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The existence and uniqueness of solutions to multivalued stochastic differential equa-
tions of the second order on Riemannian manifolds are proved. The class of problem
is motivated by rigid body and multibody dynamics with friction and an application
to the spherical pendulum with friction is presented.

Keywords: stochastic differential equations; manifolds; friction;
differential inclusions; maximal monotone operators; rigid body dynamics

1. Introduction

In the theory of rigid bodies mechanics, a system is described by the configuration
manifold M , which is generally the set of isometries of the three-dimensional space;
the movement of the body is then a curve on this manifold. The kinetic energy
defines a Riemannian metric and the equation of motion is a differential equation
on a Riemannian manifold. If a stochastic term is involved in the forces acting on
the system, stochastic differential equations must be used and we refer to Ikeda &
Watanabe (1989), Norris (1992) and Emery (1989) for information. We are inter-
ested in multivalued maximal monotone operators, since our physical model includes
friction. The friction force f is of physical origin. Mathematically, it belongs to the
cotangent space at x to M , since it is a generalized force. Moreover, it must belong
to a closed convex subset C(x) of the cotangent space T ∗

xM , and it is related to the
velocity through the principle of maximal dissipation, stated for instance by Ballard
(2002) under the form

∀g ∈ C(x), −〈f, ẋ〉x � −〈g, ẋ〉x,

where 〈·, ·〉x denotes the scalar product between T ∗
xM and the tangent space at x,

TxM . It is equivalent to writing f ∈ −∂ψC(x)(ẋ), where ψC(x) is a convex homo-
geneous function of degree 1 which will be defined later, and ∂ denotes the sub-
differential. It is well known that the subdifferential of such a convex function is a
multivalued maximal monotone operator. This the reason why we are interested in
second-order multivalued stochastic differential equations (MSDEs) on Riemannian



manifolds. We prove existence and uniqueness under the classical assumptions: Lip-
schitz continuity and linear growth of the drift and diffusion coefficients (see Mao
(1997, p. 51) for classical stochastic differential equations).

Let us observe that it is not easy to give a meaning to a first-order multivalued
differential equation on a Riemannian manifold; indeed, assume that in a local chart
the equation would be of the type

dx

dt
+ A(t, x) � f(t).

We have to understand dx/dt as an element of the tangent space at x(t), Tx(t)M
and, therefore, f(t) must belong to the same space and A(t, x) must be a subset of
this space. If we would like to state a monotonicity assumption on A(t, ·), it is not
difficult to transport the elements of A(t, x1) by parallel transport to the tangent
space at x2; however, monotonicity is a concept which requires duality between vector
spaces. The difference x1−x2 cannot be assigned an intrinsic meaning and, therefore,
the main principle of differential geometry, that is, chart independence, cannot be
upheld. This objection fails if, instead of working on a manifold M , we work on its
tangent space TM , which is the space of classical mechanics, our present setting.

In a local chart, the simplest equation of mechanics, that is, the equation of
geodesics, contains a quadratic term of geometric origin. In order to apply the results
of Cépa (1995), we have to get rid of this quadratic term, and we can do that by
a parallel transport of the equation back to the initial position. Unfortunately, we
have to pay for this transformation, since now the coefficients of the new equation
depend on the history up to time t of the position, i.e. the restriction x/[0,t] of x to
[0, t]. The initial formulation is Markovian, the transformation by parallel transport
does not have to be Markovian, the construction in the tangent space at the initial
point is not Markovian, but the reciprocal transformation which enables us to return
to the initial formulation takes care of all these difficulties.

The paper is organized as follows. In § 2, we give definitions and assumptions and
define the problem. Working in a local chart is equivalent to working in an open
subset of Rd; in § 3 we extend the coefficients of the equation to all of Rd and we
will denote these coefficients b̃, ν̃, σ̃ and Ã. Unfortunately, they are only locally
Lipschitz continuous with respect to the velocity v. We define new coefficients which
have better properties; typically, σn(t, x, v) is equal to σ̃(t, x, v) if ‖v‖ � n, and is
Lipschitz continuous if ‖v‖ � n. There may exist a geometrical proof showing that
b̃ is Lipschitz continuous, under appropriate assumptions on the curvature tensor
but this proof will not be presented in this article. In § 4, we apply the results of
Cépa (1995) to prove the existence and uniqueness of a solution of our equation with
coefficients bn, σn and νn. In § 5, we prove convergence for n tending to infinity by
stopping-time techniques. In § 6, we patch together the local solutions. Finally, an
illustrative example is given in § 7: the spherical pendulum.

Throughout this article, the Einstein summation convention is used, the time
derivative of a map f is denoted by ḟ and the value of f at the point t is denoted
indifferently by f(t) or ft.

2. Definitions

We consider a smooth Riemannian manifold M of dimension d and we denote by
dM the Riemannian metric on M and by BM (x, ε) (respectively B̄M (x, ε)) the open



ball {y ∈ M, dM (x, y) < ε} (respectively the closed ball {y ∈ M, dM (x, y) � ε}).
We suppose the following.

Assumption 2.1. There exist r > 0, r′ ∈ ]0, r[ and a finite or countable number
of points zk in M , such that M can be covered by balls BM (zk, r′) of radius r′ about
zk and each ball of radius r about zk is totally included in one chart of M . Moreover,
this covering can be taken to be locally finite.

In particular, this assumption is verified if M is a compact manifold or if its
curvature tensor is bounded. A curve on M is a map ρ of class C1 from [0, T ] to M
(T > 0) and we denote by τ(ρ/[a,b]) the parallel transport along ρ/[a,b] from Tρ(a)M
to Tρ(b)M . We recall that τ(ρ/[a,b]) is an isometry between Tρ(a)M and Tρ(b)M (see
Abraham & Marsden (1985) for a proof) and is independent of the parametrization
of ρ. We need also the important particular case of geodesics: assuming that the
geodesic from x1 ∈ M to x2 ∈ M is unique τ̄(x1, x2) is the parallel transport from
Tx1M to Tx2M . We denote by π : TM → M the projection map of the tangent
bundle TM of M .

In order to describe the class of maximal monotone operators used here, we observe
first that, for each x ∈ M , a maximal monotone graph relative to the tangent scalar
product (·, ·)x in the fibre TxM can be defined in a straightforward fashion: such a
graph is a subset A′

x of (TxM)2 such that for all pairs (v1, w1) and (v2, w2) in A′
x,

(v1 − v2, w1 − w2)x � 0 (monotonicity)

and A′
x is maximal for inclusion among all monotone graphs. In consequence and,

without being too formal, there is a bundle of maximal monotone graphs on the
manifold M : if T 2M denotes the bundle whose generic fibre is T 2

xM = (TxM)2,
the fibre of the bundle of maximal monotone graphs is simply the set of maximal
monotone graphs in T 2

xM . In order to avoid repetitions we will even assume that
this A′

x also depends on the time t ∈ [0, T ] so that we consider for each t ∈ [0, T ] and
x ∈ M a maximal monotone graph A′(t, x) in T 2

xM . Assumption 2.5 describes the
regularity of A′(t, x) with respect to t and x. For all t, x and v ∈ TxM , we denote
by A′(t, x, v) the image by A′(t, x) of v, which is a closed convex set. We suppose
that the domain of A′(t, x) is all TxM for all 0 � t � T and x ∈ M , i.e. for all t in
[0, T ] and all x in M and all v in TxM , A′(t, x, v) is not empty. Given w ∈ TxM , we
denote by A′(t, x, v, w) the projection of w onto A′(t, x, v) relative to the metric of
TxM .

