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DESIGN OF ENERGY CONSERVING ALGORITHMS FOR
FRICTIONLESS DYNAMIC CONTACT PROBLEMS

T. A. LAURSEN AND V. CHAWLA

Department of Civil and Environmental Engineering, Box 90287, Duke University, Durham, NC 27708-0287, U.S.A.

This paper proposes a formulation of dynamic contact problems which enables exact algorithmic conservation
of linear momentum, angular momentum, and energy in �nite element simulations. It is seen that a Lagrange
multiplier enforcement of an appropriate contact rate constraint produces these conservation properties. A
related method is presented in which a penalty regularization of the aforementioned rate constraint is utilized.
This penalty method sacri�ces the energy conservation property, but is dissipative under all conditions of
changing contact so that the global algorithm remains stable. Notably, it is also shown that augmented
Lagrangian iteration utilizing this penalty kernel reproduces the energy conserving (i.e. Lagrange multiplier)
solution to any desired degree of accuracy. The result is a robust, stable method even in the context of
large deformations, as is shown by some representative numerical examples. In particular, the ability of the
formulation to produce accurate results where more traditional integration schemes fail is emphasized by the
numerical simulations.

KEY WORDS: energy conservation; dynamics; contact; �nite elements

1. INTRODUCTION

The contact problem attracts considerable attention from the computational mechanics community,
due in large part to its highly non-linear and discontinuous nature. Indeed, engineering analysts
charged with solving such problems will attest that merely achieving convergence of non-linear
solution schemes can be di�cult under many circumstances. These di�culties stem primarily from
the fact that contact surfaces are unknown a priori, and must be evolved in a manner consistent with
the equilibrium conditions of the two bodies and the Kuhn–Tucker conditions governing contact
evolution. These physical requirements imply a variational inequality for the overall system, with
admissible variations being constrained by the conditions governing the solution.1; 2 Many �nite
element modelling e�orts have been addressed most directly to the quasi-static contact problem,
where inertial e�ects are essentially negligible and the contact conditions can be e�ectively devised
and implemented on individual con�gurations, without much regard to the temporal variation of
contact kinematic measures.
This work, by contrast, concerns itself with treatment of the dynamic contact problem. In general

the most prevalent technique for treating dynamics in non-linear solid mechanics has been the
semidiscrete �nite element method. Formulations of this type can be roughly grouped into two
classes: explicit schemes, which are favoured for highly transient problems; and implicit schemes,
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which are more appropriate for systems dominated by low-frequency behaviour. Implementations
of the dynamic contact problem that have been proposed might also be grouped similarly, with
explicit treatments appearing for example in References 3–6, and implicit schemes being described,
e.g. in References 7 and 8. Roughly speaking, the conceptual approach to contact constraints in
many of these works can be described as follows. A semidiscrete �nite element system is developed
exactly as would be done in a problem with no contact, except that a contact force vector is also
included. The contact tractions de�ning this force vector must be subject to some type of contact
conditions, and the description of these conditions is critical in determining the properties of the
resulting method. A common choice, for example, is to take the contact conditions to be the
same as those governing quasi-static response, and to apply any required numerical integration
techniques (e.g. for frictional response) exactly as would be done in the quasi-static case. An
analogue to this treatment is to be found in many implementations of elastoplasticity, where the
integration algorithm for the constitutive equations at each quadrature point does not in general
depend on the global time integration scheme, or even on whether the problem is static or dynamic.
Stretching this analogy a bit further, we might describe most contact implementations as treating
the contact force vector in the global equilibrium equations essentially as an extremely non-linear
(and non-smooth) internal force vector, with the ‘constitutive law’ for the contact being de�ned
by the complementarity conditions and the friction law, if present.
This general conceptual framework, while widely applied, appears to have several drawbacks.

In explicit calculations, when using the penalty method for constraint enforcement, one �nds that
large penalties cannot be used in a fully explicit contact treatment without a�ecting the Courant
stability criterion.5 In softening the penalties, the accuracy of constraint is sacri�ced to some de-
gree, and because central di�erence methods possess no numerical damping, the noise generated
by the contact treatment will tend to obscure the solution as the calculation proceeds. In fact, one
can show6 that the Lagrange multiplier formulation of the fully explicit contact treatment is
singular, calling into question the basic validity of the fully explicit penalty approach. Accordingly,
Carpenter et al.6 have advocated an implicit treatment of the (quasi-static) contact constraints, along
with an otherwise explicit time integration of the momentum equations. This approach possesses
a well-de�ned Lagrange multiplier formulation which unfortunately couples the equilibrium equa-
tions in general. Carpenter and co-workers propose a Gauss–Seidel iteration scheme for constraint
enforcement, while Zhong9 uncouples the constraints by using an alternative discretization he refers
to as the ‘defense node’ approach. Both alternatives appear to be reasonably well behaved in com-
parison with the fully explicit approach, but the very fact that the contact conditions are treated
completely di�erently than the rest of the system calls into question our basic understanding of
the appropriate dynamic contact constraints.
In the implicit arena the state of the art is somewhat similar. For example, it has long been

recognized that use of the second-order accurate trapezoidal rule with a fully implicit treatment of
the contact constraints produces signi�cant oscillations which can become worse as time steps and
spatial discretizations are re�ned (see, e.g. Reference 6). Some authors have proposed corrections
to the Newmark updates aimed at correcting such di�culties; examples are a correction based on
wave propagation results for linear elastic materials7 and a more recent treatment8 in which new
contacts are e�ectively forced to be persistent. While in some cases e�ective, the need for such
‘corrections’ suggests some sort of inadequacy in our basic understanding of contact constraints
in a dynamic context.
This paper makes an attempt at such understanding by formulating an implicit time integration

