). The set B(G,m, t) of the optimal line balances is constructed.

Step 3. SET b0 = bk.
Step 4. IF B(G,m, t) = {b0} THEN ρb0(t) > 0 GOTO step 8.
Step 5. ELSE FOR each optimal line balance bi ∈ B(G,m, t), construct the set W(bi, t).
Step 6. FOR each optimal line balance bi ∈ B(G,m, t) \

{
{b0}
∪

B0(G,m, t)
∪

B∞(G,m, t)
}

DO
IF W(b0, t) ⊆ W(bi, t) for each line balance bi ∈ B(G,m, t) \ {b0}
THEN GOTO step 8 ELSE GOTO step 7 ENDDO.

Step 7. SET ρb0(t) = 0 SET B0(G,m, t) := B0(G,m, t)
∪{b0}.

Step 8. Construct the modified problem SALBP∗-2 via setting operation durations as follows:
t∗ = (̃t∗, t) = (0, 0, . . . , 0, t̃n+1, t̃n+2, . . . , tn).

Step 9. Calculate the minimal cycle-times c∗ for the problem SALBP∗-2.
IF c(b0, t∗) = c∗ THEN GOTO step 11.

Step 10. FOR each manual operation i ∈ Ṽ DO
IF equality {i} = Ṽb0

k does not hold THEN GOTO step 11 ENDDO.
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SET ρb0(t) = ∞ SET B∞(G,m, t) := B∞(G,m, t)
∪{b0}.

Step 11. FOR each optimal line balance bs ∈ B(G,m, t) \ {b0} DO
Calculate ∆(b0, bs, t) = minu

|Ṽb0
u ⊕Ṽbs

k |≥1
maxk

t(Vb0
u )<c(bs,t)=t(Vbs

k )
∆

bs,k
b0,u
,

where ∆bs,k
b0,u

is determined in (A.18) SET ∆(b0, t)=minbs∈B(G,m,t)\{b0} ∆(b0, bs, t) ENDDO.
Step 12. FOR each non-optimal line balance br ∈ B(G,m) \ B(G,m, t) DO
Step 13. IF δ(b0, bg, t) >

c(br ,t)−c(b0,t)
min{ñ,ñbr+ñb0} for each line balance bg ∈ B(G,m) \ {b0, br}

THEN GOTO step 14 ELSE GOTO step 12 ENDDO.
Step 14. Calculate δ(b0, br, t) = minu

|Ṽb0
u ⊕Ṽbr

k |≥1
maxk

t(Vbr
k )>c(b0,t)

δbr ,k
b0,u
,

where δbr ,k
b0,u

is determined in (A.8) SET δ(b0, t) = minbr∈B(G,m)\{b0} δ(b0, br, t)
SET ρb0(t) = min {∆(b0, t), δ(b0, t)} SET k := k + 1.

Step 15. IF k ≤ q THEN GOTO step 3
ELSE The sets B0(G,m, t) and B∞(G,m, t) are constructed and
the stability radii ρbi(t) are calculated, bi ∈ B(G,m, t) STOP.

Steps 6 and 7 of the above Algorithm RAD are based on Theorem 1, steps 8 – 10 on Theorem
2, step 13 on Lemma 1, steps 11, 12 and 14 on Theorem 3 and Corollary 1.

6. Computational results

Algorithm RAD was implemented in C++ and tested on the benchmark instances available on
http://www.assembly-line-balancing.de. The computational experiments were run on a laptop with
the following characteristics: Intel(R), Pentium(R), CPU 2020M @2.40GHz 2.40GHz, 4.00GB
Internal Memory. The main characteristics of the benchmark instances, which determine their
complexity, are presented in Table 1 for the benchmark dataset given in (Scholl, 1999), and in
Table 2 for the benchmark dataset given in (Otto et al., 2013). In Tables 1 and 2, the first column
gives the instance name (a number is used as the instance name in (Otto et al., 2013)). The second
column gives the number of the operations followed by the minimal duration tmin (column 3), the
maximal duration tmax (column 4), and the sum of durations

∑
ti (column 5). The last two columns

give the complexity measures for the instances tested. Column 6 gives the Order Strength (OS ) of
the digraph G = (V, A) in percentages: OS = |A|

|AC | · 100%, where |AC | = n(n−1)
2 is the number of arcs

in the complete circuit-free digraph G = (V, AC) of order n. Column 7 gives the Time Variability
ration (TV) defined as follows: TV = tmax

tmin
.

Different from the usual problem SALBP-2, our problem required extra data. So, each bench-
mark instance was supplemented by the number ñ of the manual operations and a partition of the
set V into subset Ṽ = {1, 2, . . . , ñ} of the manual operations and subset V \ Ṽ = {ñ + 1, ñ +
2, . . . , n} of the automated operations. Numbers ñ were randomly chosen from the following
set:

{⌈
n
10

⌉
,
⌈

2n
10

⌉
,
⌈

3n
10

⌉
,
⌈

4n
10

⌉
,
⌈

5n
10

⌉
,
⌈

6n
10

⌉
,
⌈

7n
10

⌉
,
⌈

8n
10

⌉
,
⌈

9n
10

⌉}
, i.e. the percentages of the manual op-

erations were close to 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%, respectively.
After determining the number ñ, the set Ṽ = {1, 2, . . . , ñ} was randomly chosen from the set
V = { j1, j2, . . . , jn}. In addition, we determined numbers m of the workstations in different vari-
ants of the benchmark instances. In Tables 3, 4 and 5, number m was taken from the set {3, 4, 5, 6}.
For the small instances presented in Table 6, number m was taken from the set {3, 4, . . . , n−2, n−1}.
For each benchmark instance tested, several variants of the instance SALBP-2 have been randomly
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Table 1: The characteristics of the instances from the dataset given in (Scholl, 1999)

Instance n tmin tmax
∑

ti OS TV
name

1 2 3 4 5 6 7
Mertens 7 1 6 29 52.38 6.00
Bowman 8 3 17 75 75.00 5.67
Jaeschke 9 1 6 37 83.33 6.00
Jackson 11 1 7 46 58.18 7.00
Mansoor 11 2 45 185 60.00 22.50
Mitchell 21 1 13 105 70.95 13.00
Roszieg 25 1 13 125 71.67 13.00
Lutz1 32 100 1400 14140 83.47 14.00
Hahn 53 40 1775 14026 83.82 44.38

Table 2: The characteristics of the instances from the dataset given in (Otto et al., 2013)

