
HAL Id: hal-01435505
https://hal.science/hal-01435505

Submitted on 14 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An architecture for practical
confidentiality-strengthened face authentication

embedding homomorphic cryptography
Nabil Bouzerna, Renaud Sirdey, Oana Stan, Thanh Hai Nguyen, Philippe Wolf

To cite this version:
Nabil Bouzerna, Renaud Sirdey, Oana Stan, Thanh Hai Nguyen, Philippe Wolf. An architecture
for practical confidentiality-strengthened face authentication embedding homomorphic cryptography.
IEEE CloudCom 2016, IEEE, Dec 2016, Luxembourg, Luxembourg. �hal-01435505�

https://hal.science/hal-01435505
https://hal.archives-ouvertes.fr


An architecture for practical confidentiality-strengthened face authentication
embedding homomorphic cryptography

Nabil Bouzerna∗, Renaud Sirdey∗†, Oana Stan∗†, Thanh Hai Nguyen∗†, Philippe Wolf∗
∗IRT SystemX

8, av. de la Vauve, 91120 Palaiseau, France
Email: name.surname@irt-systemx.fr

†CEA, LIST,
91191 Gif-sur-Yvette Cedex, France

Email: name.surname@cea.fr

Abstract—In this paper, we propose and experiment a sys-
tem architecture which intends to significantly strengthen
the security of biometric authentication with respect to the
confidentiality(-by-design) of the users’ references needed to
perform such a function. Our architecture has been designed
to ensure that these biometric references are permanently
encrypted and that the (single) server processing them has
no decryption capability (in particular, does not have access to
any decryption key). In order to do so, we use homomorphic
encryption techniques which allow to perform calculations
directly over encrypted data. We report on the careful architec-
tural choices and agressive optimizations we had to make in
order to be able to deploy an off-the-shelf face recognition
module into this architecture. As the performance results
presented in the paper demonstrate, we claim to have achieved
practically relevant levels of performance and security in a
realistic setting.

1. Introduction

This paper reports on an experiment which aim was to
demonstrate that homomorphic encryption techniques are
amenable to practical performances in a clearly realistic
setting.

As a demonstration playground, we have chosen to
work on a cloud-based face authentication function and
attempted to use homomorphic cryptographic techniques
in order to practically strengthen the confidentiality(-by-
design) of the users authentication references with respect
to threats coming from the server running the function. The
exercice was done genuinely in the sense that the payload
function as well as the software implementing it was chosen
a priori. In other words, the exercise we have done was
more of the kind “a priori take an arbitrary interesting
function and make it practically run over encrypted data
in a meaningful architecture” (adressing at least part of a
meaningful threat model) rather than “take a function which
is well suited to practically run over encrypted data and a
posteriori convince everyone it is useful”. Of course, reality
is never as clearcut as one wishes, but the former spirit

more genuinely reflects our state of mind than the latter.
So let us consider a setting in which an employer wishes
to deploy face-based authentication to complement badge-
based authentification on its premises and, in order to do
so, needs to store (and process) authentication references
for many of its employees on a server. In order to improve
the confidentiality of these references, we propose a three
parties architecture and process involving the employer, the
employee (enrollment is performed at home) and a third
party who is responsible for key management. The proposed
architecture, which is described in due details later on,
has the desirable property of splitting the responsiblity for
employees’ references confidentiality between the employer
(which is entrusted with the encrypted references but has no
access to any decryption key) and the aforementioned third
party (which is entrusted with the encryption and decryption
keys but has no access to any encrypted data). Despite
of the fact that this model is, of course, not resistant to
employer/third party collusion, it significantly strengthens
the confidentiality guarantees provided by biometric authen-
tication and does not appear too unrealistic if the third party
is able to serve many companies with a turnkey solution kit
(including the access devices as we shall later see).

It should also be emphasized that, despite of the use case
choice, the present work should not be considered a paper
on biometric authentication as the authors do not claim to
have an in-depth expertise in that field. On the contrary, the
contribution of the paper is more focused towards homomor-
phic cryptography and, more precisely, the costs (software
engineering as well as performances) at which this technol-
ogy can be brought into practice. Biometric authentication
then being a challenging- and demonstrative-enough setting
in which our points can be effectively illustrated.