method which is fully conservative, i.e. it conserves all momenta and the total system energy for
hyperelastic bodies undergoing perfectly elastic impact events. Since we concentrate here on such
conservative systems, we consider only non-dissipative contact and therefore assume frictionless
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response. Our approach is an extension of the work of Simo and Tarnow,10 where conservative
algorithms were proposed and demonstrated for hyperelastic systems without contact constraints.
In the current context, we will see that a Lagrange multiplier formulation of a particular rate
constraint on interfaces is completely consistent with global conservation laws. Since the penalty
method can be much simpler to apply than Lagrange multipliers in general, we propose a penalty
regularization which is unconditionally dissipative, altering the energy conservation property but
retaining the stability we desire. We will also demonstrate an augmented Lagrangian update scheme
which uses this penalty kernel to reproduce the energy conserving (Lagrange multiplier) solution.
In this manner, an algorithm is produced which is stable, and which can conserve energy to any
desired degree of accuracy through the augmented Lagrangian iteration procedure. All development
will be done without restricting the amount of motion or deformation that can occur, enabling
application of the method in a very broad context.
The plan of the paper is as follows. Section 2 outlines the contact problem and discusses the

conservation laws and their implications in a continuum context. Section 3 reviews the conser-
vative time integration method proposed by Simo and Tarnow10 and discusses its extension to
the frictionless contact problem. Imposition and regularization of the contact constraints in the
context of the conservative algorithm is discussed in Section 4. In particular, Lagrange multiplier,
penalty, and augmented Lagrangian algorithms will be proposed in this section. Section 5 brie�y
discusses the spatial discretization of the contact problem and some associated issues involved in
�nite element implementation. Finally, Section 6 presents some numerical examples demonstrating
the performance of the method and some implications of the conservative scheme.

2. PROBLEM FORMULATION AND CONSERVATION LAWS

In the following, we brie�y discuss the governing equations and contact conditions for the system
of interest. The interested reader should consult Laursen and Simo11 for more details on the
continuum formulation of large-deformation contact problems.

2.1. Governing equations

We consider the open sets �(i)⊂Rns d ; i = 1; 2, which represent the reference con�gurations of
two bodies expected to contact during a time interval of interest I = [0; T ]. For each body, we
de�ne a portion of the boundary �(i)⊂ @�(i) so that all expected areas of contact are included.
Adopting a Lagrangian description of the problem, we designate material points in the contact
surfaces as X ∈ �(1) and Y ∈ �(2). Writing the unknown con�guration mappings at any time t ∈ I
as �(i)t , i = 1; 2, we can express the spatial positions of the contact surfaces as �

(i)
t = �(i)t (�(i)).

Typical points x ∈ �(1)t and y ∈ �(2)t are then given by x = �(1)t (X) and y = �
(2)
t (Y). We assume

that the (nsd − 1) dimensional manifolds �(i) are parametrized by mappings �(i)0 such that �(i) =
�(i)0 (A

(i)), i = 1; 2, where A(i) is a parent domain for the surface in question and the mappings
�(i)0 are assumed to be su�ciently smooth. In particular, considering �(2), we denote points in
A(2) as ^ and write Y = �(2)0 (^) and y = �

(2)
t (^), where �

(2)
t = �(2)t ◦�(2)0 .

Considering any point X ∈ �(1), the normal (impenetrability) contact conditions are written in
terms of a gap function g(X; t):‡ It is de�ned at any time t in terms of a closest point projection

‡We use the term gap function throughout the manuscript to be consistent with most contact mechanics literature. Actually,
because of the sign convention chosen, the term penetration function might be more appropriate since the function g is
positive when interpenetration occurs and negative otherwise
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in the spatial con�guration:

g(X; t) = sign(g(X; t))|g(X; t)|
where

|g(X; t)| = min
Y∈�(2)

‖�(1)(X; t)− �(2)(Y; t)‖
and (1)

sign(g(X; t)) =

{−1 if �(1)(X; t) is admissible

1 otherwise

Impenetrability is enforced by the condition g(X; t)60. The point in �(2) achieving the minimiza-
tion in (1) is written as Y, with its counterpart in A2 denoted as .̂ It is important to remember
that given a point X, the identi�cation of Y and ^ will both in general vary with time, so that we
will often write Y(X; t) and ^(X; t). Given these de�nitions, a basis can be constructed at each
contact point by de�ning

�� := �(2)t; � ( )̂ = F
(2)
t (Y)�

(2)
0;�( )̂; � = 1; : : : ; nsd − 1 (2)

It will be convenient in the following to augment this basis with a surface normal ], which points
out of body 2. In three dimensions, ] would be de�ned via

] = �1 × �2
‖�1 × �2‖ (3)

where it is assumed that the parameterizations are de�ned so that ] has the proper sense. Although
both �� and ] are to be associated with X and vary with time, we suppress these arguments in
the following to reduce notation.
The (Piola) contact traction t(1)(X; t) is resolved into normal and tangential parts via

t(1)(X; t) = tN (X; t)]+ P�t(1)(X; t) (4)

where ] is the outward normal to �(2)t at y (thus the inward normal to �(1)t ), and P�t(1) is the
projection of t(1) onto the associated tangent plane. The contact pressure tN (X; t) should be positive
for compressive contact. We assume no frictional tractions in the present discussion; therefore
P�t(1) = 0. The conditions for normal contact can now be written as

g(X; t)60

tN (X; t)¿0

tN (X; t)g(X; t) = 0

tN (X; t)ġ(X; t) = 0

(5)

which must hold for all X ∈ �(1) and for all t ∈ I. Equations (5)1–3 represent the classical Kuhn–
Tucker complementarity conditions between gap and pressure. Equation (5)4 is a constraint called
the persistency condition, and requires that non-zero traction may only be generated during per-
sistent contact. It will be of particular importance in subsequent developments.
With the contact conditions written, we specify the problem to be solved as follows.
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Given the following boundary conditions on body force, traction, and boundary displacement:

f (i)t : �(i) × I→ Rns d ; i = 1; 2

t(i)t : �(i)� × I→ Rns d ; i = 1; 2

�(i)t : �(i)’ × I→ Rns d ; i = 1; 2

(6)

Find the motions �(i)t : �
(i) × I→ Rns d ; i = 1; 2; such that

�(i)0
@2

@ t2
�(i)t = DIVP(i)t + f

(i)
t on �(i) × I; i = 1; 2

�(i)t =�(i)t on �(i)’ × I; i = 1; 2
P(i)t n

(i)
0 = t(i)t on �(i)� × I; i = 1; 2

�(i)t |t=0 = I (the identity mapping) in �
(i)

@
@t

∣∣∣∣
t=0
�(i)t = V(i)0 in �

(i)

(7)

and contact conditions (5) are satis�ed on �(1).