Instance n tmin tmax
∑

ti OS TV
name

1 2 3 4 5 6 7
67 20 26 308 2942 50.5 11.85
69 20 21 25 1972 54.7 11.90
70 20 35 323 2985 50.5 9.23
71 20 47 305 2957 53.2 6.49
73 20 27 262 1933 50.5 9.70
74 20 22 275 2792 50.5 12.50
75 20 22 283 2886 50.5 12.86
443 20 27 322 2933 81.6 11.93
444 20 35 357 2879 80.0 10.20
453 20 20 344 2859 84.2 17.20
454 20 55 358 2855 82.6 6.51
457 20 42 446 2886 82.6 10.62
486 20 254 624 9141 83.7 2.46
498 20 27 605 5304 85.3 22.41
507 20 36 497 4330 85.3 13.81
511 20 46 483 4281 84.7 10.50
515 20 46 483 4281 84.7 10.50
472 50 37 308 7403 90.4 8.32
474 50 21 272 6464 90.4 12.95
482 50 197 676 237100 90.4 3.43
520 50 28 566 103030 89.7 20.21
523 50 29 531 9799 89.6 18.3
524 50 43 635 127810 89.6 14.77

generated for solving them by Algorithm RAD. The variants of benchmark instances were deferred
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one from another by the number i as follows: instance name-i. These composite names of the in-
stances are indicated in column 2 of Tables 3 – 6. The instances are also numbered in column 1
through all Tables 3 – 6.

For each instance presented in Tables 3 – 6, Algorithm RAD calculated the minimal cycle time
c, constructed the sets B(G,m), B(G,m, t), B0(G,m, t) and B∞(G,m, t), and calculated the stability
radii ρbi(t) for all optimal line balances bi ∈ B(G,m, t). The obtained computational results are
summarized in Tables 3 and 6 for the benchmark dataset given in (Scholl, 1999), and in Tables 4
and 5 for the benchmark dataset given in (Otto et al., 2013). The CPU-time used for each instance
is given in column 12 in minutes. If the needed CPU-time was greater than the allowed limit of 6
hours, then Algorithm RAD was stopped. The instances, which were not solved within 6 hours,
are not presented in Tables 3 – 6, except the instance with number 87 presented in Table 5. In
particular, the instances with names 67, 69, 70, 71, 73, 74, and 75 from the benchmark dataset
given in (Otto et al., 2013) were solved only for m = 2 and m = 3, since solving each of them for
m = 4 needed CPU-time more than 6 hours.

The input data for each instance includes the operation number n (column 3), the workstation
number m (column 4). The percentage of the manual operations λ = |Ṽ ||V | · 100% is given in column
5. Column 6 gives the Order Strength of the digraph G = (V, A). Using this input data, the program
calculated the minimal cycle-time c given in column 7. The program calculated how many line
balances |B(G,m)| exist (column 8 in Tables 3 – 6), how many line balances |B(G,m, t)| are optimal
(column 9), and how many optimal line balances |B0| = |B0(G,m, t)| are unstable (column 10). In
column 11, values of the calculated stability radii are presented in the condensed form in a non-
increasing order of them. To determine all stability radii for the instance, a reader has to use
column 11 along with columns 9 and 10 in the corresponding table. For example, column 9
and column 10 in Table 3 contain number 10 and number 4, respectively, for the instance named
Mertens-2 (column 2) with instance number 2 (column 1). Column 11 for the instance Mertens-2
contains the following numbers: 1, . . . , 1, 0, . . . , 0. This means that instance Mertens-2 has ten
optimal line balances, stability radii for four of them being equal to 0, and stability radii for six of
them, 6 = 10 − 4, being equal to 1. The program tested the condition of Theorem 3 for detecting
the optimal line balances bi ∈ B(G,m, t) with infinite stability radii, ρbi(t) = ∞. The instances with
numbers 92, 98, 105, 106, 112, and 113 have optimal line balances, which save their optimality for
all durations of the manual operations. For example, column 9 and column 10 in Table 6 contain
number 442 and number 132, respectively, for the instance named Jackson-10 (column 2) with
number 105 given in column 1. Column 11 for instance Jackson-10 contains the following: 146:∞;
164:1; 0, . . . , 0. This means that instance Jackson-10 has 442 optimal line balances, stability radii
for 146 of them being infinite, stability radii for 164 of them being equal to 1, and stability radii
for the remaining 132 optimal line balances being equal to 0.

In the computational experiments, the stability analysis was applied to twelve moderate-size
instances with numbers 12, 77 − 87 and to 102 small-size instances. Let us partition the set T of
all 114 instances presented in Tables 3 – 6 into four subsets: T = U∪O∪D∪E with respect
to their stability radii. An instance is included in the set U if there exists at least one unstable
optimal line balance for this instance, i.e. B0(G,m, t) , ∅. The set U consists of 40 instances
with the following numbers: 2, 6, 8 − 13, 15 − 21, 25, 26, 28, 30, 31, 33, 34, 36, 37, 69, 91, 92, 94 −
96, 98 − 106, 108. This is more than 35.08% of the instances tested. An instance is included in
the set O if there is only one optimal line balance for this instance, i.e. |B(G,m, t)| = 1. The set
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Table 3: The cardinalities of the sets of line balances, optimal line balances, and stability radii for the instances given in (Scholl, 1999)

Instance n m λ OS c |B(G,m)| |B(G,m, t)| |B0| ρbr (t), CPU-time
name br ∈ B(G,m, t) (min)

1 2 3 4 5 6 7 8 9 10 11 12
1 Mertens-1 7 3 50 52.38 10 99 1 0 0.33 0.0016
2 Mertens-2 7 4 20 52.38 9 221 10 4 1,..., 1, 0,..., 0 0.0020
3 Mertens-3 7 5 50 52.38 7 241 5 0 0.33,..., 0.33 0.0022
4 Bowman-1 8 3 40 75.00 28 68 3 0 0.5,..., 0.5 0.0015
5 Bowman-2 8 4 10 75.00 22 165 1 0 1 0.0017
6 Bowman-3 8 5 30 75.00 17 225 2 1 1.5, 0 0.0019
7 Jaeschke-1 9 3 30 83.33 13 95 1 0 0.33 0.0016
8 Jaeschke-2 9 4 70 83.33 10 294 3 1 0.33, 0.33, 0 0.0018
9 Jaeschke-3 9 5 30 83.33 9 535 27 27 0,..., 0 0.0021
10 Jaeschke-4 9 6 50 83.33 8 596 16 10 0.5,..., 0.5, 0.0028

0,..., 0
11 Jeckson-1 11 3 50 58.18 16 543 7 7 0,..., 0 0.0031
12 Jeckson-2 11 4 80 58.18 12 2997 9 9 0,..., 0 0.0125
13 Jeckson-3 11 5 60 58.18 11 9414 132 84 34:0.25;14:0.2 0.2070

0,..., 0
14 Mansoor-1 11 3 60 60.00 63 471 1 0 0.25 0.0034
15 Mansoor-2 11 4 40 60.00 48 2559 7 3 0.67,..., 0.67, 0.0118

