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SOME DRAWBACKS OF FINITE MODIFIED LOGARITHMIC
SOBOLEV INEQUALITIES

LAURENT MICLO

Abstract

Classically, finite modified logarithmic Sobolev inequalities are used to deduce a differential
inequality for the evolution of the relative entropy with respect to the invariant measure. We
will check that these inequalities are ill-behaved with respect, on one hand, to the symmetriza-
tion procedure, and on the other hand, to the umbrella sampling procedure for Poincaré’s
inequalities. A short spectral proof of the latter method is given to estimate the spectral gap
of a finite reversible Markov generator L in terms of the spectral gap of the restrictions of L
on two subsets whose union is the whole state space and whose intersection is not empty.

Keywords: finite irreducible Markov generator, modified logarithmic Sobolev inequality,
symmetrization, Poincaré’s inequality, umbrella sampling.
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1. Introduction

The resort to the study of the evolution of the relative entropy is a traditional
technique in the investigation of the convergence of Markov processes to equi-
librium. By differentiation with respect to time, one ends up with an entropy
dissipation. To compare this term with the relative entropy, one is led to in-
troduce modified logarithmic Sobolev inequalities. The goal of this note is to
present some examples of bad behaviors of these inequalities.

More precisely, the setting is as follows: consider V a finite state space en-
dowed with anMarkov generatormatrix L ≔ pLpx, yqqx,yPV , namely satisfying

@ x ­“ y P V, Lpx, yq ě 0

@ x P V, Lpx, xq “ ´
ÿ

yPV ztxu

Lpx, yq

We assume that L is irreducible:

@ x, y P V, D n P Z` : Lnpx, yq ą 0

1
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Let µ ≔ pµpxqqxPV be the unique invariant probability measure for L, i.e.
satisfying

@ y P V,
ÿ

xPV

µpxqLpx, yq “ 0

It charges all the points of V : µpxq ą 0 for all x P V . On PpV q, standing for the
set of probability measures on V , define the relative entropy with respect
to µ via

@ m ≔ pmpxqqxPV P PpV q, Entpm|µq ≔

ÿ

xPV

ln

ˆ
m

µ
pxq

˙
mpxq

It is a way to measure the discrepancy between m and µ, in particular Pinsker’s
inequality asserts that the total variation between m and µ is bounded by the
square root of twice the relative entropy, cf. e.g. the book of Ané, Blachère,
Chafäı, Fougères, Gentil, Malrieu, Roberto, and Scheffer [1].

The Markov semigroup pPtqtě0 associated to L is given by

@ t ě 0, Pt ≔ expptLq
and to any initial law m0 P PpV q, the corresponding distribution mt at time
t ě 0 is

mt ≔ m0Pt

It is the law of the position at time t ě 0 of a Markov process generated by L

and whose initial state is sampled according to m0.
The irreducibility of L (equivalent to the positivity ofmt for any t ą 0 and any

initial distribution m0) implies that for any given m0 P PpV q, mt converges to µ

for large t ě 0. One way to quantify this convergence is to study the evolution
of Entpmt|µq by differentiating it with respect to time:

@ m0 P PpV q, @ t ě 0, BtEntpmt|µq “ ´F pftq (1)

where ft is the density mt{µ and where

@ f P F`pV q, F pfq ≔

ÿ

x,yPV

µpxqLpx, yqfpxqplnpfpxqq ´ lnpfpyqqq

with F`pV q standing for the cone of non-negative functions on V . The quantity
F pfq is called the entropy dissipation and is non-negative (it takes the value
`8 if there exist x, y P V with Lpx, yq ą 0, fpxq ą 0 and fpyq “ 0). To adopt
functional notation, define

@ f P F`pV qzt0u, Epfq ≔ Ent pf ¨ µ{µrf s|µq
where f ¨ µ{µrf s is the probability measure admitting f{µrf s as density with
respect to µ. To transform (1) into a differential inequality for the evolution
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of the relative entropy, one introduces the following modified logarithmic

Sobolev inequality:

@ f P F`pV qzt0u, αEpfq ď F pfq

where α ě 0 is the best constant such that this bound holds (hereafter called the
modified logarithmic Sobolev constant and denoted αpLq when we need to
emphasize the underlying generator).