In the above, �(i)0 is the reference density, f (i)t is the body force, �(i)t is the prescribed boundary

displacement, t(i)t is the prescribed boundary traction, and V(i)0 is the initial material velocity. The
constitutive relations governing Pt are at this point left unprescribed. The subregions �

(i)
� , �

(i)
’ ,

and �(i) are assumed to be non-intersecting and invariant with time, while satisfying

�(i)� ∪ �(i)’ ∪ �(i) = @�(i) (8)

2.2. Variational principle

At any time t ∈ I, one can introduce admissible variations �∗ (i) on each body and construct a
variational principle. Following the development in Laursen and Simo,11 which should be consulted
for more details, this weak form of the equations can be stated as

Find �(i)t ∈ C
(i)
t , such that for all �

∗ (i) ∈V(i); i = 1; 2:

G(i)(�(i)t ;�
∗ (i)
) :=

∫
�(i)
�(i)0 A

(i)
t · �∗ (i) d�(i) +

∫
�(i)
P(i)t : GRAD[�∗ (i)] d�(i)

−
∫
�(i)
f (i)t · �∗ (i) d�(i) −

∫
�(i)�

t(i)t · �∗ (i) d�(i)�

=
∫
�(i)
t (i) · �∗ (i) d�(i)

(9)

where A(i)t is the material acceleration of the body, and arguments X and t are dropped from
t (i)(X; t) for convenience of notation.
The time-dependent solution spaces C(i)t and time-independent variational space V(i) are de�ned

such that

C
(i)
t = {�(i)t : �

(i) → Rns d | J (i)t = det[D�(i)t ]¿ 0 and �(i)t = �(i)t on �(i)’ } (10)
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and

V(i) = {�∗ (i) : �(i) → Rns d |�∗ (i) = 0 on �(i)’ } (11)

One may add the virtual work expressions implied by (9) to de�ne a global variational principle

G(�t ;�
∗
) := G(1)(�(1)t ;�

∗ (1)
) + G(2)(�(2)t ;�

∗ (2)
)

=
∫
�(1)
t(1) · �∗ (1) d�(1) +

∫
�(2)
t(2) · �∗ (2) d�(2)

(12)

where �t is understood to be the collection of mappings �(i)t ; i = 1; 2 (similarly for �
∗ ). In (12)

we also use the notations G(i)(· ; ·) to indicate the sum of the internal virtual work and those of the
applied forces. The right-hand side of (12), representing the contact virtual work, can be expressed
as a single integral over �(1) by requiring the contact forces on either side of the interface to be
equal and opposite, which leads to

G(�t ;�
∗
) + Gc(�t ;�

∗
) = 0 (13)

where

Gc(�t ;�
∗
) := −

∫
�(1)
t(1)(X; t) · [�∗ (1)(X)− �∗ (2)(Y(X; t))] d�(1) (14)

Equation (14) can be simpli�ed further by considering linearized variations of the kinematic
quantities, denoted here by the symbol �(·):

��(X;�t ;�
∗
) :=

d
d	

∣∣∣∣
	=0
�(�t(X) + 	�

∗
(X)) (15)

Direct calculation will verify that

�g(X) = −] · [�∗ (1)(X)− �∗ (2)(Y(X; t))] (16)

Using the fact that the frictional traction is zero, (16) can be substituted into (14) to produce

Gc(�t ;�
∗
) =

∫
�(1)
tN (X; t)�g(X) d�(1) (17)

2.3. Conservation laws

Before we begin development of the algorithm, it is instructive to consider the global conser-
vation laws in the context of the problem at hand. Speci�cally, we wish to verify that the linear
momentum Lt , the angular momentum Jt , and the total energy E tott are globally conserved by the
formulation we propose. The paper of Simo and Tarnow10 should be consulted for more detail on
the general approach. Using the current notation, we de�ne the total system linear momentum Lt
and total system angular momentum Jt for any time t as

Lt :=
∫
�(1)
�(1)0 V

(1)
t d�(1) +

∫
�(2)
�(2)0 V

(2)
t d�(2) (18)

and

Jt :=
∫
�(1)
�(1)0 �

(1)
t × V(1)t d�(1) +

∫
�(2)
�(2)0 �

(2)
t × V(2)t d�(2) (19)
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The theorem of power expended states the global energy balance in rate form

dKt
dt

+P int
t = Pext

t +Pcon
t (20)

where the total kinetic energy is de�ned as

Kt =
1
2

{∫
�(1)
�(1)0 ‖V(1)t ‖2 d�(1) +

∫
�(2)
�(2)0 ‖V(2)t ‖2 d�(2)

}
(21)

the stress power is written as

P int
t =

∫
�(1)
(D�(1)t S

(1)
t ) : GRAD[V

(1)
t ] d�

(1) +
∫
�(2)
(D�(2)t S

(2)
t ) : GRAD[V

(2)
t ] d�

(2) (22)

the expended power of the external loading is given by

Pext
t =

2∑
i=1

{∫
�(i)
f (i)t · V(i)t d�(i) +

∫
�(i)�

t(i)t · V(i)t d�(i)
}

(23)

and the total power input of the contact stresses is given by

Pcon
t =

2∑
i=1

∫
�(i)
t (i)(X; t) · V(i)t d�(i) (24)

In (22), S(i)t is the second Piola–Kirchho� stress tensor and is related to P(i)t by the relation
P(i)t = D�(i)t S

(i)
t .

Introducing the notations Dint
t for the internal dissipation function and E intt for the total stored

internal energy, we can write the following form of the second law of thermodynamics (i.e. a
reduced dissipation inequality):

Dint
t := P int

t −
dE intt
dt

¿0 for all t ∈ I (25)

Combining (20) and (25) yields

dE tott
dt

= Pext
t +Pcon

t −Dint
t (26)

where E tott is the sum of the kinetic and internal energies of the two bodies in question. In the
study considered in this paper, we will make the following assumptions about the system at hand:

1. The bodies are subject to no body forces, so that f (i)t = 0 on �(i) × I for i = 1; 2.
2. There are no Dirichlet (displacement) boundary conditions, and the tractions are zero on the
Neumann boundaries, so that �(i)’ = ∅ and t(i)t = 0 on �(i)� × I, i = 1; 2.