0, 0, 0
16 Mansoor-3 11 5 30 60.00 45 7965 165 165 0,..., 0 0.0519
17 Mitchell-1 21 3 30 70.95 35 7509 5 5 0,..., 0 0.1284
18 Mitchell-2 21 4 30 70.95 27 13914 23 23 0,..., 0 3.1852
19 Mitchell-3 21 5 20 70.95 21 1343188 3 3 0,..., 0 23.2234
20 Roszieg-1 25 3 60 71.67 42 10394 6 6 0,..., 0 0.3262
21 Roszieg-2 25 4 30 71.67 32 264681 10 7 0.67, 0.67, 0.67, 10.6501

0,..., 0
22 Lutz1-1 32 3 30 83.47 4776 17759 1 0 0.5 0.7778
23 Lutz1-2 32 4 70 83.47 3574 674817 2 0 0.8, 0.67 24.0886
24 Hahn-1 53 3 80 83.82 4787 1750101 2 0 0.579, 0.579 362.7036

O consists of 30 instances with the following numbers: 1, 5, 7, 14, 22, 35, 39, 42, 43, 50, 51, 54, 55,
58, 59, 62 − 64, 66, 67, 70, 77, 79, 81, 83, 85, 86, 89, 93, 107. This is more than 26.31% of the in-
stances tested. Due to Theorem 1, the optimal line balance for any instance from the set O is
stable: B0(G,m, t) = ∅. Therefore, an intersection of the sets U and O is empty. An instance
is included in the set D if it has at least two optimal line balances with the different stability
radii, all optimal line balances being stable. The set D consists of 15 instances with the follow-
ing numbers: 23, 27, 32, 40, 45, 49, 57, 65, 68, 73, 74, 80, 112 − 114. This is more than 13.15%
of the instances. The remaining instances generate the set E = T \ {U∪O∪D}. Each in-
stance in the set E has more than one optimal line balances, these line balances being stable
with the same stability radius. The set E consists of 29 instances with the following numbers:
3, 4, 24, 29, 38, 41, 44, 46−48, 52, 53, 56, 60, 61, 71, 72, 75, 76, 78, 82, 84, 87, 88, 90, 97, 109−111.
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Table 4: The cardinalities of the sets of line balances, optimal line balances, and stability radii for the instances given in (Otto et al., 2013)

Instance n m λ OS c |B(G,m)| |B(G,m, t)| |B0| ρbr (t), CPU-time
name br ∈ B(G,m, t) (min)

1 2 3 4 5 6 7 8 9 10 11 12
25 67-1 20 3 40 50.5 994 21241 2 2 0, 0 0.5453
26 67-2 20 4 30 50.5 742 586170 4 2 1, 0.5, 0, 0 14.5172
27 69-1 20 3 90 54.7 665 19170 8 0 7:0.1; 0.08 0.6001
28 69-2 20 4 90 54.7 513 547927 21 1 20:0.4286; 0 19.8634
29 70-1 20 3 40 50.5 1003 23408 2 0 0.4, 0.4 0.4297
30 70-2 20 4 50 50.5 749 781768 2 1 0.2, 0 13.9053
31 71-1 20 3 40 53.2 995 36462 2 2 0, 0 0.8361
32 71-2 20 4 80 53.2 746 1368988 5 0 0.86, 0.75, 0.5, 0.5453

0.29, 0.14
33 73-1 20 3 20 50.5 649 80197 2 2 0, 0 2.5078
34 73-2 20 4 90 50.5 487 3631756 8 8 0,..., 0 170.1225
35 74-1 20 3 60 50.0 931 87913 1 0 0.11 2.4791
36 74-2 20 4 30 50.0 703 3771543 6 3 1, 0.8, 0.75, 0, 0, 0 193.1973
37 75-1 20 3 10 50.0 963 83715 2 2 0, 0 2.0434
38 75-2 20 4 80 50.0 725 3484702 5 0 0.125,..., 0.125 118.6261
39 443-1 20 3 30 81.6 988 2027 1 0 1.67 0.0174
40 443-2 20 4 30 81.6 757 29271 3 0 1.5, 0.5, 0.5 0.2061
41 443-3 20 5 30 81.6 623 270179 3 0 4.3, 4.3, 4.3 1.9017
42 443-4 20 6 40 81.6 518 1737074 1 0 0.5 16.9392
43 444-1 20 3 40 80.0 1000 3719 1 0 0.67 0.0358
44 444-2 20 4 70 80.0 733 61640 3 0 0.625, 0.625, 0.625 0.5524
45 444-3 20 5 50 80.0 614 630784 13 0 3:1.5; 1; 2:0.5; 1.9017

4:0.25; 3:0.2
46 453-1 20 3 30 84.2 1000 1489 4 0 0.2,..., 0.2 0.0148
47 453-2 20 4 70 84.2 761 20761 7 0 0.44,..., 0.44 0.2243
48 453-3 20 5 80 84.2 604 186333 3 0 0.5, 0.5, 0.5 1.8424
49 453-4 20 6 30 84.2 535 1164183 72 0 16:2.25; 32:2; 10.0738

16:0.67; 8:0.33
50 454-1 20 3 50 82.6 953 2174 1 0 0.1429 0.0212
51 454-2 20 4 70 82.6 726 34918 1 0 0.1 0.3681
52 454-3 20 5 80 82.6 592 353832 4 0 0.25,..., 0.25 3.6623
53 454-4 20 6 40 82.6 493 2455780 5 0 1,..., 1 25.5989
54 457-1 20 3 80 82.6 983 1994 1 0 0.154 0.0239
55 457-2 20 4 30 82.6 729 29741 1 0 0.25 0.3589
56 457-3 20 5 50 82.6 614 282699 2 0 3.25, 3.25 3.1316
57 457-4 20 6 60 82.6 509 1862498 8 0 6:2.33; 0.8; 0.25 25.3235

This is more than 25.43% of the instances tested.
Based on our computational results, one could make the following observations. For 51.74% =

26.31%+25.43% of the instances, which belong either to the set O or to the set E, constructing one
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Table 5: The cardinalities of the sets of line balances, optimal line balances, and stability radii for the instances given in (Otto et al., 2013)

Instance n m λ OS c |B(G,m)| |B(G,m, t)| |B0| ρbr (t), CPU-time
name br ∈ B(G,m, t) (min)