The symmetrization Gpfq of the entropy dissipation F pfq is defined by

@ f P F`pV q, Gpfq ≔

1

2

ÿ

x,yPV

µpxqLpx, yqpfpxq ´ fpyqqplnpfpxqq ´ lnpfpyqqq

and its interest relies on the symmetric modified logarithmic Sobolev in-

equality

@ f P F`pV qzt0u, β Epfq ď Gpfq

where β ě 0 is the best constant such that this bound holds (called the sym-

metric modified logarithmic Sobolev constant). This bound corresponds
to the previous modified logarithmic Sobolev inequality, but with L replaced by
its additive symmetrization pL ` L˚q{2 in L

2pµq: L˚ is the adjoint operator
of L in L

2pµq, which is a Markovian generator, because µ is invariant for L. More
explicitly, one computes that

@ x, y P V, L˚px, yq “ µpyq
µpxqLpy, xq

The invariant probability µ is said to be reversible with respect to L when
L˚ “ L, i.e.

@ x, y P V, µpxqLpx, yq “ µpyqLpy, xq

In this case, we have

@ f P F`pV q, F pfq “ Gpfq (2)

(in Lemma 2.1 below, we will check that conversely (2) implies that µ is reversible
with respect to L). When µ is not reversible with respect to L, the introduction
of G and β is an attempt to come back to the reversible situation, since µ is
reversible for the Markov generator pL ` L˚q{2. It is then natural to wonder if
it would not be possible to compare the functionals F and G. An easy relation
is

@ f P F`pV q, F pfq ď 2Gpfq
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This is a consequence of the non-negativeness of the entropy dissipation F and
of the fact that for any f P F`pV q, the quantity

2Gpfq ´ F pfq “
ÿ

x,yPV

µpxqLpx, yqfpyqplnpfpyqq ´ lnpfpxqqq

is also non-negative, since it can be viewed as an entropy dissipation for the
time-reversed generator L˚. As a consequence, we deduce that α ď 2β.

Nevertheless, in view of the above considerations, a reverse bound would be
more desirable, unfortunately there is no such relation in general:

Proposition 1.1. As soon as cardpV q ě 3, there exists an irreducible Markov
generator L on V such that

inf
fPFąpV q

F pfq
Gpfq “ 0

where FąpV q is set of positive functions on V (considered instead of F`pV q, just
to avoid the value `8 for F and G).

When cardpV q “ 2, µ is necessarily reversible with respect to L, so that (2)
applies.

It is possible to avoid the comparison of the functionals F and G, in particular
through the resort to logarithmic Sobolev inequalities. Due to the inequality

@ a, b P R`, 4p
?
b ´

?
aq2 ď pb ´ aqplnpbq ´ lnpaqq

we have β ě 4γ, where γ is the (symmetric) logarithmic Sobolev constant,
namely the best constant γ ě 0 such that

@ f P F`pV qzt0u, γ Epfq ď Hp
a
fq

where H is the energy associated to L:

@ f P FpV q, Hpfq ≔

1

2

ÿ

x,yPV

µpxqLpx, yqpfpxq ´ fpyqq2

(FpV q is the space of all real functions defined on V ). The energy is auto-
matically symmetric and there is no need to consider a non-symmetric version.
Indeed, we compute that for any f P FpV q,