3. There is no internal dissipation in the bodies under consideration, so that Dint
t = 0 for all

time t.

Under this set of assumptions, we can examine the conservation properties of our system by
making appropriate substitutions into the virtual work expression (13). For example, substituting
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�∗ = W into (13), where W is a constant arbitrary vector on �(1) ∪ �(2), gives
0 = G(�t ; W) + Gc(�t ; W)

=
2∑
i=1

∫
�(i)
�(i)0 A

(i)
t · W d�(i) −

∫
�(1)
t(1)(X; t) · (W− W) d�(1)

=
(
dLt
dt

)
· W

(27)

which in turn implies that dLt =dt=0 (W is arbitrary). In a similar manner, considering the variation
�∗ = W× �t , where W is a �xed vector, gives

0 = G(�t ; W× �t) + Gc(�t ; W× �t)

=
2∑
i=1

{∫
�(i)
(D�(i)t S

(i)
t ) : ( ŴD�

(i)
t ) d�

(i) +
∫
�(i)
(�(i)t × �(i)0 A(i)t ) · W d�(i)

}

−
∫
�(1)
t(1)(X; t) · [W× (�(1)t (X)− �(2)t (Y(X; t))] d�(1)

=
2∑
i=1

∫
�(i)
(D�(i)t S

(i)
t D�

(i)
t
T
) : Ŵ d�(i) +

(
dJt
dt

)
· W

+
∫
�(1)
W · [t(1)(X; t)× (�(1)t (X)− �(2)t (Y(X; t))] d�(1)

=
dJt
dt

· W

(28)

where Ŵ is the skew-symmetric tensor whose axial vector is W. In the last step of (28), the �rst
term disappears because the contraction of a skew symmetric tensor ( Ŵ) with a symmetric tensor
(D�(i)t S

(i)
t D�

(i)
t
T
) is zero, while the last term, the contact contribution, disappears because in the

frictionless case the traction t(1)(X; t) is collinear with (�(1)t (X)−�(2)t (Y(X; t))). Again, since W is
arbitrary, we can conclude that dJt =dt = 0, so that angular momentum is conserved.
To examine the energy, we consider use of the material velocity �eld Vt as the variation.

Accordingly, we compute

0 = G(�t ;Vt) + Gc(�t ;Vt)

=
2∑
i=1

{∫
�(i)
(D�(i)t S

(i)
t ) : GRAD[V

(i)
t ] d�

(i) +
∫
�(i)
�(i)0 A

(i)
t · V(i)t d�(i)

}

−
∫
�(1)
t(1)(X; t) · [V(1)t (X)− V(2)t (Y(X; t))] d�(1)

= P int
t +

dKt
dt
−

∫
�(1)
t(1)(X; t) · [V(1)t (X)− V(2)t (Y(X; t))] d�(1)

(29)

In view of our assumptions above, Pext = 0. Using this fact and comparing (29) with (20) leads
to the identi�cation Pcon

t =
∫
�(1) t

(1)(X; t) · [V(1)t (X) − V(2)t (Y(X; t))] d�(1). By similar reasoning
used to calculate �g in (16), the material time derivative ġ(X; t) is given by

ġ(X; t) = −] · [V(1)t (X)− V(2)t (Y(X; t))] (30)
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so that the expression for Pcon
t becomes

Pcon
t =

∫
�(1)
t(1)(X; t) · [V(1)t (X)− V(2)t (Y(X; t))] d�(1)

=
∫
�(1)
tN (X; t)] · [V(1)t (X)− V(2)t (Y(X; t))] d�(1)

= −
∫
�(1)
tN (X; t)ġ(X; t) d�(1)

(31)

If we now examine equation (5)4, the persistency condition for frictionless contact, we are led to
conclude

Pcon
t = 0 (32)

which, in view of (26) and the fact that Pext
t = Dint

t = 0, implies

dE tott
dt

= 0 (33)

In other words, total energy is conserved for the system at hand as a direct result of persistency
condition (5)4. Another way to say this is that if we wish to ensure that all contacts are perfectly
elastic, so that the net contact power input to the system is zero, the persistency condition should be
satis�ed. This observation will be key to the ensuing algorithmic development, where a counterpart
of this condition in the temporally discrete framework must be found.

3. CONSERVATIVE DISCRETIZATION SCHEMES

In this section we extend the energy-momentum conserving scheme of Simo and Tarnow10 to
the contact problem posed in the last section. The reader is referred to that reference for ex-
tensive details on the approach, which will be only brie�y outlined here. In the following, we
pay particular attention to the temporal discretization of the contact conditions, with the aim of
algorithmically reproducing the conservation properties outlined for the continuous case in the last
section.
We subdivide the time interval of interest I into intervals [tn; tn+1], where n is an index on time

steps. Given a time step n, we sometimes write �t = tn+1 − tn, and note that in general �t need
not be uniform throughout a problem. Focusing our attention on a typical time interval [tn; tn+1]
we will use the notation (·)n to mean the algorithmic (i.e. time discrete) approximation to the
continuum variable (·)(tn). The conservation properties we wish to maintain are

Ln+1 = Ln; Jn+1 = Ln; E totn+1 = E
tot
n (34)

where all quantities are as de�ned in the last section.
Simo and Tarnow described their algorithm by making the following de�nitions based on convex

combinations of variables at n+ 1 and variables at n:

�n+� = ��n+1 + (1− �)�n; Vn+� = �Vn+1 + (1− �)Vn (35)

where � ∈ [0; 1] is an algorithmic parameter. Considering �rst a problem with only one body, and
hence no contact constraints, one could summarize their algorithm in the unforced case as
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Given all data at n, �nd �n+1 ∈ Cn+1, such that for all �∗ ∈V