1 2 3 4 5 6 7 8 9 10 11 12
58 486-1 20 3 20 83.7 3090 1342 1 0 0.75 0.0146
59 486-2 20 4 60 83.7 2382 18401 1 0 1.75 0.2037
60 486-3 20 5 70 83.7 1945 163350 6 0 0.14,..., 0.14 1.6985
61 486-4 20 6 50 83.7 1625 1007925 2 0 4.67, 4.67 10.0738
62 498-1 20 3 70 85.3 1814 1573 1 0 2.44 0.01270
63 498-2 20 4 50 85.3 1383 22969 1 0 0.2 0.1847
64 498-3 20 5 40 85.3 1080 215841 1 0 0.75 2.9819
65 498-4 20 6 60 85.3 942 1407263 17 0 5:4; 5:2.8; 7:0.5 18.6954
66 507-1 20 3 30 85.3 1513 1057 1 0 0.33 0.0101
67 507-2 20 4 70 85.3 1122 13384 1 0 1 0.1375
68 507-3 20 5 80 85.3 913 111975 2 0 2.57, 1.8 0.9567
69 507-4 20 6 50 85.3 782 660874 12 3 4:4; 2:3; 3:1.75; 3:0 7.6960
70 511-1 20 3 40 84.7 1475 1621 1 0 1.67 0.0127
71 511-2 20 4 60 84.7 1106 23940 2 0 3.86, 3.86 0.1654
72 511-3 20 5 90 84.7 892 227059 2 0 2.13, 2.13 1.6713
73 511-4 20 6 70 84.7 767 1490134 26 0 22:2.67; 4:2.25 23.1880
74 515-1 20 3 40 80.0 1688 3069 2 0 1.5, 1.2 0.0284
75 515-2 20 4 40 80.0 1274 53078 2 0 2.5, 2.5 0.5099
76 515-3 20 5 30 80.0 1128 562536 17 0 1.75,..., 1.75 8.1384
77 472-1 50 3 30 90.4 2487 36890 1 0 0.1 6.4599
78 472-2 50 4 50 90.4 1893 2557276 7 0 0.79,..., 0.79 450.4119
79 474-1 50 3 70 90.4 2169 36316 1 0 0.24 5.4206
80 474-2 50 4 80 90.4 1624 2287205 2 0 0.32, 0.19 344.5120
81 482-1 50 3 40 90.4 8079 32305 1 0 1.27 4.5893
82 482-2 50 4 30 90.4 5988 2163688 2 0 1.44, 1.44 314.0014
83 520-1 50 3 40 89.6 3445 27875 1 0 1.25 9.4803
84 520-2 50 4 30 89.6 2619 1736433 2 0 0.38, 0.38 539.1664
85 523-1 50 3 30 89.6 3289 49598 1 0 0.0714 18.6211
86 524-1 50 3 50 89.6 4292 27833 1 0 0.35 12.4749
87 524-2 50 4 70 89.6 3236 1722203 2 0 0.07, 0.07 755.9934

optimal line balance is practically sufficient for solving the problem SALBP-2, since the optimal
line balance is either unique for each instance from the set O or all optimal line balances have the
same stability radius for each instance from the set E.

For the remaining 48.23% = 35.08%+13.15% of the instances, which generate the setU∪E,
it is useful to construct more than one optimal line balances instead of a single one. If the in-
stance belongs to the set U, then the first constructed optimal line balance b0 ∈ B(G,m, t) may
be unstable: b0 ∈ B0(G,m, t). The optimality of the line balance b0 is practically doubtful, since
even infinitely small variations of the durations of manual operations may deprive its optimality.
For solving an instance from the set D, it is also not sufficient to construct only one optimal line
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Table 6: The cardinalities of the sets of line balances, optimal line balances, and stability radii for the instances with small sizes

Instance n m λ OS c |B(G,m)| |B(G,m, t)| |B0| ρbr (t), CPU-time
name br ∈ B(G,m, t) (min)

1 2 3 4 5 6 7 8 9 10 11 12
88 Bowman-4 8 3 50 75.00 28 68 3 0 0.33, 0.33, 0.33 0.0019
89 Bowman-5 8 4 88 75.00 22 165 1 0 0.25 0.0028
90 Bowman-6 8 5 25 75.00 17 225 2 0 1, 1 0.0024
91 Bowman-7 8 6 50 75.00 17 176 22 13 5:1.5; 4:1; 0,..., 0 0.0043
92 Bowman-8 8 7 25 75.00 17 74 33 6 27:∞; 0,..., 0 0.0060
93 Jaeschke-5 9 3 56 83.33 13 95 1 0 0.25 0.0016
94 Jaeschke-6 9 4 89 83.33 10 294 4 3 0.25, 0, 0, 0 0.0024
95 Jaeschke-7 9 5 67 83.33 9 535 27 27 0,..., 0 0.0029
96 Jaeschke-8 9 6 22 83.33 8 595 16 6 0.5,..., 0.5, 0,..., 0 0.0111
97 Jaeschke-9 9 7 33 83.33 7 401 15 0 1,..., 1 0.0106
98 Jaeschke-10 9 8 33 83.33 6 150 24 12 12:∞; 0,..., 0 0.0021
99 Jackson-4 11 3 91 58.18 16 543 7 7 0,..., 0 0.0051
100 Jackson-5 11 4 64 58.18 12 2997 9 9 0,..., 0 0.0216
101 Jackson-6 11 5 36 58.18 11 9414 132 116 15:0.33; 0.25; 0.1514

0,. . . , 0
102 Jackson-7 11 6 18 58.18 9 18378 286 136 1,..., 1, 0,..., 0 2.8625
103 Jackson-8 11 7 27 58.18 8 23171 84 64 1,..., 1, 0,..., 0 2.9405
104 Jackson-9 11 8 36 58.18 7 18953 34 16 0.5,...,0.5, 0,...,0 2.0204
105 Jackson-10 11 9 36 58.18 7 9747 442 132 146:∞; 164:1; 5.2337

0,. . . , 0
106 Jackson-11 11 10 55 58.18 7 2874 802 264 461:∞; 77:1; 6.3924

0,. . . , 0
107 Mansoor-4 11 3 36 60.00 63 471 1 0 0.33 0.0049
108 Mansoor-5 11 4 91 60.00 48 2559 7 3 0.25,..., 0.25, 0.0217

0, 0, 0
109 Mansoor-6 11 5 55 60.00 45 7965 165 0 0.25,..., 0.25 0.3818
110 Mansoor-7 11 6 73 60.00 45 15509 1408 0 0.25,..., 0.25 20.6506
111 Mansoor-8 11 7 45 60.00 45 19631 4180 0 0.33,..., 0.33 128.163
112 Mansoor-9 11 8 36 60.00 45 16219 6121 0 655:∞; 27: 262.090

1.67; 5439:1
113 Mansoor-10 11 9 64 60.00 45 8468 4870 0 50:∞; 4820:0.5 191.463
114 Mansoor-11 11 10 82 60.00 45 2544 2011 0 1720:1.5; 291:0.5 32.2215

balance, since the first constructed optimal line balance may have the smallest stability radius.
The optimal line balance with a larger stability radius will remain optimal for a longer time of the
lifespan of the assembly line than the optimal line balance with a smaller stability radius.