We denote Rd by E. If F and G are two finite-dimensional vector spaces, we denote
by L(F, G) the set of linear maps from F into G. For t ∈ [0, T ] and x ∈ M , let the
drift ν′(t, x) be a map from TxM into TxM and let the diffusion matrix σ′(t, x) be
a differentiable map from TxM into L(E, TxM). For all v ∈ TxM , let us define

R(t, x, v) = ‖σ′(t, x, v)‖2
L(E,TxM).

Here σ′(t, x, v) and ν′(t, x, v) are, respectively, the image of v by σ′(t, x) and by
ν′(t, x). Our assumption on the drift and the diffusion are tailored for a Stratonovich
stochastic differential system; for this reason the square of the diffusion matrix
appears in assumptions 2.2 and 2.3.

We denote by 
 a continuous map from [0;T ] to R+ such that limt→0 
(t) = 0. We
suppose the following assumptions.



Assumption 2.2. For all bounded open subset U ⊂ M , there exists C0(U) such
that for all close enough x and y in U , for all v in TxM and u in TyM , and for all s
and t in [0, T ],∣∣∣∣∂R

∂v
(t, x, v) − ∂R

∂v
(s, y, u)

∣∣∣∣ � C0(U)(
(|t − s|) + dM (x, y) + ‖v − τ̄(y, x)u‖x).

Assumption 2.3. There exists a constant C1 such that for all 0 � t � T and for
all (x, v) ∈ TM ,

‖ν′(t, x, v)‖x + ‖σ′(t, x, v)‖L(E,TxM) +
∣∣∣∣∂R

∂v
(t, x, v)

∣∣∣∣ � C1(1 + dM (x, x0) + ‖v‖x).

Here x0 is fixed in M .

Assumption 2.4. For all bounded open subset U ⊂ M , there exists C2(U) such
that for all close enough x and y in U , for all v in TxM and u in TyM , and for all s
and t in [0, T ],

‖ν′(t, x, v) − τ̄(y, x)ν′(s, y, u)‖x + ‖σ′(t, x, v) − τ̄(y, x) ◦ σ′(s, y, u)‖L(E,TxM)

� C2(U)(
(|t − s|) + dM (x, y) + ‖v − τ̄(y, x)u‖x).

Assumption 2.5. For all bounded open subset U ⊂ M , there exists C3(U) such
that for all close enough x and y in U , for all v and w1 in TxM and u and w2 in
TyM , and for all s and t in [0, T ],

‖A′(t, x, v, w1) − τ̄(y, x)A′(s, y, u, w2)‖x

� C3(U)(
(|t − s|) + dM (x, y) + ‖v − τ̄(y, x)u‖x + ‖w1 − τ̄(y, x)w2‖x).

Remark 2.6. Assumption 2.5 has an immediate consequence: A′(t, x, v) is locally
bounded with respect to v, uniformly with respect to t ∈ [0, T ] and to x in compact
subsets of M .

We consider E ′ = (Ω, F , (F ′
t)t�0, P) a filtered probability space which verifies the

usual conditions (see Karatzas & Shreve (1991) for a definition). Let (Bt)t�0 be
the standard Rd-Brownian motion on E ′. Let δ be the symbol for the Stratonovich
differentiation. Let T0 be a (F ′

t)-stopping time such that T0 � T almost surely. Let η′
be a random variable F ′

T0
-measurable which takes its values in TM , whose second-

order moment, written in a local chart of M , is finite. If (vt)t�0 is a TM -valued
continuous semi-martingale over the curve ρ : [0, T ] → M (a stochastic process X
on a manifold Q is a continuous semi-martingale on Q if f ◦ X is a real continuous
semi-martingale for every C∞ map f : Q → R: see Emery (1989) for details), we
denote by Dρ̇(t)vt the Stratonovich covariant differential of v along ρ at time t (see
Norris (1992) for a definition). We consider also the MSDE on the manifold M :

δx′
t = v′

t dt,

Dẋ′(t)v
′
t + A′(t, x′

t, v
′
t) dt � ν′(t, x′

t, v
′
t) dt + σ′(t, x′

t, v
′
t)δBt, T0 � t < T,

(x′(T0), v′(T0)) = (π(η′), η′) a.s.

⎫⎪⎬⎪⎭ (2.1)

The first equation of (2.1) shows that x′
t is almost surely of class C1 on [T0, T [. For

t ∈ [T0, T ], we apply parallel transport along the trajectories’ x′ solution of (2.1), and



Norris (1992) has proved that the covariant differential is mapped to Stratonovich
differential yielding then the following system:

τ(x′
/[T0,t])

−1δx′
t = (τ(x′

/[T0,t]))
−1v′

t dt,

δ((τ(x′
/[T0,t]))

−1v′
t) + (τ(x′

/[T0,t]))
−1A′(t, x′

t, v
′
t) dt

� (τ(x′
/[T0,t]))

−1ν′(t, x′
t, v

′
t) dt{(τ(x′

/[T0,t]))
−1 ◦ σ′(t, x′

t, v
′
t)}δBt,

(x′(T0), v′(T0)) = (π(η′), η′) a.s.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.2)

Let V (respectively, V ′) a bounded open subset of E (respectively, of M) such
that ϕ : V ′ → V define a local chart of M and put ψ = ϕ−1. Let x0 be a point of
V ′ and we identify Tx0M and E = Rd. Without loss of generality, we suppose that
ϕ(x0) = 0 and Tx0ϕ = IE , where Tyϕ denotes the tangent mapping to ϕ at the
point y ∈ M and IE denotes the identity map of E. Let W ′ ⊂ V ′ be an open set of
M such that each pair of points of W ′ can be linked by a unique geodesic of M . We
define W = ϕ(W ′). We will define now all the transported objects; for all the primed
notation, the corresponding non-primed notation denote a transported object. For
0 � s � t � T we denote by C1

W ([s, t], V ) the set of the maps ξ : [s, t] → V of class
C1 such that ξ(0) ∈ W . For ξ an element of C1

W ([s, t], V ), ψ(ξ) is a curve on V ′, and
for v ∈ V , we define

b(s, t, ξ, v) = Tψ(ξt)ϕτ(ψ(ξ))τ̄(x0, ψ(ξ)(s))v. (2.3)

We define

A(s, t, ξ, v) = τ̄(ψ(ξ)(s), x0)(τ(ψ(ξ)))−1A′(t, ψ(ξt), τ(ψ(ξ))τ̄(x0, ψ(ξ)(s))v), (2.4)

ν(s, t, ξ, v) = τ̄(ψ(ξ)(s), x0)(τ(ψ(ξ)))−1ν′(t, ψ(ξt), τ(ψ(ξ))τ̄(x0, ψ(ξ)(s))v), (2.5)

and for all z ∈ E,

σ(s, t, ξ, v)z = τ̄(ψ(ξ)(s), x0)(τ(ψ(ξ)))−1[σ′(t, ψ(ξt), τ(ψ(ξ))τ̄(x0, ψ(ξ)(s))v)]z.
(2.6)

Remark 2.7. It is convenient to express the transport in A, ν and σ only through
b. Let us explain how to do this on ν: if S = Tψ(ξ(t))ϕ, we introduce SS−1 at two
places in the definition of ν(s, t, ξ, v):

ν(s, t, ξ, v)

= τ̄(ψ(ξ)(s), x0)(τ(ψ(ξ)))−1S−1Sν′(t, ψ(ξt), S−1Sτ(ψ(ξ))τ̄(x0, ψ(ξ)(s))v). (2.7)