0 = G(�n+�;�
∗
) :=

∫
�
�0
(Vn+1 − Vn)

�t
· �∗ d� +

∫
�
(D�n+�S) : GRAD[�

∗
] d�

Vn+� =
1
�t
[�n+1 − �n]

(36)

This algorithm has the following properties:

(i) Algorithmic conservation of linear momentum (i.e. satisfaction of (34)1) for any � ∈ [0; 1]
and for an arbitrary constitutive relation describing the (symmetric) second Piola–Kirchho�
tensor S;

(ii) Algorithmic conservation of angular momentum (i.e. satisfaction of (34)2) for the case
where � = 1

2 and arbitrary prescription of S;
(iii) Algorithmic energy conservation (i.e. satisfaction of (34)3) for the case where � = 1

2 , and
where S is de�ned according to a gradient of a generic stored energy function ê(C):

S := ∇ê(Cn+�) +∇ê(Cn+1−�) (37)

Cn+� is an algorithmic right Cauchy–Green tensor, de�ned via

Cn+� := �Cn+1 + (1− �)Cn (38)

and � ∈ [0; 1] is selected to satisfy
ê(Cn+1)− ê(Cn) = ∇ê(Cn+�) · (Cn+1 − Cn) (39)

Such a � must always exist as a direct consequence of the mean value theorem.
(iv) Second-order accuracy under the conditions stated in item (iii).

For more details on the proof of these properties the paper by Simo and Tarnow is recommended.
In particular, properties (i)–(iii) can be veri�ed by substitution of W, W × �n+� and Vn+1=2, re-
spectively, into (36)1, where W is again an arbitrary constant vector. These arguments are directly
analogous to those given in the last section for the time continuous case.
Returning once more to the case at hand, where contact constraints are active between two

bodies, we propose the following algorithm, which extends that in (36) by including Gc(�n+�;�∗ ):

Given all data at n, �nd �n+1 ∈ Cn+1, such that for all �∗ ∈V:

0 = G(�n+�;�
∗
) + Gc(�n+�;�

∗
)

Vn+� =
1
�t
[�n+1 − �n]

(40)

where

G(�n+�;�
∗
) :=

2∑
i=1

{∫
�(i)
�0
(V(i)n+1 − V(i)n )

�t
· �∗ (i) d�(i) +

∫
�(i)
(D�(i)n+�S(i)) : GRAD[�

∗ (i)
] d�(i)

}

(41)

and

Gc(�n+�;�
∗
) := −

∫
�(1)
t(1) · [�∗ (1)(X)− �∗ (2)(Yn+�(X)] d�(1) (42)

10



Yn+�(X) is that point of �(2) which minimizes ‖�(1)n+�(X)−�(2)n+�(Y)‖; i.e. the closest point projection
used to de�ne the contact basis is done in the n + � con�guration. One can also infer from this
de�nition that force equilibrium on the interface is enforced in the n+ � con�guration.
It is readily veri�ed that properties (i) and (ii) of the non-contact algorithm are retained by this

algorithm. These veri�cations are directly analogous to those for the continuum case and will not
be repeated here. In examination of the energy conservation property, we set � = 1

2 and examine
the equation

G(�n+1=2;Vn+1=2) + Gc(�n+1=2;Vn+1=2) = 0 (43)

If both bodies are described by the constitutive law outlined in equations (37)–(39), one can show
by the same arguments used without contact that

G(�n+1=2;Vn+1=2) =
1
�t
(E totn+1 − E totn ) (44)

In view of (43), it is clear that the following must be satis�ed for energy to be conserved:

Gc(�n+1=2;Vn+1=2) = −
∫
�(1)
t(1) · [V(1)n+1=2(X)− V(2)n+1=2(Yn+1=2(X))] d�(1) = 0 (45)

Since we consider frictionless response, and have already made the condition that the basis for
t(1) will be de�ned in the n+ 1

2 con�guration, we can simplify Gc(�n+1=2;Vn+1=2) as

Gc(�n+1=2;Vn+1=2) =
∫
�(1)
−tN]n+1=2 · [V(1)n+1=2(X)− V(2)n+1=2(Yn+1=2(X))] d�(1)

=
∫
�(1)
tN g̃n+1=2(X) d�

(1)
(46)

where g̃n+1=2(X), an algorithmic gap rate, is de�ned as

g̃n+1=2(X) := −]n+1=2 · [V(1)n+1=2(X)− V(2)n+1=2(Yn+1=2(X))]

= − 1
�t
]n+1=2 · [(�(1)n+1(X)− �(2)n+1(Yn+1=2(X)))

−(�(1)n (X)− �(2)n (Yn+1=2(X)))]

(47)

Finally, we can conclude from (46) that if the following algorithmic persistency condition is
satis�ed pointwise on �(1), then global energy will be conserved for the two-body contact system:

tN g̃n+1=2 = 0 (48)

We now have the algorithmic counterpart of (5)4 appropriate for energy conservation. Note that
the remainder of the contact conditions, i.e. equations (5)1–3, are to this point unenforced by our
algorithmic formulation. We discuss some alternatives for carrying out this step in the next section.

Remark. Examination of equations (47) and (48) shows that the pointwise contact condi-
tion necessary to obtain conservation properties only involves quantities associated with X and
Yn+1=2(X). In particular, no history terms associated with the point X need be stored and utilized
in calculation of g̃n+1=2, with only algorithmic material velocities and the surface normal at the
n + 1

2 con�guration being involved. This is particularly advantageous in large deformation, large
slip problems, which are characterized by frequent changes in the elements contacted by individual
points X. The fact that the conservation properties are una�ected by such events is a crucial feature
of the algorithm we propose.
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4. DISCRETE CONTACT CONSTRAINTS

In the following we discuss three alternative formulations of the contact constraints appropriate
for the above conservative framework. In view of the role of the normal pressure–gap rate com-
plementarity condition in energy conservation, we propose the following expression of the contact
conditions in the continuum setting. In contrast to (5), they emphasize complementarity conditions
between the gap rate and the pressure:

IF g ¡ 0 THEN

tN = 0

ġ is unconstrained

(49)

ELSE IF g = 0 THEN

tN¿0

ġ60

ġtN = 0

ENDIF

(50)

We note that g is precluded from becoming positive by equation (50)2, which simply states
that if g = 0 the only change that can occur is a negative one. In the continuum case, one can
verify that conditions (49) and (50) place the same physical restrictions as equations (5). However,
these new conditions appear to be more readily accommodated into a conservation context, as we
demonstrate below.