ÿ

x,yPV

µpxqLpx, yqfpxqpfpxq ´ fpyqq “ ´µrfLrf ss

“ ´µrfL˚rf ss

“ ´µ

„
f
L ` L˚

2
rf s



“ Hpfq
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In our finite setting, it is well-known that γ ą 0 if and only if L is irreducible,
see e.g. the lecture notes of Saloff-Coste [4]. Nevertheless, β can be more con-
venient than γ, as there are natural examples on denumerable state spaces with
β ą 0 while γ “ 0 (see for instance Wu [5]). In fact, if one intends to use the
logarithmic Sobolev constant γ, it is pointless to consider the functional G, since
it follows from [3] that F and H are easy to compare directly: we always have

@ f P F`pV q, F pfq ě Hpfq (3)

In particular, this bound implies 2β ě α ě γ and so the (symmetric) modified
logarithmic Sobolev inequality constants α and β are positive for the irreducible
Markov generator L.

In fact, (3) and (2) imply that it would only have been interesting to bound
below F in terms of G in the non-reversible situations where it is possible to
estimate the modified logarithmic Sobolev constant β without going through the
logarithmic Sobolev constant γ.

Another usual way to measure the discrepancy between two probability mea-
sures m and µ is the chi-2 distance defined by

χ2pm,µq ≔

gffe ÿ

xPV

ˆ
m

µ
pxq ´ 1

˙2

µpxq

The corresponding functional is

@ f P FpV q, Dpfq ≔

a
µrpf ´ µrf sq2s

“
d

1

2

ÿ

x,yPV

µpxqµpyqpfpyq ´ fpxqq2

Considering the evolution of the chi-2 distance of the time-marginal laws to equi-
librium instead of the relative entropy, one is led to the Poincaré’s inequality

@ f P FpV q, λDpfq ď Hpfq
where the spectral gap λ ě 0 is the best possible constant in this bound.
There is a gneral comparison between the logarithmic Sobolev constant and the
spectral gap: 2γ ď λ, cf. e.g. the book of Ané, Blachère, Chafäı, Fougères, Gentil,
Malrieu, Roberto, and Scheffer [1].

For any positive µ P PpV q, consider the generator Lµ defined by

@ x ­“ y, Lµpx, yq ≔ µpyq
It is irreducible and µ is its unique invariant measure which is furthermore re-
versible. It is the generator of the Markov process which, from any initial distri-
bution, wait an exponential time of parameter 1 and then choose as next position
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a point sampled according to µ. In some sense, this process jumps directly to
equilibrium. In this situation, we have Dpfq “ Hpfq, for any f P FpV q and by
consequence λ “ 1.

This observation is the key point in the intersection method. It amounts

to the following procedure for the Poincaré’s inequality. Assume that V “ rV Y pV
and that rV X pV is the singleton tx0u. Let rL (respectively pL) be an irreducible

and reversible Markov generator on rV (resp. pV ). Denote by rµ and rλ ą 0 (resp.

pµ and pλ ą 0) the reversible probability measure and the spectral gap of rL (resp.
pL). Define rχ ≔ rλrµpx0q and pχ ≔ pλpµpx0q. Consider L “ rL ` pL, namely the
Markovian generator given by

@ x, y P V, Lpx, yq ≔

#
rLpx, yq , if x, y P rV
pLpx, yq , if x, y P pV

Theorem 1.2. The Markov generator L is irreducible and reversible and its
spectral gap λ satisfies

λ ě minprλ, pλ, rχ ` pχ ´
a

rχ2 ` pχ2 ´ rχpχq ą 0

The hypothesis that rV X pV is a singleton can be relaxed, for instance the
proof of Theorem 1.2 can be extended immediately to the situation where the

restrictions of rµ and pµ on rV X pV are proportional. Then in the definition of rχ and

pχ, rµpx0q and pµpx0q have to be replaced respectively by rµprV X pV q and pµprV X pV q.
More generally, the intersection method is a particular case of the procedure
of umbrella sampling described in Madras and Randall [2]. There, the authors
start with a reversible Markov transition kernel P and relate its spectral gap to
the spectral gaps of the restriction of P to several subsets and to the spectral
gap of another transition kernel standing for the motions between the subsets.
Theorem 1.2 is more precise than Theorem 1.1 from Madras and Randall [2],

because we will encapsulate the spectral gaps rλ and pλ of the subsets rV and pV
into the definition of the generator describing the motions between them. This
slight improvement could be extended to the setting of Madras and Randall [2].