Since Sτ(ψ(ξ))τ̄(x0, ψ(ξ)(s)) = b(s, t, ξ), (2.7) is equivalent to

ν(s, t, ξ, v) = (b(s, t, ξ))−1Sν′(t, ψ(ξt), S−1b(s, t, ξ, v)). (2.8)

By a legitimate abuse of notation corresponding to the choice of a local chart, we
may drop ψ(ξt) and S = Tψ(ξ(t))ϕ in (2.8), yielding thus

ν(s, t, ξ, v) = b(s, t, ξ)−1ν′(t, ξt, b(s, t, ξ, v)). (2.9)

There are analogous formulae for σ and A:

σ(s, t, ξ, v) = b(s, t, ξ)−1 ◦ σ′(t, ξt, b(s, t, ξ, v)). (2.10)



and

A(s, t, ξ, v) = b(s, t, ξ)−1A′(t, ξt, b(s, t, ξ, v)). (2.11)

We suppose in a first time that π(η) belongs to W almost surely. By defining for
all T0 � t � T ,

x̄(t) = ϕ(x′
t),

v̄(t) = τ̄(x′(T0), x0)(τ(x′
/[T0,t]))

−1v′
t,

η̄ = τ̄(x′(T0), x0)η,

we have
dx̄t = b(T0, t, x̄/[T0,t], v̄t) dt,

δv̄t + A(T0, t, x̄/[T0,t], v̄t) dt

� ν(T0, t, x̄/[T0,t], v̄t) dt + σ(T0, t, x̄/[T0,t], v̄t)δBt, T0 � t,

(x̄(T0), v̄(T0)) = (π(η̄), η̄) a.s.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.12)

Finally, we define (η1, η2) = (π(η̄), η̄) and x, v : [0, T − T0] → E by

x(t) = x̄(t + T0) and v(t) = v̄(t + T0)

and then, by denoting b(0, t, ξ, v) by b(t, ξ, v), ν(0, t, ξ, v) by ν(t, ξ, v), σ(0, t, ξ, v) by
σ(t, ξ, v) and A(0, t, ξ, v) by A(t, ξ, v), we seek the restriction to [0, T − T0[ of the
solution to the following system:

dxt = b(t, x/[0,t], vt) dt,

δvt + A(t, x/[0,t], vt) dt

� ν(t, x/[0,t], vt) dt + σ(t, x/[0,t], vt)δWt, 0 � t � T,

(x(0), v(0)) = (η1, η2) a.s.,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.13)

where (Wt)t�0 is defined by Wt = Bt+T0 − BT0 .
For all t � 0, let Ft = F ′

T0+t. It is well known that (Wt)t�0 is a standard
Brownian motion on the filtered probability space E = (Ω, F , (Ft)t�0, P). We say
that (xt, vt)0�t�T is a solution to (2.13) if (xt, vt)0�t�T is Ft-adapted, dxt =
b(t, x/[0,t], vt) dt almost surely and if there exists a stochastic process Ft-adapted
(Kt )0�t�T taking its values in E with bounded variation on [0, T ] such that K0 = 0
almost surely and

vt = v0 +
∫ t

0
ν(s, x/[0,s], vs) ds +

∫ t

0
σ(s, x/[0,s], vs)δWs − Kt

and dKt ∈ A(t, x/[0,t], vt) dt. The last inclusion has the following sense: the measure
(vt − αt, dKt − βt dt)x0 is almost surely non-negative on [0, T ] for all choices of
continuous maps α, β : [0, T ] → E such that βt ∈ A(t, x/[0,t], αt) (see Cépa (1995)
for precisions).

Remark 2.8. If σ′(t, x, v) does not depend on v, it is possible to consider the
equation (2.1) in the Itô sense—the formulation is intrinsic—and the assumption 2.2
and the linear growth condition 2.3 for R(t, x, v) are then not necessary.

In the following we will denote by (·, ·) the scalar product (·, ·)x0 .



3. Extension of the problem to E

We are slightly abusive when we say that we extend b, A, ν and σ since we have
first to restrict the values of x to a set U � x0, with U a subset of V . More precisely,
given a smooth cut-off function χ such that

χ(y) =

{
1 if y ∈ U,

0 if y /∈ V,
(3.1)

the function s �→ χ(xs)xs = x̃s coincides with xs as long as xs does not leave U .
If we use x̃s instead of xs in the definition of b, A, ν and σ, we will prove that
the corresponding b̃, ν̃ and σ̃ are not Lipschitz continuous with respect to x or v.
Therefore, we will need an extra step, where we project v onto the ball of radius n
about 0. Let us go into the technicalities.

The functions b, ν, σ and A have been respectively defined in (2.3), (2.5), (2.6)
and (2.4), which depend on the local chart ϕ; therefore all the upcoming constants
will also depend on ϕ.

Let U be a fixed bounded neighbourhood of x0 ∈ V and assume W ⊂ U ⊂ U ⊂ V .
For B an open subset of E containing x0, Δ(B) is the set of pairs (t, x) with t ∈ [0, T ]
and x a function of class C1 from [0, t] to B, such that x(0) ∈ W :

Δ(B) = {(t, x), t ∈ [0, T ], x ∈ C1
W ([0, t], B)}.

We denote by G = (gij)1�i,j�d the metric tensor whose inverse is denoted by
G−1 = (gij)1�i,j�d and the functions gij and gij are smooth on V . Let (x1, . . . , xd)
be the local coordinates of the chart ϕ and e0 = (∂/∂x1, . . . , ∂/∂xd) be a basis of
E. For (t, x) ∈ Δ(V ) and 1 � i � d, b(t, x, e0,i) = ej

i (t)e0,j , where (see Abraham &
Marsden 1985)

ej
i (t) = ej

i,0 −
∫ t

0
Γ j

kl(xs)ek
i (s)ẋl

s ds.

The functions

Γ i
lk(x) = Γ i

kl(x) = 1
2gih(x)

(
∂ghk

∂xl
(x) +

∂ghl

∂xk
(x) − ∂gkl

∂xh
(x)

)
are the Christoffel symbols of (M, G). If we denote by IE the identity matrix of
E, we can write b(t, x)TG(xt)b(t, x) = IE (see Abraham & Marsden 1985) and
then tr{b(t, x)b(t, x)T} = tr{G−1(xt)}, which shows the boundedness of (t, x) �→
b(t, x), which can also be seen on the definition of b in (2.3). Let χ be as in
(3.1). Throughout this paper we denote by ‖ · ‖∞,t the uniform norm on the space
C0([0, t], E) of continuous maps from [0, t] to E, t > 0.

Lemma 3.1. Define ζ on C0([0, t], E) by ζ(u) = χ(u)u. Then ζ is Lipschitz
continuous from C0([0, t], E) to itself.

Proof . Clear. �

Let (t, x) ∈ Δ(V ); we first define tUx , which is the first exit time out of U :

tUx = inf{s � t, x(s) /∈ U} ∧ T.



We now let
x̃ = χ(x)x

and x̃ coincides with x on the interval [0, tUx ]. Moreover, the following estimates are
straightforward:

‖x̃‖∞,t � Cϕ, ‖ ˙̃x‖∞,t � Cϕ‖ẋ‖∞,t, (3.2)

and, if (t, y) ∈ Δ(V ),

‖x̃ − ỹ‖∞,t + ‖ ˙̃x − ˙̃y‖∞,t � Cϕ(‖ẋ‖∞,t + ‖ẏ‖∞,t)(‖x − y‖∞,t + ‖ẋ − ẏ‖∞,t), (3.3)

with Cϕ depending only on U , V and ϕ. The verification of these estimates is straight-
forward and left to the reader.