Even for the instance from the set E, it is useful to construct more than one optimal line bal-
ances, since all the constructed optimal line balances may be saved in an archive of the assembly
line balances and then used for the faster re-balancing of the assembly line when variations of
the operation durations will be larger than the stability radius of the used line balance. For any
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instance from the setU, it will be useful to construct a set of the k-best line balances, which may
be used for the faster re-balancing of the assembly line.

7. The managerial implications of the stability results

We answer the following three questions: 1 Why and how are our stability results useful? 2
How does one obtain a stable optimal line balance if it exists? 3 How does one overcome a large
size of the instance SALBP-2 for making the stability analysis either for all optimal line balances
or for one of them? First of all, one can observe that an exact algorithm used for solving the
NP-hard problem SALBP-2, traditionally, terminates once an optimal line balance is constructed,
which may make sense if the numerical data is deterministic and fixed for the whole lifespan of
the assembly line, while it is doubtful if the numerical data may vary. Since the duration of each
manual operation may vary due to human factors, it is doubtful to provide a single optimal line
balance, which corresponds to the deterministic initial operation durations without knowing its
stability when the operation durations will vary. In contrast, Algorithm RAD presented in Section
5 constructs all alternative optimal line balances, calculate the stability radius for each of them,
and allows a manager to select the one with the largest stability radius for the practical use. In
essence, the traditional algorithm seeks one optimal line balance, while Algorithm RAD seeks
all optimal line balances and allows a manager to select the most stable optimal line balance in
the sense of having the largest stability radius. Since typically there are several or even many
alternative optimal line balances, it is better to examine all alternative optimal ones and then select
the one to one’s most advantage instead of just arbitrarily choosing one. Our computational results
indicate that it is more often to have alternative optimal line balances. Even in the case, there is
only one optimal line balance b0 (the set O), Algorithm RAD is still superior to a traditional one in
the sense that Algorithm RAD offers an additional information on the stability radius ρb0(t). This
piece of information is useful especially for managers. If the variation of each manual operation is
less than the stability radius ρb0(t), one knows that there is no need for re-balancing the assembly
line. Since the re-balancing is usually costly, there is an economic benefit by using our approach.
In addition, a manager may be nervous and even make mistakes without this piece of information
since she (he) simply does not know the right time for the re-balancing.

Second, our computational results given in Tables 3 – 6 indicate that there is a high probability
that the first constructed optimal line balance b0 ∈ B(G,m, t) is unstable (the setU), which means
that even infinitely small variations of the operation durations may cause the line balance b0 no
longer optimal. Indeed, each instance in the set U has at least one unstable optimal line balance
b0 ∈ B0(G,m, t). Since the optimality of the unstable line balance b0 is practically doubtful, more
optimal line balances have to be constructed and thus it is useful to choose an optimal line balance
with the largest stability radius. The calculation of stability radius ρb0(t) > 0, b0 ∈ B(G,m, t),
may end up with the time-consuming comparing the line balances B(G,m). In the worst case,
the optimal line balance b0 have to be compared with most of the line balances from the set
B(G,m) \ {b0}, which seems impossible for a large-size problem SALBP-2. However, thanks to
Theorem 1 for such a large assembly line, it is possible to test whether there exists a stable optimal
line balance or not. Due to Theorem 2 for such a large-size assembly line, it is also possible to
test whether there exists an optimal line balance with the infinite stability radius or not. Note that
testing the condition (3) of Theorem 1 for the optimal line balance b0 ∈ B(G,m, t) and the condition
of Theorem 2 may be realized for any problem SALBP-2, for which optimal line balance may
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be constructed by a branch-and-bound algorithm. Indeed, to construct all optimal line balances
B(G,m, t) for the problem SALBP-2 after constructing one optimal line balance b0 ∈ B(G,m, t)
by the branch-and-bound algorithm, it is sufficient to consider further the branches of the already
constructed solution tree, for which the lower bound on the cycle-time c(br, t), which may be
generated by this branch of the solution tree, is equal to the reached minimal cycle-times c(b0, t).

Third, our computational experiments on the usual laptop showed that the CPU-time for con-
structing the set B(G,m) of the line balances, the set B(G,m, t) of the optimal line balances, and
calculating their stability radii is not large for a small assembly line and for some moderate as-
sembly lines. Of course, for constructing the sets B(G,m) and B(G,m, t) for a large-size problem
SALBP-2, a faster computer is needed. Thanks to formula (16) given in Lemma 1, one can es-
timate how many line balances must be compared with the optimal one to calculate the stability
radius. If it is impossible to construct the whole set B(G,m), one can construct its subset and
then save it in the archive of the line balances. It is also possible to restrict for testing the part of
the assembly line around the bottleneck workstation, where the essential changes of the operation
durations hold. We believe that due to the increasing speed of computers it will be possible to
construct several optimal line balances or even the whole set B(G,m, t) for a large-size problem
SALBP-2 with the large Order Strength of the digraph G = (V, A). It should be also noted that one
can restrict the number of line balances under consideration. Due to this, the number of the tested
line balances may be considerably smaller than |B(G,m)|. Next, we show the details of why stabil-
ity analysis is useful (Section 7.1), how to restrict these calculations and how large-size problem
SALBP-2 allows the stability analysis based on Algorithm RAD (Section 7.2).

7.1. Why is the stability analysis useful

In the assembly industry, the problem SALBP-2 arises either for a newly designed assembly
line or for the currently used assembly line when the re-balancing will be required. The labor cost
per assembly product may be estimated as a sum of the wage rates of all workstations multiplied
by the cycle time c. Durations t̃ = (t1, t2, . . . , tñ), ñ ≤ n, of the manual operations are variable
depending on the operators that have to be paid for the whole cycle time c irrespective of factual
times used for their own operations. So, for the labor-intensive assembly line, a line balance
generated for the fixed operation durations may result in a lower effectiveness and an increased
production cost when the durations of the manual operations change. Furthermore, increasing the
cycle-time c caused by changed durations of the manual operations will make ineffective the use
of the expensive industrial robots making the automated operations. To avoid these drawbacks in
the above cases, we developed the stability analysis of the problem SALBP-2 in Sections 2 – 5.
In particular, due to the stability analysis, one can use the optimal line balance, which remains
optimal in the largest stability ball in space of the variations of the operation durations t̃. Using
such most stable line balance will guarantee its optimality for a longer time of the lifespan of the
assembly line. A knowledge of the stability radius of the current assembly line balance allows
a factory to find the right time for the re-balancing of the assembly line if the cycle-time of the
assembly line changes. If the variation of the durations of manual operations are no greater than
the stability radius of the current assembly line balance, then there no a better line balance than
the current one. Otherwise, re-balancing may decrease the current cycle-time of the assembly line.
When the re-balancing will start, the archive of the previously constructed optimal line balances or
k-best line balances may be used for the faster re-balancing of the assembly line. The time needed
for the re-balancing is crucial if it must be realized with a stoppage of the assembly line.
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Figure 5: The precedence digraph G = (V, A) without transitive arcs for Example 4.