However, our goal here is to give a straightforward spectral proof of Theorem
1.2 and to show that he relative entropy does not follow the same pattern: when
L “ Lµ, we compute that

@ f P F`pV q, F pfq “ Epfq ´ µrlnpfqs
ě Epfq

where we used the Jensen’s inequality with respect to the convex function p0,`8q Q
u ÞÑ ´ lnpuq to deduce the last inequality. In particular we get αpLµq ě 1.
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By analogy with the Poincaré’s inequality, one can wonder if there exists a
constant κ ą 0 such that the following bi-modified logarithmic Sobolev

inequality holds:

@ f P F`pV q, κEmpfq ď F pfq (4)

where the modified relative entropy Empfq is the quantity Epfq ´ µrlnpfqs
(since E ď Em, of course we have κ ď α).

Unfortunately, it is often not possible:

Proposition 1.3. The best constant κ in (4) satisfies

κ ď min
x ­“yPV

Lpy, xq
µpxq

In particular it is non-null if and only if the transition graph of L is the complete
graph on V .

The latter drawback prevents the obtention of (bi-)modified logarithmic Sobolev
inequalities by an intersection method, whose crucial observation was that D “
H for L “ Lµ. Of course (4) would have not been satisfactory in itself, since F pfq
should be replaced by the dissipation functional associated to Empfq, namely

@ f P FąpV q,
ÿ

x,yPV

µpxqLpx, yqfpxq
ˆ
lnpfpxqq ´ lnpfpyqq ` 1

fpyq ´ 1

fpxq

˙

leading to a new type of modified logarithmic Sobolev inequality. But we will
not push further in this direction here.

2. Proofs and examples

Here we check the results presented in the introduction, via the exhibit of ap-
propriate examples for Propositions 1.1 and 1.3.

Let us begin with the assertion made after (2):

Lemma 2.1. The identity (2) is satisfied if and only if µ is reversible with
respect to L.

Proof. Fix x0 P V and consider a function U P FpV q such that Upx0q “
0 ą maxtUpxq : x P V ztx0uu. For r ě 0, define fr P FpV q via

@ x P V, frpxq ≔ expprUpxqq
Letting r go to `8 in F pfrq “ Gpfrq, we get

´
ÿ

yPV

µpx0qLpx0, yqUpyq “ ´1

2

˜
ÿ

yPV

µpx0qLpx0, yqUpyq `
ÿ

yPV

µpyqLpy, x0qUpyq
¸
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i.e. ÿ

yPV

µpx0qLpx0, yqUpyq “
ÿ

yPV

µpyqLpy, x0qUpyq

Fix another point x1 P V ztx0u and let Upx1q go to ´8, while letting the other
other values of U fixed: it follows that µpx0qLpx0, x1q “ µpx1qLpx1, x0q. Since
this is true for all x0 ­“ x1 P V , we get that µ is reversible with respect to L.

Next we find an example leading to the assertion of Proposition 1.1.

Proof of Proposition 1.1. We begin with the case where V ≔ Z3. Con-
sider the irreducible and Markov generator L given by

@ x ­“ y P Z3, Lpx, yq ≔

"
1 , if y “ x ` 1
0 , otherwise

Its invariant probability measure is the uniform measure µ on Z3.
For r ą 1, let fr P FąpZ3q defined by

frp0q “ 1, frp1q “ r, frp2q “ r{ lnprq
We compute that

F pfrq “
ÿ

xPZ3

µpxqLpx, x ` 1qfrpxqplnpfrpxqq ´ lnpfrpx ` 1qqq

“ 1

3

ÿ

xPZ3

frpxqplnpfrpxqq ´ lnpfrpx ` 1qqq

“ 1

3

ˆ
´ lnprq ` r

ˆ
lnprq ´ ln

ˆ
r

lnprq

˙˙
` r

lnprq ln
ˆ

r

lnprq

˙˙

“ 1

3

ˆ
´ lnprq ` r lnplnprqq ` r

lnprq plnprq ´ lnplnprqqq
˙

„ r lnplnprqq{3
as r ą 1 goes to `8.