This paper is organized as follows. Section 2 covers
background and related work with respect to homomorphic
cryptography as well as its (practical) use, with particular
emphasis on biometric authentication. Section 3 presents
our system architecture proposal and the rationale behind it.
Section 4 reports on the pitfalls and issues we had to adress
in order to operationally integrate homomorphic encryption
in the architecture. Then, section 5 subsequently provides
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the experimental results that back up our claim of having
successfully done so. Lastly, Section 6 concludes the paper
with both lessons learnt and perspectives.

2. Background and related work

Since Gentry’s 2009 breakthrough [12] demonstrated the
theoretical feasability of Fully Homomorphic Encryption
(FHE) for computing arbitrary functions directly over en-
crypted data, fast-paced progresses have been made in terms
of both raw performances [13] as well as tooling support [7]
for running “real” (lightweight-enough) computer programs
over FHE. As a result, we are now very close to be able
to deploy these new exciting techniques in real-world set-
tings (see e.g. [8]). Still, the existence of FHE (or rather
practically meaningful Somewhat FHE [4], [11]1) does not
necessarily render more restrictive homomorphic systems
(such as the Paillier system [19] which is detailed Sect.
4.3) obsolete and deploying these cryptosystems in practical
application settings is not without challenges. These chal-
lenges however, from the authors’ experience, are very close
to those of deploying FHE in meaningful settings. So, as
we now have a rich toolbox of cryptographic techniques for
computing over encrypted data, each with different pros and
cons, this is really a matter of chosing the most appropriate
cryptographic tool for the setting at hand. In particular, and
although we do not claim to be the first to do so, we argue
here that there are settings, such as the one presented in this
paper (see Sect. 4.2 for details), in which it is enough to use
only partially homomorphic encryption (allowing only one
operation type, i.e. addition or multiplication but not both
over encrypted data) along with well-designed optimization
techniques.

In this section, we briefly survey previous works on
the use of homomorphic encryption in the field of face
recognition.

In [10] a two-party biometric face recognition system is
presented, based on two additively homomorphic schemes:
Paillier and DGK cryptosystems, under the assumption of
honesty for both the authentication server and the user. The
protocol uses an Eigen-Face recognition system with the
matching consisting of several steps: on the user part, the
computation of the encrypted face image and on the server
side, the projection of the encrypted face image into the face
space, computing Euclidean encrypted distances, selecting
the minimum and comparing with a threshold. However,
the average runtime for the matching of an image of size
92× 112 against a database of 320 facial templates is quite
long, taking approximatively 40 seconds on a conventional
workstation.

An additively homomorphic scheme, along with oblivi-
ous transfer, is also used by Osadchy et al. in [18] for SCiFi,
a system for secure computation of face identification. The
protocol, relying on a two-party setting, makes the same

1. SFHE must be a priori dimensionned in function of the multiplicative
depth of the algorithms they are expected to evaluate.

assumption that both participants are honest and spends a
significant time for precalculation and offline steps.

A recent work proposes Ghostshell, an approach for se-
cure biometric authentication on iris detection using a Some-
what Homomomorphic Encryption (SHE) scheme and, for
integrity purposes, a Message Authentication Code (MAC)
[9]. This system design contains only two participants:
the authentication server and the user while ensuring the
security against two kind of threats: one coming from the
malicious users and a second, on the server side, which
would like to learn information about the private users
biometrics. Two protocols between the user and the server
are also described: a Woodenman protocol, running a MAC
generation algorithm over homomorphic encryptions and
protecting against the first kind of threats, and the Ironnman
Protocol based on discrete logarithm and mitigating threats
of the second kind. During the matching phase, the server
computes the Hamming distances between the encrypted
biometric challenge and the encrypted template stored on
the server. The tests were performed using the HELIB
library [13] with a BGV-type cryptosystem as well as SIMD
optimizations (batching [4]) for packing several biometric
features in a single ciphertext. The heaviest computation
consists in obtaining the Hamming distances, with at least
500 msec. for the execution time, when varying N , the num-
ber of slots and m, the degree of the cyclotomic polynomial
for the SHE scheme for an iris code of 2400 bits.