7.2. How large may the problem SALBP-2 be for the stability analysis

The complete stability analysis of all optimal line balances B(G,m, t) based on Algorithm RAD
is time-consuming for the problem SALBP-2 with the large size since Algorithm RAD includes a
construction of line balances B(G,m), the testing of conditions of Theorems 1, 2, 3, or Corollaries
1 or 2, and the calculation of the stability radii for all optimal line balances. Our computational
experiments on the laptop showed that the CPU-time for constructing the set B(G,m) of the line
balances and the set B(G,m, t) of the optimal ones is restricted by 6 hours for the small assembly
line and for some moderate ones with the large Order Strength of the digraph G = (V, A). Using
Lemma 1, one can estimate how many line balances have to be compared with the optimal one
to calculate its stability radius. If it is impossible to construct the whole set B(G,m, t), one can
construct its subset and then save it in the archive of the competitive line balances. In order
to increase the size of the problem SALBP-2, for which the complete stability analysis may be
applied, one can decompose the problem SALBP-2 into several subproblems due to the precedence
constraints determined by the digraph G = (V, A). As an illustration, we consider Example 4
with m = 11, n = 16, ñ = 7, t = (̃t, t) = (t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, t14, t15, t16) =
(7, 5, 5, 8, 1, 5, 2, 6, 2, 3, 3, 4, 7, 3, 4, 5). The set Ṽ = {1, 2, . . . , 7} includes all the manual operations.
The set V \ Ṽ = {8, 9, . . . , 16} includes all the automated operations. The digraph G = (V, A)
without transitive arcs for Example 4 is presented in Fig. 5. It is easy to be convinced that
Example 4 is decomposable into Examples 1, 2, and 3, for which the stability analysis was already
realized in Sections 2.2, 3.3, and 4.3, respectively. Using this decomposition, the complete stability
analysis for Example 4 may be realized even without using a computer.

Since the computer speed will be more and more fast, it will be possible to construct several
optimal line balances or even the whole set B(G,m, t) for the practical problem SALBP-2 with
moderate and even large sizes. Using a powerful computer or supercomputer, one can construct
a set of the potentially optimal line balances, i.e. the optimal line balances or k-best ones for the
initial vector t of the operation durations. Then if the durations of the operations will change con-
siderably, one can select an appropriate line balance from the archive of the optimal line balances.
It should be also noted that the stability analysis must be realized once for the whole lifespan of
the assembly line. In fact, it may be realized at the stage of designing a new line balance, i.e. at
the off-line phase of exploiting the assembly line. Then the result of the stability analysis will be
used at the on-line phase of using the assembly line when a manager has less time for computing.

8. Conclusion

Since the durations of manual operations are variable, it is impossible to construct the optimal
line balance, which will be the best for all variable operation durations. Nevertheless traditionally,
the solution procedure for the problem SALBP-2 ends when the first optimal line balance b0 ∈
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B(G,m, t) is constructed. Due to the computational results presented in Tables 3 – 6, we can
argue that for the problem SALBP-2 there is a high probability that the first constructed optimal
line balance b0 ∈ B(G,m, t) is unstable and so even infinitely small variations of the operation
durations may destroy the optimality of the line balance b0 at hand. Each instance in the set U
has at least one unstable optimal line balance br ∈ B0(G,m, t). The optimality of the unstable line
balance br is doubtful for the real assembly line, which is labor-intensive. Therefore, more optimal
line balances have to be constructed for designing an optimal assembly line balance since the first
constructed optimal line balance b0 ∈ B(G,m, t) may be unstable if the instance belongs to the set
U. Thus, for each practical instance of the problem SALBP-2 from the setU, it is not sufficient to
construct only one optimal line balance as is done by a traditional exact algorithm for solving the
problem SALBP-2. As there are several optimal line balances, it is useful to choose the optimal
line balance with the largest stability radius. The algorithm for constructing optimal line balances
and calculating their stability radii is given in Section 5. This algorithm is based on Theorems
1, 2, and 3, Corollaries 1 and 2, and Lemma 1 presented in Sections 4.1 and 4.2. In Section 3,
we derived the set B∞(G,m, t) of the line balances with infinitely large stability radii (Theorem 2).
Such line balances keep their optimality for any variation of the durations of the manual operations.
The calculation of the stability radius ρb0(t) > 0, b0 ∈ B(G,m, t), is reduced to the time-consuming
calculation on the set B(G,m) of the line balances. In the worst case, the optimal line balance b0

have to be compared with almost all line balances from the set B(G,m) \ {b0}, which is impossible
for most practical assembly lines because of their large sizes. Due to Theorem 1, one can easily
test whether there exists a stable optimal line balance or not, and due to Theorem 2, one can easily
test whether there exists an optimal line balance with the infinite stability radius or not even for
such a large-size problem SALBP-2.

A possible research direction is a deeper investigation of the set B∞(G,m, t), since using the
line balance with the infinite stability radius may be promising in the assembly industry. Fur-
ther research may focus on developing more effective algorithms for enumerating all optimal line
balances and calculating their stability radii. Another future research avenue may deal with the
problem SALBP-E of maximizing the profit of the assembly line. The results obtained in this pa-
per may be used for developing formula, algorithm, and software for calculating the exact value of
the stability radius of the optimal line balance for the problem SALBP-E. Our stability approach
may be applied to the labor-intensive disassembly line balancing problems. It is also interesting to
modify the stability approach for the U-type assembly line balancing problems.
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Appendix A. The proof of Theorem 3

Assume that for the line balance b0 ∈ B(G,m, t), there does not exist another optimal line
balance bs ∈ B(G,m, t) such that the condition (3) holds. Due to Theorem 1, the stability radius
ρb0(t) is strictly positive: ρb0(t) > 0. Assume also that the stability radius ρb0(t) cannot be infinitely
large: ρb0(t) < ∞. First, we consider the following case (j).
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Case (j): B(G,m, t) = {b0}. In order to calculate the value of the stability radius ρb0(t) > 0, we
shall look for a line balance br ∈ B(G,m) \ {b0} and for a vector t̃ϵ = (tϵ1, t

ϵ
2, . . . , t

ϵ
ñ) ∈ Rñ

+ such that
the strict inequality

c(br, tϵ) < c(b0, tϵ) (A.1)
holds, where tϵ = (t̃ϵ , t) and the vector t̃ϵ may be as close as desired to the vector t̃ provided that the
inequality (A.1) holds. Since the value c(b0, t) linearly depends on the components of the vector
t̃ = (t1, t2, . . . , tñ), before reaching the desired strict inequality (A.1) via a continuous change of the
components of the vector t̃, we first reach equality

c(br, t′) = c(b0, t′) (A.2)

for an appropriate vector t′ = (t′1, t
′
2, . . . , t

′
n) ∈ Rn

+ of the operation durations. For such a vector t′,
the optimal line balance b0 becomes unstable, i.e.