Similarly, we have

Gpfrq “
ÿ

xPZ3

µpxqLpx, x ` 1qpfrpxq ´ frpx ` 1qqplnpfrpxqq ´ lnpfrpx ` 1qqq

“ 1

3

ÿ

xPZ3

pfrpxq ´ frpx ` 1qqplnpfrpxqq ´ lnpfrpx ` 1qqq

ě 1

3
pfrp0q ´ frp1qqplnpfrp0qq ´ lnpfrp1qqq

“ p1 ´ rqp0 ´ lnprqq{3
„ r lnprq{3
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as r ą 1 goes to `8. In particular, we get

lim
rÑ`8

F pfrq
Gpfrq “ 0

To get the same result on any finite set V with cardpV q ě 4, choose two points
x0 ­“ x1 in V and consider the irreducible and Markov generator L given by

@ x ­“ y P V, Lpx, yq ≔

$
’’&
’’%

1{pcardpV q ´ 2q , if x “ x0 and y R tx0, x1u
1 , if x R tx0, x1u and y “ x1

1 , if x “ x1 and y “ x0

0 , otherwise

By considering functions which are constant on V ztx0, x1u, we are brought back
to the previous situation on Z3.

We now come to the positive result about Poincaré’s inquality.

Proof of Theorem 1.2. The Markov generator L is clearly irreducible:

from x0, the transitions of rL (respectively pL) enable to rejoin any point of rV
(resp. pV ) and to come back to x0. Furthermore, from the reversibility of rµ and pµ
with respect to rL and pL, it appears that if we can find a probability measure µ on

V which is proportional to rµ (resp. pµ) on rV (resp. pV ), then µ is reversible with
respect to L (and in particular is invariant for L). Indeed, this is a consequence

of the fact that if Lpx, yq ą 0 then x, y are both belonging to rV or to pV . We are
thus looking for three positive constants ra, pa and b such that

µ ≔ rarµ ` papµ ´ bδx0

is a probability measure satisfying

µpx0q “ rarµpx0q and µpx0q “ papµpx0q

These equalities lead to

rarµpx0q “ b “ papµpx0q (5)

and since we must also have ra ` pa ´ b “ 1, we deduce that the solution to this
problem is

ra “ pµpx0q
rµpx0q ` pµpx0q ´ rµpx0qpµpx0q

pa “ rµpx0q
rµpx0q ` pµpx0q ´ rµpx0qpµpx0q

(and b given by (5)).
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By definition of the energy H associated to L, we have for any f P FpV q,

Hpfq ≔

1

2

ÿ

x ­“yPV

µpxqLpx, yqpfpxq ´ fpyqq2

“ 1

2

ÿ

x ­“yP rV

µpxqLpx, yqpfpxq ´ fpyqq2 ` 1

2

ÿ

x ­“yP pV

µpxqLpx, yqpfpxq ´ fpyqq2

“ ra rHpfq ` pa pHpfq

where rH (resp. pH) is the energy associated to rL (resp. pL) and rHpfq is standing

for rH applied to the restriction of f to rV .