Additional works include [21] (using Gentry’s far-from-
practical initial FHE scheme [12]), [22] (outsourced identi-
fication with an interactive protocol), [20] (also outsourced
identification hybridizing homomorphic encryption and gar-
bled circuits) as well as [3] and [15]. Contrary to the present
work, these focus mainly on the problem of face identifica-
tion (determining whether a face is present in a database)
rather than authentication (checking whether a face matches
a particular entry in a database). Additionally, most, if not
all, other works focus on the so-called eigenfaces algorithm
[14] for face matching.

The contribution of this work is on face authentication
without any hiding requirement with respect to the database
record against which matching is performed. Additionally,
we focus on a more recent (yet mainstream) face match-
ing algorithm which turns out to be more “homomorphic-
friendly”. Another important point is that we use (and assess
the practicality of) homomorphic encryption as a focused
countermeasure to confidentiality threats from the server
holding the face recognition reference database. With that
respect we have obtained what we believe to be a quite
pragmatic and practical system architecture (as described in
Sect. 3) which illustrates the necessary trade-offs to achieve
overall practical homomorphic performances (in terms of
bandwidth and storage requirements as well as computing
power and latency as argued in Sect. 5). Again, to be
completly explicit, we do not claim that our architecture
covers a full-blown threat model as, in a real-world setting,
homomorphic encryption would only be one (yet important)
“security ingredient” targeted at one (yet important) threat,
amongst many others (countermeasures and threats).



3. Architecture description

This section is devoted to a more detailed presentation
of the application set up. We consider the following so-
called three parties: Company, Dilbert (an employee) and
Dogbert (a third party). The first of these is an employer
willing to deploy multi-factor authentication for access to
sensitive areas on his premises by requiring that an employee
needing to access such an area presents his badge to a card
reader as well as checking that the face of the person in
front of the door does indeed match the id of the badge.
In order to do this, the Company is willing to operate a
database with the facial references of most (if not all) of its
employees but is also willing to avoid taking responsibility
in case this database becomes compromized and its contents
exfiltrated. The idea we pursue in this paper is that this
(restrictive) goal, as so far stated in loose form, would
be achievable if the Company was able to operate such
a database in an oblivious fashion, without being granted
access to its content. In short, we propose to experiment
with an approach using homomorphic encryption techniques
which allow—at least to some extent—to operate such a
database while keeping its contents encrypted at all time and
without providing the server hosting it with any decryption
capability. In particular, the server in question would not
need to be granted access to any decryption key in order
to provide the required authentication service. As such, an
attacker seeking to exfiltrate the employees facial references
by compromising that server would, by construction, at
most be able to exfiltrate encrypted data and would then
have no other choices than either attacking the underlying
cryptosystem (a presumably difficult task) or attacking yet
another entity holding a decryption key.

Now that the high-level requirements have been stated
in fairly loose terms, let us provide a more concrete view
of the requirements, roles and responsibilites of the parties
involved in the use-case architecture.

Figure 1 provides a high-level view of the architecture.
Let us start with Dogbert. For a given Company,

Dogbert is responsible for key generation (i.e. generating
a public encryption key, pk, and a secret decryption key,
sk) and storage (of these keys). It is supposed not to share
sk neither with the Company nor with anyone else. He is
however supposed to provide pk to Dilbert or any other
employee of the Company. The Company’s employees
i.e., Dilberts, are responsible for acquiring and encrypting
their own facial references outside of the Company domain.
They do so by interacting first with Dogbert to get the
Company’s pk (presumably embedded in some enrollment
software also provided by Dogbert), and, once acquisition
and encryption has been (locally to Dilbert) successfully
completed, by transfering their encrypted references towards
the Company (that way, as already emphasized, the Com-
pany has the data but not the decryption key and Dogbert
has the decryption key but access to neither the clear nor the
encrypted reference). The Company is then responsible for
storing the encrypted references on its internal authentica-
tion server which processes them (in the encrypted domain)