ρb0(t
′) = 0. (A.3)

Due to Theorem 1, from the equality (A.3), it follows that there exists a line balance br ∈ B(G,m, t′)
such that condition W(b0, t′) ⊆ W(br, t′) does not hold. Hence, we can construct a vector t̃ϵ , for
which the inequality (A.1) holds and

d(t̃ϵ , t̃′) = ϵ, (A.4)
where a positive number ε ∈ R1

+ may be as small as desired. Thus, the calculation of the stability
radius ρb0(t) for the line balance b0 ∈ B(G,m, t) is reduced to the construction of the vector t̃′ ∈ Rñ

+,
which is the closest one to the vector t̃ provided that the equalities (A.2) – (A.4) hold. To obtain
the desired vector t′ = (̃t′, t) = (t′1, t

′
2, . . . , t

′
n) in the case (j), we shall compare the line balance b0

with all non-optimal line balances br ∈ B(G,m) \ {b0}.
Let t(Vbr

k ) > t(Vb0
u ) and | Ṽb0

u ⊕ Ṽbr
k |≥ 1. It is easy to see that equality t′(Vbr

k ) = t′(Vb0
u ) will be

reached, if the following value

δ(br ,k)
b0,u
=

t(Vbr
k ) − t(Vb0

u )

| Ṽb0
u ⊕ Ṽbr

k |
(A.5)

will be added to the duration ti of each operation i ∈ Ṽb0
u ,

t′i := ti + δ
(br ,k)
b0,u
, (A.6)

and the same value δ(br ,k)
b0,u

will be subtracted from the duration t j of each operation j ∈ Ṽ \ Ṽb0
u ,

t′j := t j − δ(br ,k)
b0,u
. (A.7)

It should be noted that in the latter modification (A.7) of the initial vector t ∈ Rn
+ of the operation

durations, the component t′j = t j − δ(br ,k)
b0,u

of the obtained vector t̃′ = (t′1, t
′
2, . . . , t

′
ñ) ∈ Rñ

+ may appear
negative (the negative component of the modified vector is not allowed). In order to obtain a non-
negative modified vector t̃′ ∈ Rñ

+, which is the closest one to the vector t̃ provided that the equalities
(A.2) – (A.4) hold, we shall test operations from the set Ṽbr

k \ Ṽb0
u in a non-decreasing order of their

durations. It is easy to be convinced that a non-negative vector t′ ∈ Rn
+ will be obtained if the value

δ(br ,k)
b0,u

defined in (A.5) will be substituted in (A.6) and (A.7) by the value

δbr ,k
b0,u
= max
β=0,1,...,wuk−1

t(Vk
br ) − t(Vu

b0) −∑βα=0 tuk
(α)

| Ṽb0
u ⊕ Ṽbr

k | −β
. (A.8)
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Thus, in order to obtain the minimal distance d(t, t′) between the desired vector t′ and the initial
vector t, one has to take the following maximum on k:

k
max

t(Vbr
k )>c(b0,t)

δbr ,k
b0,u
, (A.9)

then the following minimum on u:

δ(b0, br, t) =
u

min
|Ṽb0

u ⊕Ṽbr
k |≥1

k
max

t(Vbr
k )>c(b0,t)

δbr ,k
b0,u
, (A.10)

and then the following minimum on br ∈ B(G,m) \ {b0} = B(G,m) \ B(G,m, t):

δ(b0, t) = min
br∈B(G,m)\{b0}

δ(b0, br, t) = min
br∈B(G,m)\B(G,m,t)

u
min

|Ṽb0
u ⊕Ṽbr

k |≥1

k
max

t(Vbr
k )>c(b0,t)

δbr ,k
b0,u
. (A.11)

Let br be a line balance, just for which the value δ(b0, t) is reached in (A.11). We can obtain
the desired vector t′ ∈ Rn

+ via a substitution of the value δ(br ,k)
b0,u

in (A.6) and (A.7) by the value
δ(b0, t) defined in (A.11). For such a vector t′ and for the line balance br, the equalities (A.2) and
(A.3) must hold. Furthermore, due to the equalities (A.11), the distance d(̃t, t̃′) is minimal for all
modified vectors of the operation durations and for all line balances br ∈ B(G,m) \ B(G,m, t) =
B(G,m) \ {b0}, for which the equality (A.2) holds. Thus in the case (j), we obtain

ρb0(t) ≥ min
br∈B(G,m)\B(G,m,t)

u
min

|Ṽb0
u ⊕Ṽbr

k |≥1

k
max

t(Vbr
k )>c(b0,t)

δbr ,k
b0,u
. (A.12)

Next, we have to show how to obtain a vector tϵ ∈ Rn
+ from the vector t′ ∈ Rn

+ such that the
inequality (A.1) and the equality (A.4) hold, where a value ϵ ∈ R1

+ may be chosen as an infinitely
small non-negative real number. Let ti , t′i in the vectors t and t′, i.e. the duration of the operation
i ∈ Ṽ is modified in the new vector t′. Note that at least one such an operation i has to exist in the
set Ṽ since the equality (A.3) and the inequality ρb0(t) > 0 hold. Since the vector t′ is defined in
(A.6) and (A.7), the above operation i has to belong either to the set Ṽb0

u \Ṽbr
k or to the set Ṽbr

k \ Ṽu
b0 .

In the former case, we set tϵi := t′i + ϵ. In the latter case, we set tϵi := t′i − ϵ. Other components of the
vector tϵ will remain the same as in the vector t′, i.e. tϵj = t′j for all operations j ∈ V = {1, 2, . . . , n}
with j , i. It is easy to see that the equality (A.2), which is valid for the vector t′, implies the
inequality (A.1) for the newly constructed vector tϵ . Since a real number ϵ ∈ R1

+ may be chosen as
small as desired, we obtain

ρb0(t) ≤ min
br∈B(G,m)\B(G,m,t)

u
min

|Ṽb0
u ⊕Ṽbr

k |≥1

k
max

t(Vbr
k )>c(b0,t)

δbr ,k
b0,u
. (A.13)

From the inequalities (A.12) and (A.13), we conclude that equality ρb0(t) = δ(b0, t) holds in the
case (j). Next, we consider the remaining possible case (jj).