4.1. Lagrange multiplier formulation

In the time discrete setting we now consider, we let tN = 
N , where 
N is the Lagrange multiplier
�eld on �(1) satisfying:

IF gn ¡ 0 THEN


N = 0

g̃n+1=2 is unconstrained

(51)

ELSE IF gn¿0 THEN


N¿0

g̃n+1=260

g̃n+1=2
N = 0

ENDIF

(52)

where g̃n+1=2 is as de�ned in (47) and gn is de�ned via

gn := −]n · (�(1)n (X)− �(2)n (Yn(X)) (53)

We note that the impenetrability condition g60 is only enforced in the limit as �t → 0; in
particular, examination of (51) and (52) will show that computation of a non-zero contact traction
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tN will lag one time step behind the detection of an interpenetration. Conditions (52) will then
act to preclude further violation of the constraint by directly enforcing the gap rate to be non-
positive. Note that this prescription, when used in conjunction with the global algorithm of the
last section, preserves all the conservation properties discussed. In particular, energy is conserved
because 
N g̃n+1=2 = 0 at all contact points and for all conditions of contact.

4.2. A penalty regularization

Equations (51) and (52) have the advantage that they are readily regularized, enabling a penalty
solution which in some cases may be more convenient. Consider the following prescription for tN :

tN = H (gn)	N 〈g̃n+1=2〉 (54)

where 	N ¿ 0 is a penalty parameter (physically speaking, a viscosity) and 〈·〉 denotes the
MacAuley bracket, or positive part of the operand. One notes that in the limit as 	N →∞ condi-
tions (51) and (52) are reproduced. However, it is no longer true that tN g̃n+1=2 = 0, so we cannot
expect exact energy conservation in this case. This makes sense; in fact, penalty methods rely on
the �nite, non-zero energy associated with the penalization to enforce the constraint as the penalty
is increased. We would like to ensure, however, that use of (54) with the otherwise conservative
framework does not increase energy. This is readily veri�ed by using equations (43), (44) and
(46):

E totn+1 − E totn = −�t
∫
�(1)
tN g̃n+1=2 d�

(1)

= −�t
∫
�(1)
H (gn)	N 〈g̃n+1=2〉g̃n+1=2 d�(1)

= −�t
∫
�(1)
H (gn)	N 〈g̃n+1=2〉2 d�(1)

6 0

(55)

which shows that the algorithm is unconditionally dissipative. From an energy standpoint the
integrator thus remains stable. The dissipated energy can also be restored via augmented Lagrangian
iteration, as discussed below.

4.3. Augmented Lagrangian iteration

Consider the following expression for tN , based on an augmented Lagrangian augmentation of
the penalization in (54):

tN = H (gn)〈
(k)N + 	N g̃n+1=2〉 (56)

where 
(k)N is a �xed iterate for the Lagrange multiplier satisfying (49) and (50). One may therefore
consider solving the following iterative sequence of problems within a time step, in which we begin
with some initial estimate 
(0)N of the multipliers on �(1), and proceed with iterations (k) until some
tolerance is satis�ed:

1. Solve for �(k)n+1, with 

(k)
N �xed:

G(�(k)n+1=2;�
∗
) + Gc(�(k)n+1=2;�

∗
; 
(k)N ) = 0 (57)
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where G(· ; ·) is as de�ned in (41), �(k)n+1=2 is as de�ned in (35), and Gc is de�ned via

Gc(�(k)n+1=2;�
∗
; 
(k)N ) =

∫
�(1)
−H (gn)〈
(k)N + 	N g̃

(k)
n+1=2〉

](k)n+1=2 · (�
∗ (1)(k)

(X)− �∗ (2)(k)(Y(k)n+1=2(X))) d�(1) (58)

2. Update the multipliers on �(1):


(k+1)N = H (gn)〈
(k)N + 	N g̃
(k)
n+1=2〉

k ← k + 1
(59)

3. IF convergence achieved EXIT, ELSE return to 1.

As we will show in the numerical examples, this algorithm can reproduce conditions (51) and
(52) arbitrarily closely as iterations (k) proceed. Several convergence criteria might be proposed
to de�ne step 3; for example, the error in E totn+1 − E totn might be a reasonable choice for de�ning
a convergence tolerance for these iterations.

5. SPATIAL DISCRETIZATION AND IMPLEMENTATION

In this section we brie�y present an overview of the spatial discretization process which, when
applied to the conserving algorithm of the last section, produces the same conservation properties
in the fully discrete setting.

5.1. Finite element discretization

In general terms, the �nite element discretization is achieved by introducing �ht and �
∗h, the

�nite dimensional approximations of �t and �∗ . These lie in the discrete spaces Cht and Vh such
that

�ht =
nnod∑
A=1

NAdAt ∈ Cht ⊂Ct (60)

and

�∗h =
nnod∑
A=1

NAcA ∈Vh⊂V (61)

where dAt is the vector-valued nodal value of the con�guration mapping, NA is a �nite element
shape function with domain �

(1) ∪�(2), and cA are nodal constants. Substitution of these �nite
dimensional approximations into the time discrete weak form and enforcing it for arbitrary combi-
nations of cA yields the following fully discrete equations to be solved in each time step [tn; tn+1]:

M
1
�t
[Vn+1 − Vn] + Fintn+1=2 + Fcn+1=2 = 0

1
�t
[dn+1 − dn] = Vn+1=2

(62)

where M is the global mass matrix, d is the global solution vector, Fc is the contact force vector,
and Fint is the internal force vector. We retain the discrete counterparts of �n+1=2 and Vn+1=2 used
previously, e.g.:

dn+1=2 = 1
2 [dn+1 + dn]

Vn+1=2 = 1
2 [Vn+1 + Vn]