in response to authentication challenges sent from the access
Devices (i.e. some kind of “intelligent” connected door
locks). An important point is that the access Devices have to
be able to decrypt the results of the calculation done by the
authentication server and, hence, have to be provided with
sk. As a consequence, despite of the fact that the Devices
are (physically) deployed on the Company premises, they
are (logically) assumed to remain in Dogbert’s domain.
In particular, this requires that Dogbert is providing the
Devices to the Company and takes the necessary measures
to avoid that physical access to a Device leaks access to
sk (this may be enforced by different means from low-
cost software protections up to deploying specific hardware
security support in the Device at greater cost, depending
on the overall operational threat model2). By construction,
when in service, the Devices themselves have no connection
to Dogbert (only during commisioning when sk is “burnt”
into the Device) as well as no access to the (encrypted)
reference data stored on the Company’s server (they only
have access to calculation results on these data).

In summary, the present architecture aims at enforcing
the following properties:

• Key manager (Dogbert) has knowledge of pk and
sk but no access to the reference data.

• Access control Devices have knowledge of sk, ac-
cess to calculation results (distances to compare to
a threshold) but no access to the reference data.

• Employer (Company) has no knowledge of sk,
hence, neither access to the reference data nor access
to (encrypted) calculation results.

• Employee (Dilbert) has to trust that the key man-
ager (Dogbert) will not collude with its employer
(Company).

There are several ways in which the above properties and
role separations can be consistently mapped on practical ar-
chitecture guidelines for multifactor physical access systems
(see e.g. [1]). However, as already emphasized, covering a
full-blown operational threat model is beyond the scope of
this paper which much more modestly claims to investigate
the practicality of a focused countermeasure against a nar-
row (yet relevant in many scenarios) confidentiality threat.

As has been hinted above (and this will be confirmed in
the sequel), when executing a face-matching algorithm in the
encrypted domain, it is tempting to do the final (lightweight)
threshold comparison post-decryption in the clear domain.
Still, in the context of the algorithm described in Sect. 4.1,
it will be clear that a compromized Device could extract
the reference data one by one by means of hundreds of
thousands of (malicious) requests. We do not consider this
an issue with respect to the present architecture as (fairly
classical) system-level countermeasures can be deployed to
counter these kind of threats coming from the Devices (e.g.

2. As recommended in [1], in highly sensitive settings, it may be required
to move the decryption and action capability to another secure server
(within the restricted perimeter) in order to ensure full transparency from
the Devices (exposed outside of that perimeter). The present architecture
can easily be adapted to such more stringent settings.



Figure 1. Overall authentication architecture summary.

throttling and/or imposing lower bounds on the challenge
size). Furthermore, doing the threshold comparison on the
Device may allow more flexibility when multiple factor
(including multiple biometry) authentication is used.

4. HE integration

4.1. Face matching algorithm description

In terms of face matching algorithms, the starting point
of this work was the OpenIMAJ3 implementation of the
algorithm specified in [17] and based on the so-called Local
Ternary Patterns (LTP). OpenIMAJ is a well-known and
respected open source set of libraries and tools for multi-
media content analysis and exhibits both clean understand-
able code as well as decent matching performances. This
is particularly true of the LtpDtFeatureComparator
module which we have tried to test in harsh conditions
before using it as a reference for our “homomorphization”
experiment. Also note that this LTP-based algorithm is also
implemented in OpenCV4 which is the “gold standard” for
image processing librairies. Also recall that this is not a
paper on biometric authentication, as already emphasized in
the introduction, so we have chosen what appeared to be a
meaningful algorithm, yet from an outsider’s point of view
of that field.

It turns out that, from the point of view of the present
exercise, the part of the code which has to be executed in
the encrypted domain is quite simple.

Enrollment is done using one or more pictures of the
individual face and uses a non-straightforward image pro-
cessing pipeline to generate a reference consisting of 118
so-called distance maps, M (0), ...,M (117), each of which

3. www.openimaj.org.
4. opencv.org.

being an 80×80 matrix with values in [0, 1]. Authentication
is also done using one or more pictures of the individual and
is also based on a similarly non-straightforward processing
pipeline which generates a challenge made up of 118 sets
of coefficient coordinates S(0), ..., S(117). We are staying
deliberatly vague on these two pipelines for reasons which
are explained in the next section (due details can be found
in [17]).