Definition 3.2. We let, for all (t, x) ∈ D(E),

b̃(t, x) = b(t, x̃), (3.4)
ν̃(t, x) = ν(t, x̃), (3.5)
σ̃(t, x) = σ(t, x̃), (3.6)

Ã(t, x) = A(t, x̃). (3.7)

Lemma 3.3. The maps b̃, ν̃ and σ̃ grow at most linearly, that is, for all ((t, x), v) ∈
Δ(E) × E,

‖ν̃(t, x, v)‖ + ‖σ̃(t, x, v)‖ + ‖b̃(t, x, v)‖ � Cϕ(‖x‖∞,t + ‖ẋ‖∞,t + ‖v‖).

Proof . We know that a constant Cϕ exists so that for all ((t, x), v) ∈ Δ(E) × E,
‖b̃(t, x, v)‖ � Cϕ‖v‖ and ‖(b̃(t, x))−1v‖ � Cϕ‖v‖. Since τ(ψ(x̃))τ̄(x0, ψ(x̃)(0)) is an
isometry between E and Tψ(x̃)(t)M and using assumption 2.3, the result holds. �

The functions b̃, ν̃ and σ̃ are not Lipschitz continuous with respect to x and v.
We replace them by Lipschitz continuous approximations as follows. For n ∈ N∗,
let Un = B(0, n), Vn = B(0, n + 1) and χn be the map associated to these bounded
open sets. All constants depending only on n are denoted by Cn and by Cϕn if they
depend on ϕ and n. For (t, x) ∈ Δ(E), let us define

xn(s) = x(0) +
∫ s

0
χn(ẋ(u))ẋ(u) du,

and clearly
‖ẋn‖∞,t � n + 1. (3.8)

Using lemma 3.1, for all (t, y) ∈ Δ(E), we have

‖xn − yn‖∞,t + ‖ẋn − ẏn‖∞,t � Cϕn(‖x(0) − y(0)‖ + ‖ẋ − ẏ‖∞,t). (3.9)

If tnx = inf{s � t, ‖ẋ(s)‖ � n} ∧ T , xn = x on [0, tnx ].

Definition 3.4. We let for all (t, x, v) ∈ Δ(E) × E,

bn(t, x, v) = b̃(t, xn,projB̄(0,n)v), (3.10)

νn(t, x, v) = ν̃(t, xn,projB̄(0,n)v), (3.11)

σn(t, x, v) = σ̃(t, xn,projB̄(0,n)v), (3.12)

An(t, x, v) = Ã(t, xn, v). (3.13)



We give now several results on the above introduced functions.

Lemma 3.5. The functions bn and b̃ verify

∀(t, x) ∈ Δ(E), ∀v ∈ B̄(0, n), ∀s � tnx , bn(s, x/[0,s], v) = b̃(s, x/[0,s], v).

Proof . Indeed by definition of bn,

bn(s, x/[0,s], v) = b̃(s, xn/[0,s],projB̄(0,n)v) = b̃(s, x/[0,s], v),

since s � tnx = inf{u � t, ‖ẋ(u)‖ � n}. �

Remark 3.6. With the help of remark 2.7 and the definitions of νn, σn and An,
the same equality occurs for νn, σn and An.

Lemma 3.7. Operators A(t, x) and An(t, x) are multivalued, maximal and mono-
tone on E for all (t, x) ∈ Δ(E).

Proof . This is a direct consequence of the fact that the transport operator is an
isometry. �

Remark 3.8. The functions bn, νn and σn grow at most linearly, thanks to
lemma 3.3.

Lemma 3.9. The maps bn(t, ., .), (b(t, ·̃n)−1, νn(t, ., .) and σn(t, ., .) are Lipschitz
continuous functions: for all ((t, x), (t, y), v, u) ∈ (Δ(E))2 × E2,

‖bn(t, x, v) − bn(t, y, u)‖ + ‖(b(t, x̃n))−1v − (b(t, ỹn))−1u‖
+ ‖νn(t, x, v) − νn(t, y, u)‖ + ‖σn(t, x, v) − σn(t, y, u)‖

� Cϕn(‖x − y‖∞,t + ‖ẋ − ẏ‖∞,t + ‖v − u‖). (3.14)

Proof . If we write b̃(t, x) = E(t) and b̃(t, y) = F (t), by definition of b̃ we have
Ė(t) = L(x̃, t)E(t) and Ḟ (t) = L(ỹ, t)F (t), where L(ρ, t) maps linearly the set of
invertible square matrices of dimension d × d into itself and is defined by

(L(ρ, s)A)j
i = −Γ j

kl(ρ(s))Ak
i ρ̇l

s, s � t,

for all ρ in Δ(V ) and matrix A. We begin by writing

|[L(x̃, s)E(s) − L(ỹ, s)E(s)]ji | = |Γ j
kl(ỹ(s))Ek

i (s) ˙̃yl
s − Γ j

kl(x̃(s))Ek
i (s) ˙̃xl

s|
� |(Γ j

kl(ỹ(s)) − Γ j
kl(x̃(s)))Ek

i (s) ˙̃ys|
+ ‖Γ j

kl(x̃(s))Ek
i (s)( ˙̃ys − ˙̃xs)‖

� Cϕ(‖ ˙̃y‖∞,t.‖x̃ − ỹ‖∞,t + ‖ ˙̃y − ˙̃x‖∞,t).

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3.15)

We comment here on the last line of (3.15): it is the term ‖ ˙̃y‖∞,t‖x̃ − ỹ‖∞,t which
prevents b̃ from being Lipschitz continuous with respect to x, since ‖ ˙̃y‖∞,t does not
have to be bounded. There may exist a geometrical proof showing that b̃ is Lipschitz
continuous, under appropriate assumptions on the curvature tensor. Let us define
En(t) = b(t, x̃n) and Fn(t) = b(t, ỹn). Since

En(t) = IE −
∫ t

0
L(x̃n, s)En(s) ds



and

Fn(t) = IE −
∫ t

0
L(ỹn, s)Fn(s) ds,

we have

‖En(s) − Fn(s)‖ �
∫ s

0
‖L(ỹn, u)Fn(u) − L(ỹn, u)En(u)‖ du

+
∫ s

0
‖(L(ỹn, u) − L(x̃n, u))En(u)‖ du,

and then

sup
0�s�t

‖En(s) − Fn(s)‖ � sup
0�s�t

‖L(ỹn, s)‖
∫ t

0
sup

0�u�s
‖En(u) − Fn(u)‖ ds

+ Cϕ(‖ ˙̃yn‖∞,t‖x̃n − ỹn‖∞,t + ‖ ˙̃yn − ˙̃xn‖∞,t).

Using (3.2), (3.8) and the continuity of the functions (Γ j
kl)k,l,j , we have

sup
0�s�t

‖L(ỹn, s)‖ � Cϕn‖ ˙̃yn‖∞,t � Cϕn(n + 1).

Using the Gronwall’s lemma and inequalities (3.2), (3.3), (3.8), (3.9), we have

‖En(t) − Fn(t)‖ � Cϕn(‖x − y‖∞,t + ‖ẏ − ẋ‖∞,t).

This last inequality and the definition of bn lead to:

‖bn(t, x, v) − bn(t, y, u)‖ � Cϕn(‖x − y‖∞,t + ‖ẋ − ẏ‖∞,t + ‖v − u‖).