Case (jj): B(G,m, t) \ {b0} , ∅. Similarly as in the case (j), we can calculate the value

δ(b0, t) = min
br∈B(G,m)\B(G,m,t)

u
min

|Ṽb0
u ⊕Ṽbr

k |≥1

k
max

t(Vbr
k )>c(b0,t)

δbr ,k
b0,u
, (A.14)
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where δbr ,k
b0,u

is determined in (A.8). The first minimum in the right-hand side of the equality (A.14)
has to be taken for all non-optimal line balances br ∈ B(G,m) \ B(G,m, t). In the case (jj), along
with calculating δ(b0, t), we have to compare the line balance b0 with all other optimal line balances
bs ∈ B(G,m, t), where bs , b0.

Let | Ṽb0
u ⊕ Ṽbs

k |≥ 1 and t(Vb0
u ) < c(bs, t) = t(Vbs

k ), where bs ∈ B(G,m, t) \ {b0}. It is easy to see
that the equality t′(Vbs

k ) = t′(Vb0
u ) will be reached if the following value

∆
(bs,k)
b0,u
=

c(bs, t) − t(Vb0
u )

| Ṽb0
u ⊕ Ṽbs

k |
(A.15)

will be added to the duration ti of each operation i ∈ Ṽb0
u :

t′i := ti + ∆
(bs,k)
b0,u
, (A.16)

and the same value ∆(br ,k)
b0,u

will be subtracted from the duration t j of each operation j ∈ Ṽ \ Ṽbs
u :

t′j := t j − ∆(bs,k)
b0,u
. (A.17)

A non-negative real vector t′ will be obtained if the value ∆(bs,k)
b0,u

defined in (A.15) will be
substituted by the value ∆bs,k

b0,u
defined in (A.18):

∆
bs,k
b0,u
= max
β=0,1,...,wuk−1

c(bs, t) − t(Vb0
u ) −∑βα=0 tuk

(α)

| Ṽb0
u ⊕ Ṽbs

k | −β
. (A.18)

In order to obtain the minimal distance d(t, t′) of the desired vector t′ to the vector t, one
has to take the following maximum on k: maxk

t(Vb0
u )<c(bs,t)=t(Vbs

k )
∆

bs,k
b0,u
, then the following minimum

on n: ∆(b0, bs, t) = minu
|Ṽb0

u ⊕Ṽbs
k |≥1

maxk
t(Vb0

u )<c(bs,t)=t(Vbs
k )
∆

bs,k
b0,u
, and then the following minimum on

br ∈ B(G,m, t) \ {b0}:

∆(b0, t)= min
bs∈B(G,m,t)\{b0}

∆(b0, bs, t) = min
bs∈B(G,m,t)\{b0}

u
min

|Ṽb0
u ⊕Ṽbs

k |≥1

k
max

t(Vb0
u )<c(bs,t)=t(Vbs

k )
∆

bs,k
b0,u
.

Arguing similarly as in the case (j), one can show that inequality ρb0(t) ≥ min{δ(b0, t),∆(b0, t)}
holds in the case (jj). Similarly as in the case (j), one can construct a vector tϵ ∈ Rn

+ from the
vector t′ ∈ Rn

+ such that the inequalities (A.1) – (A.4) hold. Arguing similarly as in the case (j),
one can show that inequality ρb0(t) ≤ min{δ(b0, t),∆(b0, t)} holds in the case (jj). Summarizing,
we conclude that equality ρb0(t) = min{δ(b0, t),∆(b0, t)} holds in the case (jj). Thus, if ρb0(t) , 0,
equality ρb0(t) = min{δ(b0, t),∆(b0, t)} holds and Theorem 3 is proven.

Appendix B. The proof of Lemma 1

Due to Theorem 2, for calculating the stability radius for the optimal line balance b0 ∈ B(G,m, t),
it is necessary to compare the line balance b0 with the line balances br ∈ B(G,m) \ {b0}. The value
δ(b0, br, t) is calculated in formula (15) showing that there exists a line balance br that has a smaller
cycle-time c than the line balance b0 for a modified vector t̃′ if equality d(t̃, t̃′) = δ(b0, t) + ϵ holds,
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where a real number ϵ = d(t̃ϵ , t̃′) may be chosen as small as desired. Next, we show that if the
inequality (16) holds, the value δ(b0, br, t) calculated for the line balance br cannot change the
value of the minimum in (A.10). To this end, we compare the optimal line balance b0 with the
line balance br, where r , g. The line balance br becomes a competitor to the line balance b0 if
equality c(br, t′) = c(b0, t′) holds for some modified vector t′ = (t̃′, t) of the operation durations and
c(br, tϵ) < c(b0, tϵ), where d(t′, tϵ) = ϵ. It follows from this, that the cycle-time c(br, tϵ) for the line
balance br becomes smaller than the cycle-time for the line balance b0 for any realization of the
durations of the manual operations. Such a superiority of the competitive line balance br may hold
for some suitable changes of the durations: t̃i

ϵ := t̃i + (δ(b0, br, t)+ ϵ) and t̃ j
ϵ := t̃ j − (δ(b0, br, t)+ ϵ)

if the value δ(b0, br, t) calculated under the formula (A.10) reaches the minimum value. With this
in mind, it is necessary to increase the durations of the operations Ṽb0

u \ Ṽbr
k by the value δ(b0, br, t)

and to decrease the durations of the operations Ṽbr
k \ Ṽb0

u by the same value δ(b0, br, t).
For the competitive line balance br, the distance d(t̃, t̃′) = δ(b0, br, t) should reach the minimum

in formula (A.10). Next, we show that due to the inequality (16), the value δ(b0, br, t) cannot be
smaller than the value δ(b0, bg, t) for the calculation of the stability radius using Theorem 3:

δ(b0, bg, t) ≤
c(br, t) − c(b0, t)
min{ñ, ñbr + ñb0}

≤ c(br, t) − t(Vu
b0)

min{ñ, ñbr + ñb0}
≤ c(br, t) − t(Vu

b0)

| Ṽb0
u ⊕ Ṽbr

k |

≤ k
max

t(Vk
br )>c(b0,t)

t(Vk
br ) − t(Vu

b0)

| Ṽb0
u ⊕ Ṽbr

k |
≤

u
min

|Ṽb0
u ⊕Ṽbr

k |≥1

k
max

t(Vk
br )>c(b0,t)

t(Vk
br ) − t(Vu

b0)

| Ṽb0
u ⊕ Ṽbr

k |
≤ δ(b0, br, t).

As the inequalities ρb0(t) ≤ δ(b0, bg, t) ≤ δ(b0, br, t) hold, the value δ(b0, br, t) cannot be smaller
than the value δ(b0, bg, t). Therefore, there is no need to consider the line balance br in the course
of the stability radius calculation using formula (12). Lemma is proven.
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