The matching part of the algorithm, which is the one
which interests us for the sake of the present paper, as will be
argued in the next section, then simply requires to compute

` =

117∑
i=k

∑
(i,j)∈S(k)

M
(k)
ij . (1)

Given a threshold T , authentication then succeeds if ` ≥ T
and fails otherwise. We used T = 92 in our experiment (that
value having been chosen on empirical ground).

4.2. “Going homomorphic”

With respect to the architecture described in Section 3,
we are not concerned that much about the image processing
pipelines for reference and challenge generation as they
are both executed in the clear domain near the camera or
at least on the machine to which the camera is attached
i.e., on Dilbert’s home computer or on Dogbert’s access
devices. So, as far as the present study is concerned, we
can essentially see them as black boxes (emphasizing again
that this is a paper on the “homomorphization” of an off-the-
shelf biometric authentication function) and do not provide
any further details on the generation of both the M ’s and
the S’s.

Once generated (on Dilbert’s home computer) the dis-
tance maps must be encrypted (on that same machine) before
they are sent to Company. According to our reference



architecture, the (public) encryption key is retrieved from
Dogbert and Company has no access to the associated
decryption key (Dogbert has access to it, but recall that he
is never sent the data in the protocol). So once this transfer
is done on the Company server, the system is ready to
authenticate Dilbert.

The authentication process goes as follows. After ac-
quisition of the image and generation of the challenge on
the Device, the challenge is sent (in clear form w. r. t. the
homomorphic encryption system) to the Company server.
The server then evaluates Eq. (1) confronting the cleartext
challenge (i.e., clear S’s) to the encrypted reference (i.e.
encrypted M ’s). As a result, the server obtains an encrypted
value for ` which is returned to the Device.

Lastly, the Device, as provided with the secret de-
cryption key, decrypts `, compares the decrypted value
to the threshold T , and decides whether or not to grant
access. Still, it could be considered desirable to perform the
threshold comparison in the encrypted domain on the server
itself—although at the cost of more involved homomor-
phic processing. However, recall that, in the present work,
homomorphic encryption is deployed as a countermeasure
adressing confidentiality threats from the server and not
from the access device. From that (narrow) threat model
point of view, there is per se no added value to perform
the threshold comparison on the server (recall also the
discussion at the end of Sect. 3).

So, in essence, we now need a cryptosystem homo-
morphic-enough so as to allow the evaluation of Eq. (1)
in the encrypted domain. In the above setting (i.e. where
the challenge is in clear form), we only need to perform
additions in the encrypted domain so only a simpler additive
homomorphic cryptosystem is per se needed. The choice for
not encrypting the challenge (with respect to the homomor-
phic encryption layer) is motivated by the fact that it appears
not to provide any useful information as illustrated on Figure
2 or, at least, no information that would allow to reconstruct
the reference5. In practice, the challenge would still of
course be transmitted via a secure channel—using classical
non-homomorphic encryption—such that its confidentiality
(and integrity) would be ensured before decryption by the
server.

Still, if required, challenge encryption would add some
complexity, but not necessarily prohibitively so. The naive
approach would be to send 118 80 × 80 matrices con-
taining encryptions of 1 (for coordinates in the challenge)
or encryptions of 0 (otherwise). Then equation (1) would
become a degree-2 polynomial with respect to evaluation in
the encrypted domain. However the main issue would be
in producing the challenge (which would require as many
encryptions as for the reference and, as will be explained
in Sect. 5.1, this is challenging for the kind of lightweight
devices presumably used for access) as well as transmitting
it towards the server. Overall, this would most likely rule out

5. Of course, this assumption which is rather informally stated here,
would deserve a more thorough (far from straightforward) investigation
but this is beyond the scope of the present paper.

any real-time or close-to-real-time authentication process.
A slightly more subtle approach could be to add dummy
coordinates to the challenge along with an encrypted value
(0 or 1) depending on whether or not the coordinate indeed
belongs to the challenge. This latter approach appears more
realistic than the former, although it still raises a number
of questions, most notably w. r. t. the dummy/non dummy
coordinate ratio. This topics deserves more investigations
which are out of the scope of the present work.