Since b(t, x)TG(xt)b(t, x) = IE and x �→ G(x) is of class C1, the last inequality
is valid for (b(t, x̃n))−1 and (b(t, ỹn))−1 instead of bn(t, x, .) and bn(t, y, .). Using
expressions defining νn and σn in terms of bn, b−1

n , ν′ and σ′, the assumptions 2.4,
2.3 and inequality ‖bn(t, x, v)‖ � Cϕn we obtain easily the Lipschitz continuity of νn

and σn. �

Lemma 3.10. For all (t, x) ∈ Δ(E), 0 � s � t and u ∈ E, the following estimates
hold:

‖bn(s, x/[0,s], u) − bn(t, x, u)‖ � Cϕn|t − s|,
‖b(s, x/[0,s])−1u − b(t, x)−1u‖ � Cϕn|t − s|,
‖νn(s, x/[0,s], u) − νn(t, x, u)‖ � Cϕn
(|t − s|),
‖σn(s, x/[0,s], u) − σn(t, x, u)‖ � Cϕn
(|t − s|).

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (3.16)

Proof . With the notation and intermediary results of lemma 3.9, we can write

‖bn(s, x/[0,s], u) − bn(t, x, u)‖ = ‖(b(s, x̃n/[0,s]) − b(t, x̃n)).projB̄(0,n)u‖
� n‖b(s, x̃n/[0,s]) − b(t, x̃n)‖ = n‖En(s) − En(t)‖
� Cϕn|t − s|‖ ˙̃xn‖∞,t � Cϕn|t − s|.

Using this last inequality and the assumption 2.4 we obtain the result. �



Lemma 3.11. Let (T, x) ∈ Δ(E). Then there exists λ0 > 0 such that αλ : u �→
(I + λAn(u, x/[0,u], .))−1(z) is continuous on [0, T ] for any 0 < λ � λ0, z ∈ E.

Proof . For (t, s) ∈ [0, T ]2, we can write

z − αλ
t

λ
∈ An(t, x/[0,t], α

λ
t ) and

z − αλ
s

λ
∈ An(s, x/[0,s], α

λ
s ).

Using the monotonicity, we have then

‖αλ
t − αλ

s ‖2 = λ

(
αλ

t − αλ
s ,

αλ
t − z

λ
+

z − αλ
s

λ

)
= 2λ

(
αλ

t − αλ
t + αλ

s

2
,
αλ

t − z

λ
+ β1

)
− λ(αλ

t − αλ
s , β1 − β2)

+ 2λ

(
αλ

s + αλ
t

2
− αλ

s , β2 − z − αλ
s

λ

)
� λ(αλ

t − αλ
s , β2 − β1) � 1

2λ‖αλ
t − αλ

s ‖2 + 1
2λ‖β1 − β2‖2,

with β1 = projAn(t,x/[0,t],(αλ
s +αλ

t )/2)0 and β2 = projAn(s,x/[0,s],(αλ
s +αλ

t )/2)0. By assump-
tion 2.5, we have

‖αλ
t − αλ

s ‖2 � λCϕn(
2(|t − s|) + |αλ
t − αλ

s |2 + ‖xt − xs‖2)

and it is possible to choose λ0(ϕ, n) > 0 such that for all λ � λ0, αλ is continuous
on [0, T ]. �

Remark 3.12. We note that λ0 depends only on n and ϕ.

Lemma 3.13. Let r and r′ be continuous functions from [0, t] into [0, T ], where t
verifies 0 � t � T . If we set tr = sup0�s�t r(s) and tr′ = sup0�s�t r′(s), we consider
(tr, x) and (tr′ , x′) elements of Δ(E). Let us assume the existence of continuous
functions v, v′, K and K ′ from [0, t] into E such that

(i) K and K ′ are functions with bounded variations on [0, t];

(ii) dKs ∈ An(r(s), x/[0,r(s)], v(s)) ds and dK ′
s ∈ An(r′(s), x′

/[0,r′(s)], v
′(s)) ds, that

is, the measures
(vs − αs, dKs − βs ds)

and
(v′

s − α′
s, dK ′

s − β′
s ds)

are non-negative on [0, t] for any choice of continuous functions α, α′, β, β′ :
[0, t] → E verifying

∀s ∈ [0, t], (αs, βs) ∈ Gr(An(r(s), x/[0,r(s)]))

and
(α′

s, β
′
s) ∈ Gr(An(r′(s), x′

/[0,r′(s)])),



where Gr(B) denotes the graph of the multivalued operator B defined on the
whole space E, i.e. the set {(x, y) ∈ E2, y ∈ B(x)}. Then there exists a map
Cϕn : [0, t] → R+ such that the measure

(v′
s − vs, dK ′

s − dKs) + Cϕn(s)(‖x − x′‖2
∞,r(s)∧r′(s) + ‖v − v′‖2

∞,s

+ ‖x(r(s)) − x′(r′(s))‖2 + 
2(|r(s) − r′(s)|)) ds (3.17)

is non-negative on [0, t].

Remark 3.14. In the case where An is independent of t and x, the first term
in (3.17) is already non-negative; the extra terms account for the dependency on t
and x.

Proof . For p ∈ N∗ and s ∈ [0, t], let us define

αp(s) = (I + An(r(s), x/[0,r(s)])/p)−1((v(s) + v′(s))/2),

βp(s) = p((v(s) + v′(s))/2 − αp(s)),

α′
p(s) = (I + An(r′(s), x′

/[0,r′(s)])/p)−1((v(s) + v′(s))/2),

and

β′
p(s) = p((v(s) + v′(s))/2 − α′

p(s)).

If c : [0, t] → E is continuous, the function

γp : s �→ (I + 1/pAn(r(s), x/[0,r(s)]))−1(c(s))

is continuous for p � p0, where p0 depends on n and ϕ. This results from lemma 3.11.
We can conclude that αp, α′

p, βp and β′
p are continuous on [0, t].

By hypothesis (ii) we can write

(v(s) − αp(s), dK(s) − βp(s) ds) � 0

and
(v′(s) − α′

p(s), dK ′(s) − β′
p(s) ds) � 0.

By summation of these last inequalities, we have

(v(s) − αp(s), dK(s)) + (v′(s) − α′
p(s), dK ′(s))

− (v(s) − αp(s), βp(s) ds) − (v′(s) − α′
p(s), β

′
p(s) ds) � 0. (3.18)

By results of Brézis (1973),

lim
p→+∞ αp(s) = lim

p→+∞ α′
p(s) = 1

2(v(s) + v′(s)),

lim
p→+∞ βp(s) = A0

n(r(s), x/[0,r(s)],
1
2(v(s) + v′(s)))

and

lim
p→+∞ β′

p(s) = A0
n(r′(s), x′

/[0,r′(s)],
1
2(v(s) + v′(s))),



where A0
n(r(s), x/[0,r(s)]) (respectively, A0

n(r′(s), x′
/[0,r′(s)])) denotes the principal

section of An(r(s), x/[0,r(s)]) (respectively, of An(r′(t), x′
/[0,r′(t)])). Inequality (3.18)

implies then

(v(s) − v′(s), dK ′(s) − dK(s))

� (v(s) − v′(s), A0
n(r(s), x/[0,r(s)],

1
2(v(s) + v′(s)))

− A0
n(r′(s), x′

/[0,r′(s)],
1
2(v(s) + v′(s))))

� 1
2‖v(s) − v′(s)‖2

+ 1
2‖A0

n(r(s), x/[0,r(s)],
1
2(v(s) + v′(s))) − A0

n(r′(s), x′
/[0,r′(s)],

1
2(v(s) + v′(s)))‖2.