(63)
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and remark that the nodal force Fintn+1=2A associated with node A is given by

Fintn+1=2A =
∫
�(1)∪�(2)

D�hn+1=2S
hGRAD[NA] d� (64)

where Sh is as de�ned in (37)–(39).
In giving a general expression for Fc we summarize the main results, referring the reader to

Laursen and Simo11 for more details on the general procedure. The integral Gc can be approximated
via

Gc(�hn+1=2;�
∗h
) ≈ −

n int∑
l=1
Wljl[tN]n+1=2 · (�∗ (1)(X)− �∗ (2)(Yn+1=2(X)))]l (65)

where nint is the total number of contact quadrature points on �(1), Wl is a weight of integration
for quadrature point l, and jl is the jacobian resulting from the local to global transformation
used to describe �(1). Fc can then be expressed as an assembly of individual quadrature point
contributions as follows:

Fcn+1=2 =

n int

A
l=1

Wljlf lcn+1=2 (66)

where A is the standard �nite element assembly operator. In the case of interest, frictionless
contact, f lcn+1=2 takes the following form if nodal quadrature is used in (65):

flcn+1=2 = −t lNnl (67)

where nl = []ln+1=2;−N1(^
l
n+1=2)]ln+1=2; · · · ;−Nnel(^

l
n+1=2)]ln+1=2]T with Na; a = 1; · · · ; nel repre-

senting the shape functions interpolating the element surface containing the projection Yn+1=2(X
l).

The contact pressure tN can be described by any of the representations given in the last section.
Calculation of the contact sti�ness requires exact linearization of the contact force vector. We omit
this calculation here, and refer the interested reader to Laursen and Simo11 for elaboration on the
general procedure.

6. NUMERICAL EXAMPLES

In presenting some results obtained with the proposed algorithm, we give comparisons with results
obtained via two other prevalent strategies: the Newmark method12 and the Hilber–Hughes–Taylor,
or HHT method.13 As frequently implemented for contact problems, these integrators could be
summarized as follows:

Newmark

Man+1 + Fint(dn+1) + Fc(dn+1) = Fextn+1

dn+1 = dn +�tvn +
�t2

2
[(1− 2�)an + 2�an+1]

vn+1 = vn +�t[(1− �)an + �an+1]

(68)
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Figure 1. Longitudinal impact between two identical slender bars

HHT

Man+1 + Fint(dn+�) + Fc(dn+�) = Fextn+�
dn+� = �dn+1 + (1− �)dn
dn+1 = dn +�tvn +

�t2

2
[(1− 2�)an + 2�an+1]

vn+1 = vn +�t[(1− �)an + �an+1]

(69)

where �, � and � represent algorithmic parameters throughout. As discussed in the introduction,
the contact constraints are commonly imposed in both strategies without explicit consideration of
rate conditions, so that Fc is assembled from tractions tN satisfying

g60; tN¿0; tN g = 0 (70)

where g in equations (70) is evaluated from the n+ 1 con�guration in the case of Newmark and
from the n+ � con�guration in the case of HHT.

6.1. Impact between identical bars

In the �rst example we consider the axial impact of two identical straight elastic bars, which
provides a simple yet illustrative demonstration of the algorithm’s performance. In the initial state
the two bars are collinear but out of contact as shown in Figure 1. Bar A is initially moving at a
uniform velocity of 1 unit while bar B is at rest initially. The properties are: density � = 1 unit,
area of cross section ac = 1 unit, length l = 10 unit, Young’s modulus E = 1 unit and Poisson’s
ratio � = 0. The problem is driven only by the initial conditions with di�erent amounts of initial
separation considered between the bars.
The solution for displacements and velocities of the impacting ends of the two bars based on

physical observations is plotted in Figure 2 for the case of small strains. The numerical solution
is obtained using small strain bilinear elastic elements, with 100 elements in each bar and with a
time step of �t = 0·1 unit. We consider four algorithms for the temporal integration: the proposed
conservative scheme, the trapezoidal rule (second-order accurate Newmark with � = 0·25, � = 0·5),
Newmark with maximum high-frequency dissipation (� = 0·49, � = 0·9) and HHT with optimal
high-frequency damping (� = 0·3025, � = 0·6, � = 0·9). Solutions for these cases are shown in
Figures 3–6. Unless otherwise stated, the method of augmented Lagrangians is used with iterations
until the change in the multiplier value is less than 1 per cent.
Examination of the results shows that dissipative Newmark (Figure 4) and HHT (Figure 5)

produce oscillations shortly after the initial contact event, characterized by the two bars coming
into and out of contact. The high-frequency dissipation of these two integrators eventually damps
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Figure 2. (a) Displacement vs. time, (b) velocity vs. time at the impact ends of the bars (expected solution)

Figure 3. (a) Displacement vs. time, (b) velocity vs. time at node b and d obtained using the trapezoidal rule with penalty
method (	N = 108)
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Figure 4. (a) Displacement vs. time and (b) velocity vs. time for nodes b and d obtained using the dissipative Newmark
method

Figure 5. (a) Displacement vs. time and (b) velocity vs. time for nodes b and d obtained using the HHT method
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Figure 6. (a) Displacement vs. time and (b) velocity vs. time for nodes b and d obtained using the conservative scheme

out this behaviour, so that a reasonable solution is produced. The trapezoidal rule possesses no such
dissipation, so that these numerically induced contact oscillations persist throughout the solution
(Figure 3). Notably, the conservative algorithm possesses no dissipation either, and yet does not
excite these spurious modes due to the conservative treatment of the contact conditions (Figure 6).
In fact, one can show that up to the treatment of the contact conditions, the trapezoidal rule and
the conservative algorithm are identical for small-strain elasticity problems. We therefore conclude
that the key issue in this problem is the stable treatment of the contact constraints. The slight
interpenetration of the bar ends evident in Figure 6 also tells us that insistence on complete
impenetrability is unnecessary for accurate prediction of energy and momentum transfer across the
interface.
Further insight can be gained by looking at Figure 7, which shows the total system energy for

the four cases. Clearly, use of constraints (70) with the trapezoidal rule results in a net energy
gain with each new impact event. This energy remains in the system and continues to grow until
the impacts stop, after which the system energy is constant. The dissipative integrators damp out
the contact oscillations as discussed above, but lose system energy in doing so. The conservative
algorithm obtains results no more noisy than those provided by the dissipative integrators, while
conserving system energy. Importantly, the conservative algorithm in no way forces the contact to
be persistent, but instead allows the conditions to evolve as driven by the momentum equations. It
would therefore appear that formulations requiring such persistency of new contacts, as in Taylor
and Papadopoulos,8 may pose needless constraints which could in some problems be non-physical.
Finally, all integrators display oscillations after the separation of bars. This results from the

numerical dispersion of the solution near discontinuities causing the higher-frequency oscillations
to travel at lower speeds. A common way to deal with such numerical dispersion is to damp out