4.3. The Paillier cryptosystem

Following the algorithm description given in the pre-
vious section, it appears that an additively homomorphic
system is sufficient in order to execute it. Thus, a first can-
didate would be the well-known (and well-respected) Paillier
cryptosystem [19] for which we recall a few caracteristics6.
Let p and q denote two large primes and n = pq. Then, the
cleartext domain of the Paillier system is Zn and the cipher-
text domain is Zn2 . Additionally, let λ = lcm(p− 1, q − 1)
and g < n2 be randomly chosen such that

gcd(L(gλ mod n2), n) = 1,

with L(u) = u−1
n .

The public (encryption) key is provided by n and g
whereas the private (decryption) key is given by p and q
or, equivalently, λ.

Then, encryption is done by computing

c = enc(m) = gmrn mod n2, (2)

where m < n is the message and r is uniformly chosen
in Zn. Letting D = L(gλ mod n2) and D−1 denoting its
multiplicative inverse in Zn, decryption is then performed
by evaluating

m = dec(c) = L(cλ mod n2)×D−1 mod n.

More importantly for the present purpose, this cryptosys-
tem has the following homomorphic properties:

1) dec(enc(m1)enc(m2) mod n2) = m1 + m2

mod n (addition of two encrypted messages).
2) dec(enc(m)gk mod n2) = m+ k mod n, for all

k ∈ Zn (addition of an encrypted message to a
clear integer).

3) dec(enc(m)k mod n2) = km mod n, for all k ∈
Zn (multiplication of an encrypted message by a
clear integer).

With respect to the latter homomorphic operator, multiplica-
tion by a “negative” integer k works by taking the additive
inverse modulo n of −k before applying the operator. How-
ever, this generally induces a significant slowdown of the
operator as the running time of a modular exponentiation
generally increases linearly in the number of bits of the
exponent (e.g., when using algorithms such as the repeated

6. Of course, other additive cryptosystems, from additive variants of El
Gamal to depth-0-tuned sFHEs could have been used as well. With that
respect, we refer the reader to the discussion in the conclusion of the paper.



Figure 2. The first 15 S’s of a typical challenge.

square-and-multiply). As a consequence, a sometimes crit-
ical optimization when using the Paillier system e.g. for
computing a dot-product∑

i

αixi,

where the α’s are (presumably small) clear coefficients and
the x’s are encrypted data, consists in evaluating it as,∑

i:αi≥0

αixi + (−1)
∑
i:αi<0

(−αi)xi.

In terms of concrete dimensioning, using a 2048 bit
modulus provides fairly decent medium-term security e.g.,
the French National Information Systems Security Agency
(ANSSI) [2] recommends this as the minimum modulus
length for usage not beyond 2030. Since, as discussed in
the sequel, performances are the main issue that needs to
be tackled, achieving decent performances with this concrete
dimensioning will be our target.

Note that the Paillier cryptosystem can also be “boosted”
in order to evaluate quadratic functions using a clever (yet
simple) trick from [5]. Although this technique is far from
free from a performance viewpoint, it allows to evaluates
popular quadratic distances such as the Hamming, Euclidean
or Mahalanobis distances [14] in the private versus public
vectors setting. Also note that these kind of distances can
also be evaluated using only an additive system at the
cost of a quadratic increase in communication overhead as
both distance evaluations turn out to be linear in xxT (the
tensor product of the private vector with itself). These latter
remarks are important as many others algorithms used in
biometric authentication (not limited to face-based) involve
evaluating the aforementioned mathematical distances.

5. Experimental results

5.1. Encryption

According to the architecture defined in Sect. 3, en-
cryption is performed by Dilbert on his home PC after

downloading Company’s public key from Dogbert, pre-
sumably as part of an enrollment application he (Dilbert)
has to install on his machine. This application then locally
performs face image acquisition, reference generation and
encryption of the reference data (recall Sect. 4.1). This
unfortunately is easier said than done due to the relatively
large volume of data to be encrypted for one reference which
amounts to around 750 000 values (i.e., 118 × 80 × 80).
Indeed, encrypting that many values using even a native
C/C++ GMP-based7 implementation of equation (2) on an
average laptop takes more than 30 mins (with a 2048 bits
modulus), a duration which appeared to us prohibitive for
the present use case. Of course, as each of the reference
values are encrypted separately, that task is embarassingly
parallel and its processing time can almost linearly scale
down with the number of processors thrown at it. However,
it also appeared unreasonable to expect Dilbert to have
an high-end multicore server at home so as to decrease
encryption duration. So we have to be a bit more clever...