This last inequality and assumption 2.5 yields the result. �

4. Existence of solutions in E

In order to obtain the existence of a solution we will use the results of Cépa (1998),
which ensure the existence of solutions to the MSDE of the following type:

dXt + B(Xt) dt � α(Xt) dt + β(Xt) dWt,

where B is a maximal monotone operator on E and α and β verify the classical Lip-
schitz and linear growth conditions. If the probability space is (Ω, G,G0�t�T , Q) and
the initial condition is G0-measurable, then the solution is Gt-adapted and belongs
to L2(Ω, C0([0, T ], E)).

Remark 4.1. It is crucial for the following to remark that the results of Cépa
(1998) can be extended to random operator B and random maps α and β for which
we have the following properties.

(i) There exists a constant C > 0 such that for all x ∈ E and y ∈ E,

‖α(x)‖ + ‖β(x)‖ � C(1 + ‖x‖) a.s.,
‖α(x) − α(y)‖ + ‖β(x) − β(y)‖ � C‖x − y‖ a.s.

(ii) There exists a constant R > 0 and M > 0 such that

∀x ∈ E, ‖x‖ � R =⇒ (∀y ∈ B(x), ‖y‖ � M) a.s.

(iii) The maps α and β are, respectively, G0 ⊗ B(E),B(E)-measurable and G0 ⊗
B(E),B(Ed)-measurable, where B(O) denotes the Borel σ-algebra of the topo-
logical set O.

(iv) For all maps Y, Z : Ω → E such that Z ∈ B(Y ) almost surely, if Y is G0-
measurable, then Z is G0-measurable.

We give here a lemma which will be useful.

Lemma 4.2. For all c ∈ E, t ∈ [0, T ] and continuous map v : [0, t] → E there
exists a unique C1 map x : [0, t] → E such that{

ẋ(s) = b(s, x/[0,s], v(s)),

x(0) = c.



Proof . The space Z = C1([0, t], E) is a Banach space when equipped with the
norm ‖f‖ = ‖f‖ + ‖df/dt‖. For f ∈ Z, let L(f) ∈ Z be defined by L(f)(s) =
c +

∫ s

0 b(u, f/[0,u], v(u)) du. Using lemma 3.9, Lm is strictly contracting for large
enough m. We infer the existence of the solution on [0, t] by application of the
Banach fixed point theorem on Z. �

The construction of a solution is performed in several steps. We replace first the v
equation by an equation which contains only the initial data, and we can integrate
it with the help of Cépa’s results. We then integrate the x equation according to
lemma 4.2. This gives an approximate solution on an interval [0, t1]. Assuming this
interval to be small, we restart the process: we integrate an approximate v equation on
[t1, t2] by using only the x data from the previous interval, which is possible thanks
to Cépa’s results. The process is recursive and yields an approximate solution on
[0, T ], the approximation parameter being the size of the subintervals. We take this
size to be T/2p, and we compare the approximate solutions for the integers p and q,
and we show by stochastic techniques that the expectation of appropriate norms of
the difference tends to 0.

Theorem 4.3. For all n � 1, there exists a solution to the following system

δxn
t = bn(t, xn

/[0,t], v
n
t ) dt,

δvn
t + An(t, xn

/[0,t], v
n
t ) dt

� νn(t, xn
/[0,t], v

n
t ) dt + σ(t, xn

/[0,t], v
n
t )δWt, 0 � t � T,

(x(0), v(0)) = (η1, η2).

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (4.1)

Proof . To lighten the notations, we denote bn, νn, σn and An by b, ν, σ and A.

Step 1 (Construction of the approximate solution). We denote by si(t, ξ, v)
the square of the norm of the ith row (considered as an E-valued vector) of σ(t, ξ, v)
for all (t, ξ) ∈ Δ(E) and v ∈ E. We define then

α(t, ξ, v) = ν(t, ξ, v) +
∂

∂v
{(s1(t, ξ, v), . . . , sd(t, ξ, v))T}. (4.2)

We consider now, for p ∈ N∗, the uniform partition 0 < tp1 < · · · < tp2p = T of [0, T ]
with step size T/2p and we construct two processes xp and vp as follows. To simplify
the notation we denote tpi by ti. Results of Cépa mentioned in the beginning of the
section, remarks 4.1 and 2.6, (3.14), (3.16), assumptions 2.2 and 2.3 give a solution
vp of the Itô MSDE on [0, t1]:

dvp
t + A(0, η1, v

p
t ) dt � α(0, η1, v

p
t ) dt + σ(0, η1, v

p
t ) dWt,

vp(0) = η2.

}
(4.3)

By definition of α and using the relation between the Itô integral and the Stratono-
vich integral, equation (4.3) is equivalent to the following Stratonovich MSDE

δvp
t + A(0, η1, v

p
t ) dt � ν(0, η1, v

p
t ) dt + σ(0, η1, v

p
t )δWt,

}
(4.4)

vp(0) = η2.



Using lemma 4.2, let xp be the solution on [0, t1] to{
ẋp(s) = b(s, xp

/[0,s], v
p(s)),

xp(0) = η1.

Suppose (xp, vp) defined on [0, t1]∪· · ·∪ [ti−1, ti] = [0, ti] and consider the solution
(vp

t )ti�t�ti+1 on [ti, ti+1] of the MSDE{
δvp

t + A(ti, x
p
/[0,ti]

, vp
t ) dt � ν(ti, x

p
/[0,ti]

, vp
t ) dt + σ(ti, x

p
/[0,ti]

, vp
t )δWt,

vp(t+i ) = vp(t−i ),

and xp the solution on [ti, ti+1] to

ẋp(s) = b(s, xp
/[0,s], v

p
s ),

xp(t+i ) = xp(t−i ).

}
(4.5)

Since (vp
t )0�t�T belongs to L2(Ω, C0([0, T ], E)) and ‖b(s, f)‖ � Cϕ for all (s, f) ∈

Δ(E), (xp
t )0�t�T belongs to L2(Ω, C1([0, T ], E)).

Step 2 (the approximate solutions form a Cauchy sequence). We will now
show that (xp

t , v
p
t )0�t�T is a Cauchy sequence of L2(Ω, C0([0, T ], E)×C1([0, T ], E)).

Let 1 � p � q be integers and denote by 0 = t0 < t1 < · · · < t2q−p < · · · <
t2q−p+1 < · · · < t2q = T the partition of [0, T ] associated to q. We note that 0 <
t2q−p < t2.2q−p < · · · < tk.2q−p < · · · < t2q = T is the partition associated with p. Let
s ∈ [0, T ] and put r1(s) = t�s2q� and r2(s) = t�s2p�. We then have

vq
s − vp

s =
∫ s

0
(ν(r1(u), xq

/[0,r1(u)], v
q
u) − ν(r2(u), xp

/[0,r2(u)], v
p
u)) du

+
∫ s

0
(σ(r1(u), xq

/[0,r1(u)], v
q
u) − σ(r2(u), xp

/[0,r2(u)], v
p
u))δWu

+ Kp
s − Kq

s

with
dKq

u ∈ A(r1(u), xq
/[0,r1(u)], v

q
u) du, 0 � u � s,

and
dKp

u ∈ A(r2(u), xp
/[0,r2(u)], v

p
u) du, 0 � u � s.