By definition of the spectral gaps rλ and pλ, we have

rλ rDpfq ď rHpfq and rλ pDpfq ď pHpfq

so that

@ f P FpV q, Hpfq ě rarλ rDpfq ` papλ pDpfq
“ HKpfq

where HK is the energy associated to the Markov generator K defined by

@ x ­“ y P V, Kpx, yq ≔

#
rλrµpyq , if x P rV and y P rV
pλpµpyq , if x P pV and y P pV

It is immediate to check that µ is also reversible for K. Let θ be the spectral
gap of K. From the above considerations, we have

@ f P FpV q, Hpfq ě θDpfq

namely λ ě θ. To prove Theorem 1.2, it remains to show that

θ ě minprλ, pλ, rχ ` pχ ´
a

rχ2 ` pχ2 ´ rχpχq (6)

To go in this direction, we compute that for any f P FpV q,

@ x P V, Krf spxq “

$
’&
’%

rλrµrf s ´ rλfpxq , if x P rV ztx0u
pλpµrf s ´ pλfpxq , if x P pV ztx0u
rλrµrf s ` pλpµrf s ´ prλ ` pλqfpx0q , if x “ x0

Let W be the vector subspace of F consisting of the functions which are constant

on rV ztx0u and constant on pV ztx0u. From the above expression, W is left stable
by K, so by reversibility, the same is true for WK, its orthogonal complement
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in L
2pµq. A function f P FpV q belongs to WK if and only if µrf1V ztx0us “

µrf1V ztx0us “ fpx0q “ 0. In particular, for f P WK, we have

@ x P V, Krf spxq “

$
&
%

´rλfpxq , if x P rV ztx0u
´pλfpxq , if x P pV ztx0u
0 , if x “ x0

It follows that rλ and pλ are the only possible eigenvalues of the restriction of ´K

toWK (and they are indeed eigenvalues, as soon as cardprV q ě 3 and cardppV q ě 3
respectively).

In the basis p1tx0u,1 rV ztx0u,1 rV ztx0uq of W , the matrix associated to K has the

form ¨
˝

´rχ ´ pχ rχ pχ
rχ ´rχ 0
pχ 0 ´pχ

˛
‚

Thus the eigenvalues of the restriction of K to W are exactly the eigenvalues of
this matrix. The characteristic polynomial of the opposite of this matrix is

X3 ´ 2prχ ` pχqX2 ` 3rχpχX
whose roots are 0 and X˘ ≔ rχ` pχ˘

a
rχ2 ` pχ2 ´ rχpχ. As a consequence, we get,

when rλ and pλ are eigenvalues of ´K|WK ,

θ “ mintrλ, pλ,X´, X`u
“ mintrλ, pλ,X´u

When rλ or pλ is not an eigenvalue of ´K|WK , we only end up with the lower
bound (6), thus always valid as announced.

Remark 2.2. Assume for instance that rχ ď pχ. Using the bound rχ2 ď rχpχ ď
pχ2 in the definition of X´, we find that

rχ ď X´ ď pχ
with strict inequalities when rχ ă pχ. Thus if furthermore rµpx0q is sufficiently

close to 1, we can end up with rλ ă X´. In more “typical” situations where

rµpx0q and pµpx0q are quite small, we will get that X´ ă minprλ, pλq.
Finally, we come to the last assertion of the introduction.

Proof of Proposition 1.3. Fix x P V and f P FpV ztxuq such that
µrf1V ztxus “ 1. For any ǫ ą 0, define fǫ P F`pV q via

@ y P V, fǫpyq ≔

"
fpyq{Zǫ , if y ­“ x

ǫ{Zǫ , if y “ x
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where Zǫ ≔ 1 ` µpxqǫ is the normalization such that µrfǫs “ 1. Letting ǫ go to
0`, we get

Emrfǫs „ µrlnr1{fǫss „ µpxq lnp1{ǫq

and

F rfǫs „
ÿ

y ­“x

µpyqLpy, xqf rys lnp1{ǫq

It follows that

κ ď inf

"ř
y ­“x µpyqLpy, xqf rys

µpxq : f P FpV ztxuq with µrf1V ztxus “ 1

*

“ min
yPV ztxu

Lpy, xqf rys
µpxq

whence the announced result, since x was arbitrary chosen.
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