Looking back at equation (2), it appears that the most
costly term to evaluate is

rn mod n2. (3)

Indeed, modular exponentiation is usually performed using
algorithms such as the repeated-square-and-multiply algo-
rithm which running time depends on the base-2 logarithm
of the exponent. As n is a fairly large number, it can be
expected that evaluating (3) takes much more time than
evaluating gm mod n2 since m, the message, is very small
compared to n (each value to encrypt is a scalar in [0, 1] with
is premultiplied by 10000 to switch to fixed-point precision).

In order to lighten Dilbert’s computing burden, the idea
would then be to split the encryption function between him
and Dogbert but without putting the security properties of
the architecture in jeopardy (Dogbert is trusted with the
keys but not with the reference data and conversely for
Company). The good news with that respect is that (3)
does not depend on the data to be encrypted. Hence, the
following approach which is consistent with our security
objectives:

7. gmplib.org.



1) Dogbert uniformly picks around 750 kilos-values
uniformly in Zn and computes the encryption
helper values hi = rni mod n2 (offline).

2) When encrypting, Dilbert gets the (many) helper
values along with the public key and encrypts its
data by evaluating ci = hig

mi mod n2 (online).
3) Dilbert then transfers the ci’s to Company (on-

line).

In terms of practicality, we now are in a seemingly better
shape. The offline step above still takes around 30 mins on
an average laptop (but it is now done offline by Dogbert8).
Furthermore, for Dogbert, which can be assumed to have
higher-end servers, it is embarassingly parallel. Thus, using
a native GMP-based OpenMP implementation, we have been
able to down this offline step to just 99 secs on a 128
cores SMP machine (Bullx S6130) with fairly minimal code
refactoring (mostly in order to avoid serialization on the
program I/Os). The overall hi’s represent a volume of about
400 Mb (it is the same size as the encrypted reference
so we “just” double the transfer requirement for Dilbert),
a volume which is by no means prohibitive to transfer
by today’s home bandwidth standards (such transfers took
around 2 mins during the experiments we performed in a
completly unremarkable setting). Once this is done, we have
been able to perfom the encryption itself, using the hi’s,
in only 21 secs on the same average laptop. So such a
computational burden becomes acceptable for the kind of
low- or average-end devices which Dilbert can be expected
to possess at home. Lastly, Dilbert completes the enrollment
by transfering the encrypted reference (i.e. around 400 Mb,
again) towards Company.

Overall, for the online phase, enrollment thus takes less
than 5 mins without specific computing power and band-
width requirements on Dilbert’s side and for an acceptably
strong security level.

5.2. Homomorphic evaluation

Once Dilbert’s (homomorphically) encrypted reference
is stored on the Company server, the overall architecture
can provide its authentication service by means of homo-
morphic execution of the algorithm of Sect. 4.1. It turns out
that this evaluation step was less of a performance bottleneck
(compared to the encryption step discussed in the previous
section). Furthermore, it can be assumed that the Company
server on which the evaluation is performed is a relatively
high-end machine.

As a consequence, we implemented the evaluation al-
gorithm natively, using both GMP as well as OpenMP
directives for parallelization. The evaluation program has
been architectured so as to avoid inter-task synchronization
as well as serialization on the I/Os (the program has to
“crunch” around 400 Mb of data in order to produce one
encrypted value). The program assumes that each distance
map M (k) is stored in a separate file (which is just what the

8. Which (recall) is assumed not to collude with the Company.

encryption step outputs in order to also avoid serialization
on its I/O’s in case Dilbert eventually has a multi-core
machine). Then each distance map, say M (k) is processed
independanlty in parallel (thanks to an OpenMP parallel
for pragma) using the following algorithm:

1) Organize the list of coordinates in S(k) in a
logarithmic-time searchable data structure (e.g., an
STL set<pair<int,int> >).