Using Itô’s formula, we can write

‖vq
s − vp

s‖2 = 2
∫ s

0
(vq

u − vp
u, δvq

u − δvp
u)

= 2
∫ s

0
(α(r1(u), xq

/[0,r1(u)], v
q
u) − α(r2(u), xp

/[0,r2(u)], v
p
u), vq

u − vp
u) du

+ 2
∫ s

0
‖σ(r1(u), xq

/[0,r1(u)], v
q
u) − σ(r2(u), xp

/[0,r2(u)], v
p
u)‖2 du

+ 2
∫ s

0
(σ(r1(u), xq

/[0,r1(u)], v
q
u) − σ(r2(u), xp

/[0,r2(u)], v
p
u), vq

u − vp
u) dWu

+ 2
∫ s

0
(vq

u − vp
u, dKp

u − dKq
u),



where the norm of matrices is defined by ‖B‖2 = tr{BTB}. Using lemmas 3.10,
3.9, the assumptions 2.2 and 2.3, Cauchy–Schwarz’s and Burkholder–Gundy–Davis’s
inequalities and denoting r(p, q) = sup0�s�T |r1(s)−r2(s)|, which tends to zero when
p and q tend to infinity, we have

E sup
0�s�t

‖vq
s − vp

s‖2

� Cϕn
2(r(p, q)) + Cϕn

∫ t

0
(E‖xp − xq‖2

∞,s + E‖ẋp − ẋq‖2
∞,s + E‖vp − vq‖2

∞,s) ds

+ CϕnE

√∫ t

0
[
2(r(p, q))+‖xp−xq‖2∞,s+‖ẋp−ẋq‖2∞,s+‖vp−vq‖2∞,s]‖vq

s −vp
s‖2 ds

+ 2E sup
0�s�t

�s2q�∑
i=1

∫ ti

ti−1

(vq
u − vp

u, dKp
u − dKq

u) +
∫ t

t�s2q�
(vq

u − vp
u, dKp

u − dKq
u).

Using the inequalities
√

a + b �
√

a +
√

b, ab � (1/δ)a2 + δb2 (δ > 0)

and lemma 3.13 for the intervals [ti−1, ti] (on each of them we put r = r1 and r′ = r2),
we have

E sup
0�s�t

‖vq
s − vp

s‖2

� Cϕn
2(r(p, q)) + CϕnδE sup
0�s�t

‖vq
s − vp

s‖2

+
Cϕn

δ

∫ t

0
(E‖xp − xq‖2

∞,s + E‖ẋp − ẋq‖2
∞,s + E‖vp − vq‖2

∞,s) ds

+ CϕnE sup
0�s�t

(�s2q�∑
i=1

∫ ti

ti−1

(
2(r(p, q)) + ‖xp − xq‖2
∞,u

+ ‖ẋp − ẋq‖2
∞,u + ‖vp − vq‖2

∞,u) du

+
∫ t

t�s2q�
(
2(r(p, q)) + ‖xp − xq‖2

∞,u

+ ‖ẋp − ẋq‖2
∞,u + ‖vp − vq‖2

∞,u) du

)
.

Choosing δ such that Cϕnδ = 1/2, we can write

E sup
0�s�t

‖vq
s − vp

s‖2

� Cϕn
2(r(p, q)) + Cϕn

∫ t

0
(E‖xp − xq‖2

∞,s + E‖ẋp − ẋq‖2
∞,s + E‖vp − vq‖2

∞,s) ds.

(4.6)



Moreover, by lemmas 3.10 and 3.9, we have

E sup
0�s�t

‖ẋq
s − ẋp

s‖2

� Cϕn
2(r(p, q)) + Cϕn

∫ t

0
(E‖xp − xq‖2

∞,s + E‖ẋp − ẋq‖2
∞,s + E‖vp − vq‖2

∞,s) ds

(4.7)

and

E sup
0�s�t

‖xq
s − xp

s‖2

� Cϕn
2(r(p, q)) + Cϕn

∫ t

0
(E‖xp − xq‖2

∞,s + E‖ẋp − ẋq‖2
∞,s + E‖vp − vq‖2

∞,s) ds.

(4.8)

The inequalities (4.6)–(4.8) imply that

E(‖xq − xp‖2 + ‖ẋq − ẋp‖2
∞,t + ‖vq − vp‖2)

� Cϕn
2(r(p, q)) + Cϕn

∫ t

0
E(‖xp − xq‖2

∞,s + ‖ẋp − ẋq‖2
∞,s + ‖vp − vq‖2

∞,s) ds,

and the application of Gronwall’s lemma yields

E(‖xq − xp‖2 + ‖ẋq − ẋp‖2
∞,t + ‖vq − vp‖2) � Cϕn
2(r(p, q))

and the sequence (xp, vp) is a Cauchy sequence in L2(Ω, C1([0, T ], E)×C0([0, T ], E))
and there exists then a stochastic process (x, v) which is the limit of (xp, vp).

To complete the proof of existence we must prove that (x, v) verifies the MSDE.
For this it remains to show that (Kp)p�1 converges almost surely towards a process
(Kt)0�t�T with bounded variation on [0, T ] and verifying dKt ∈ A(t, x/[0,t], vt) dt.
Since (xp, vp) converges in L2(Ω, C1([0, T ], E) × C0([0, T ], E)), there exists a subse-
quence, which is still denoted by p, such that (xp, vp) tends almost surely to (x, v)
in C1([0, T ], E) × C0([0, T ], E). It follows that Kp tends almost surely to a process
K in C0([0, T ], E).

Step 3 (uniform estimation of the total variation of K on [0, T ]). For
each p ∈ N∗, we consider the above partition 0 < tp1 < · · · < tp2p = T of [0, T ] and we
denote by rp(t) the tpi such that tpi � t < tpi+1.

Lemma 4.4. There exists a random variable almost surely non-negative which
estimates from above for all p the total variation |Kp|T of Kp on [0, T ].

Proof . Let γ be a positive real and Λ(γ, V ′) = {(t, y, v) ∈ [0, T ] × TM, y ∈
V ′, ‖v‖y � γ}. By remark 2.6,

μ = sup
(t,y,v)∈Λ(γ,V ′)

‖A′(t, y, v)‖y (4.9)



is finite. We apply proposition 4.4 of Cépa (1998) (with a = 0 and γ) to the process
(vp, Kp) on each [tpi , t

p
i+1] to obtain for all 0 � s � t � T

γ|Kp|ts �
l∑

i=k

γ|Kp|ti+1
ti

+ γ|Kp|tk
s + γ|Kp|ttl

�
l∑

i=k

{∫ ti+1

ti

(vp(u), dKp(u))
}

+
∫ tl

t

(vp(u), dKp(u))

+
∫ tk

s

(vp(u), dKp(u))

+
l∑

i=k

{
μ

∫ ti+1

ti

‖vp(u)‖ du + γμ(ti+1 − ti)
}

+ μ

∫ tk

s

‖vp(u)‖ du + γμ(tk − s)

+ μ

∫ t

tl

‖vp(u)‖ du + γμ(t − tl)

=
∫ t

s

(vp(u), dKp(u)) + μ

∫ t

s

‖vp(u)‖ du + γμ(t − s), (4.10)

where tk and tl verify tk−1 < s � tk and tl � t < tl+1. Otherwise, with wp = vp+Kp,
we have

‖vp(t)‖2 = ‖wp(t)‖2 − 2
∫ t

0
(vp(u), dKp(u)) + 2

∫ t

0
(wp(u) − wp(t), dKp(u))

and

−‖vp(s)‖2 = −‖wp(s)‖2 + 2
∫ s

0
(vp(u), dKp(u)) − 2

∫ s

0
(wp(u) − wp(s), dKp(u)).