19



these oscillations with arti�cial viscosity (see for example References 14 and 15). An interesting
issue we intend to pursue in future work is the incorporation of conserving contact treatments into
dissipative global schemes, creating algorithms with high-frequency dissipation which integrate the
contact conditions in a stable manner.

Figure 7. Total energy vs. time in the bar impact problem for (a) trapezoidal rule, (b) conservative scheme, dissipative
Newmark and HHT method

Figure 8. Ring con�gurations at intervals of 5 time units for (a) trapezoidal rule; (b) dissipative Newmark; and
(c) conservative scheme
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Figure 8. Continued

Figure 9. Total energy vs. time for the conservative scheme, the trapezoidal rule and dissipative Newmark; ring problem

6.2. Impact of a ring against rigid surface

This problem is motivated by a system originally discussed in Wriggers et al.16 An elastic ring
is thrown with an initial velocity of 2 units at a 45◦ angle to a �at rigid surface, as depicted in
Figure 8. The material properties and dimensions of the ring are as follows: Young’s modulus
E = 102 units, density � = 0·01 unit, Poisson’s ratio � = 0·0001, outer radius ro = 10 units and
inner radius ri = 9 units. Bilinear large strain elements are used to discretize the ring, with the mesh
consisting of 64 elements. Results are obtained for the trapezoidal rule, the dissipative Newmark
method and the proposed conservative strategy, using a time step �t = 0 ·2 in all cases. The
ring con�gurations at various time intervals and the total energy are plotted in Figures 8 and 9,
respectively.
The con�guration plot shows large deformations during and after impact and an unstable blow-up

of the simulation for the trapezoidal rule. The dissipative Newmark method provides reasonable
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Figure 10. Striker positions at various times for (a) the trapezoidal rule, (b) dissipative Newmark and (c) the conservative
scheme

results for small times, but damps out the low-mode deformation of the ring for larger times,
preserving only the rigid-body motion with any accuracy. The conservative scheme is seen to be
clearly superior to either of the above two approaches. Examination of Figure 9, a plot of the
system energy for all three simulations, reveals clearly the energy instability in the trapezoidal
rule simulation, the loss of energy for the dissipative scheme, and the exact conservation for the
current method.

6.3. The carrom problem

This problem involves perfectly elastic and frictionless impact between rigid bodies. The system
can be visualized as a 2-D version of a pool table, where a plastic disk called the striker is
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Figure 11. Total energy vs. time for the conservative scheme, the trapezoidal rule and dissipative Newmark; carrom problem

manually struck with the aim of hitting other disks and causing them to go into holes in the four
corners of the carrom board. The model simulates the motion of the striker in the absence of other
disks as it hits the sides of the carrom board assuming no friction (see Figure 10). The sides
of the board are simulated with four elements and the striker is placed within the closed space
and subjected to an initial velocity. The material properties (contrived so that deformations will
be negligible) and dimensions are as follows: striker—Young’s modulus E = 102 units, Poisson’s
ratio � = 0·0001, density � = 0·1 unit and radius r = 1 unit; carrom board—Young’s modulus
E = 104 units, Poisson’s ratio � = 0 ·0001, density � = 102 units, length of inner side li = 13
units and length of outer side lo = 15 units. A time step of �t = 4 units was utilized in each of
three simulations, performed using the trapezoidal rule, dissipative Newmark and the conservative
scheme.
The initial condition causes the striker to hit the lower side in the middle and at an angle of

45◦, with a velocity of 0 ·1 units. The results in Figure 10 show that in case of the trapezoidal
rule the rebound is too sharp due to gain of energy; with an eventual blow-up of the solution. The
dissipative Newmark result has the opposite e�ect, with the angle of rebound being too �at and
the system energy being reduced. Finally, the conservative scheme correctly predicts all rebounds
to be at 45◦ after the initial impact, giving the expected diamond-shaped trajectory of the striker
within the carrom board. The plot of total system energy in Figure 11 is consistent with these
observations, and again veri�es the energy conservation property.

7. SUMMARY AND CONCLUSIONS

This work extends the idea of algorithmic energy and momentum conservation to encompass sys-
tems featuring mechanical contacts. Importantly, these conservation properties hold for all changing
conditions of contact: new contact, release and persistent. The result is an algorithm which is sta-
ble in the complete absence of any dissipation. Although the framework we have developed is
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by de�nition only applicable to conservative systems featuring frictionless contacts, the work has
revealed that careful consideration of algorithmic contact work input is crucial to the construction
of stable integration procedures.
It is fair to observe that most physical systems of interest are not conservative, and that few

impact events are reasonably modelled as perfectly elastic. E�ective algorithms are needed for
problems featuring physical dissipation arising from inelasticity and/or interface friction. Further-
more, discretization of continuous systems introduces non-physical modes whose energy content
should ordinarily be damped out in transient simulations. When viewed in this light, perhaps the
most important product of this work is its identi�cation of algorithmic persistency conditions that
enable stable numerical integration through conditions of changing contact. We intend to extend
this work so that interface dissipation, consistent with the frictional model used, can be accurately
produced by the algorithm in each time step of a transient simulation. Future work will also explore
the use of such energetically consistent contact formulations in conjunction with otherwise dissipa-
tive global integrators (such as HHT). In this manner both physically and numerically dissipative
equations could be integrated without spurious energy input from the contact conditions.
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