2) Initialize a(n encrypted) running sum, `(k), to (an
encryption of) zero.

3) For (i, j) ∈ {0, 79} × {0, 79} do, load M
(k)
ij and

if (i, j) ∈ S(k)
ij then `(k) := `(k)♦M (k)

ij (the latter
operation being an homomorphic addition).

Then the (encrypted) `(k) are serially (homomorphically)
summed in order to get the final (encrypted) result ` (recall
Sect. 4.1).

As such, the program has no inter-task synchronization
(except at the end) and scales up to 118 threads which is
in line with the highest-end SMP machines presently on the
market (we were able to test our programs on a Bullx S6130
128 cores server as well as on a HP Integrity Superdome
X 120 cores server which are both representative of these
kind of machines).

On an average 8 cores workstation, the homomorphic
calculation of ` takes arounds 2 secs, and this duration
drops significantly below 1 sec on higher-end machines (we
consider that 1 sec is the threshold below which the solution
becomes practical in terms of latency). This performance
scaling is obtained using the same binary, by letting the
OpenMP runtime automatically and dynamically adapts the
execution to the platform at hand (i.e. the program was
compiled using the -fopenmp directive offered by recent
gcc/g++ versions).

5.3. Decryption

Once homomorphically computed, the encrypted result `
is sent towards the Device at the origin of the challenge for
decryption (recall that despite of the fact that the Device is
on the Company premises, it is in Dogbert’s domain and
it is assumed to have a hardware-protected knowledge of
the secret decryption key), comparison to a threshold and,
if successfull, action. As there is only one value to decrypt,
decryption is by no means a performance bottleneck and
we could even afford to keep its implementation in the
Java realm for our prototype.

Table 1 summarizes the overall performances obtained.
As a further prototype work, we also made the effort to fully
integrate the binaries for the authentication step into a Web
Service queried from an Android tablet and observed RTDs
of around 3 secs.

6. Conclusion

In terms of lessons learnt and results, we claim that this
work contributes to demonstrate that practical homomor-



Step When done Where done Duration
Precalculation Offline Dogbert ≈30 mins

Encryption Enrollment Dilbert 21 secs
Evaluation Authentication Company <2 secs
Decryption Authentication Device ε

TABLE 1. PERFORMANCE SUMMARY

phic encryption performances are achievable in meaningful
settings. However, we also consider that it can, at present,
only be done at the (non negligible) cost of appropriate sys-
tem architecturing (which involves finding ways to exploit
computing power where there is some and doing as much
as possible offline calculations) as well as at the cost of
aggressive code optimization and parallelization.

Lastly, the reader may found it disappointing that we did
not use the more advanced fully homomorphic encryption
techniques in the present work. As pointed in the introduc-
tion, this is primarily due to the spirit of the exercise we
wished to conduct which was (as already stated) “a priori
take an arbitrary interesting function and make it practically
run over encrypted data in a meaningful architecture”. This
meant that we did not know in advance which cryptosys-
tem would be powerful-enough to be able to evaluate the
selected algorithm and the fact that an additive system
would do the trick did not seem to us to invalidate the
exercise. Two conclusions may be drawn from this. The
first one (which the present work is certainly not the first
one to draw), is that, despite of the recent developments
and investments in fully homomorphic encryption (and the
encrypted-domain Turing-completeness that comes with it),
many interesting applications can still be handled using
simpler mono-operation homomorphic encryption schemes
which practical relevance should then not be underestimated.
The second conclusion, which is a matter of perspective to
us, is that the more recent RLWE-based Somewhat Fully
Homomorphic Encryption (SFHE) schemes (e.g. BGV [4]
and Fan-Vercauteren [11]), when optimized for evaluating
linear or very low-degree algorithms, may well turn out to
be competitive with e.g. the Paillier cryptosystem (although
by imposing different constraints on the architecture). At
least, preliminary experiments we have performed in other
contexts hint in that direction. Also, using SFHE would also
unleash the ability to use recently proposed “transchipher-
ing” techniques [6], [16] in order to significantly reduce the
bandwidth and storage requirement of the solution (yet at
the cost of additional offline homomorphic calculations). So
we are planning to investigate these questions as a sequel
to the present work.
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