By summation of the two last equalities and using the inequality (4.10), we can write

2[γ − sup{‖wp(u) − wp(v)‖, |u − v| � |t − s|}]|Kp|ts � Cϕn(ω),

since vp, Kp and wp are almost surely uniformly bounded with p on [0, T ]. Recalling
that (wp)p�1 converges uniformly towards a continuous function w we can conclude
by Ascoli’s theorem that there exists ηϕn(ω) > 0 such that sup{‖wp(u)−wp(v)‖, |u−
v| � ηϕn} � γ/2 and then |Kp|ts � Cϕn(ω)/γ. If 0 = s0 < s1 < · · · < sN = T is a
partition of [0, T ] such that si+1 − si � ηϕn, then

|Kp|T �
N−1∑
i=0

|Kp|si+1
si

� Nϕn
Cϕn(ω)

γ
.

�

This last result implies that K is almost surely with bounded variation on [0, T ]
and for all sequences of processes ϕp ∈ C([0, T ], E) converging almost surely in



C([0, T ], E ) to a process ϕ, then (see Saisho (1987) for more details):

lim
p→+∞

∫ t

s

(ϕp(u), dKp(u)) =
∫ t

s

(ϕ(u), dK(u)), 0 � s � t � T. (4.11)

Step 4 (end of the proof). Let α, β : [0, T ] → E be two continuous functions
such that βt belongs to A(t, x/[0,t], αt). Let us set βp(t) = projKp(t)βt with Kp(t) =
A(rp(t), x

p
/[0,rp(t)], αt). By assumption 2.5,

‖βp(t) − β(t)‖ � Cϕn(ω)(‖x − xp‖∞,rp(t) + ‖x(t) − xp(rp(t))‖ + 
(|t − rp(t)|))
and then (βp)p converges almost surely uniformly to β. Moreover, βp is almost surely
continuous on each [tpi , t

p
i+1[ and then∫ tp

i+1

tp
i

(vp(u) − α(u), dKp(u) − βp(u) du) � 0.

We deduce from this last inequality, (4.11) and the dominated Lebesgue theorem
that ∫ t

s

(v(u) − α(u), dK(u) − β(u) du) � 0, 0 � s � t � T,

which is the definition of dK(t) ∈ A(t, x/[0,t], vt) dt. �

5. Existence and uniqueness in the local chart

(a) Existence

We return to the notation bn, νn, σn and An, and n will tend to infinity. Let τn be the
stopping time defined by τn(ω) = inf{t � T, ‖ẋn

t (ω)‖ � n or ‖vn
t (ω)‖ � n}. Clearly,

(τn)n�1 is a non-decreasing sequence of stopping times and (xn
t , vn

t ) = (xm
t , vm

t )
almost surely on [0, τn] for all n � m. We note then τ = limn→+∞ τn and we put,
for 0 � t < τ(ω), x(t, ω) = xn(t, ω) and v(t, ω) = vn(t, ω), where n is such that
t � τn(ω). Therefore, by theorem 4.3 and lemma 3.5, (x, v) verifies:

δxt = b̃(t, x/[0,t], vt) dt

δvt + Ã(t, x/[0,t], vt) dt

� ν̃(t, x/[0,t], vt) dt + σ̃(t, x/[0,t], vt)δWt, 0 � t < τ,

(x(0), v(0)) = (η1, η2).

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (5.1)

Lemma 5.1. Almost surely, τ = T .

Proof . It suffices to prove for all t � T ,

lim
n→+∞ P{τn � t} = 0.

Let t < T , n � 1. Since for all 0 � s � t ∧ τn, ẋs = b̃(s, x/[0,s], vs),

‖ẋs‖ � Cϕ‖vs‖, (5.2)



and therefore, since t < T ,

‖xs‖ � ‖η1‖ + Cϕ‖v‖∞,s. (5.3)

We write

‖vs∧τn
‖2 = ‖η2‖2 + 2

∫ s∧τn

0
(vu, δvu)

= ‖η2‖2 + 2
∫ s∧τn

0
(vu, α(u, x/[0,u], vu)) du

+ 2
∫ s∧τn

0
tr{σ(u, x/[0,u], vu)Tσ(u, x/[0,u], vu)} du

− 2
∫ s∧τn

0
(vu, dKu)

+ 2
∫ s∧τn

0
(vu, σ(u, x/[0,u], vu)) dWu.

Let 0 � u � v � T . With the same notation of lemma 4.4 and by (4.10),

γ|Kp|vu �
∫ v

u

(vp(s), dKp(s)) + μ

∫ v

u

‖vp(s)‖ds + γμ(v − u),

and then, when p tends to infinity,

−
∫ v

u

(v(s), dK(s)) � μ

∫ v

u

‖v(s)‖ds + γμ(v − u). (5.4)

Lemma 3.3 gives the growth properties of b̃, ν̃ and σ̃ and then, by assumption 2.3,
the growth property of α. Using this lemma, (5.4) with u = 0 and v = s ∧ τn, the
Cauchy–Schwarz inequality and writing μ‖v(s)‖ � (μ2 + ‖v(s)‖2)/2, we have

‖vs∧τn
‖2 � ‖η2‖2 + Cϕ + Cϕ

∫ s∧τn

0
‖vu‖2 du

+ Cϕ

∫ s∧τn

0
(1 + ‖x‖∞,u + ‖ẋ‖∞,u + ‖v‖∞,u)2 du

+ 2
∫ s∧τn

0
(vu, σ(u, x/[0,u], vu)) dWu.

Taking the suprema and the expectation in the last inequality, using the assump-
tions 2.3 and 2.4, inequality ab � ((1/ε)a2 + εb2)/2, ε > 0, the Burkhölder–Gundy–
Davis inequalities, (5.2) and (5.3)

E sup
0�s�t

‖vs∧τn‖2 � Cϕ + Cϕ

∫ t

0
E sup

0�u�s
‖vu∧τn‖2 ds

+ CϕE1/2
{∫ t

0
‖vs‖2(1 + ‖v‖2

∞,s) ds

}
and then

E sup
0�s�t

‖vs∧τn
‖2 � Cϕ + Cϕ

∫ t

0
E sup

0�u�s
‖vu∧τn

‖2 ds + 1
2E sup

0�s�t
‖vs∧τn

‖2,



and the Gronwall lemma yields

E‖vt∧τn‖2 � Cϕ

and by (5.2),

E‖ẋt∧τn‖2 � Cϕ.

Now,

E(‖vt∧τn
‖2 + ‖ẋt∧τn

‖2) =
∫

Ω

(‖vt∧τn
‖2 + ‖ẋt∧τn

‖2) dP

�
∫

{τn�t}
(‖vt∧τn

‖2 + ‖ẋt∧τn
‖2) dP

� n2P(τn � t)

and then

P(τn � t) � Cϕ

n2 ,

which completes the proof. �

Theorem 5.2. There exists a solution to the system⎧⎪⎨⎪⎩
δxt = b̃(t, x/[0,t], vt) dt,

δvt + Ã(t, x/[0,t], vt) dt � ν̃(t, x/[0,t], vt) dt + σ̃(t, x/[0,t], vt)δWt, 0 � t < T,

(x(0), v(0)) = (η1, η2).

Proof . Since τ = T , the construction of (x, v) from (xn, vn) and theorem 4.3 give
the result. �

By definition of b̃, Ã, ν̃ and σ̃, if we put τU = inf{t < T, x(t) /∈ U} ∧ T ,
(xt, vt)0�t<τU

verifies⎧⎪⎨⎪⎩
δxt = b(t, x/[0,t], vt) dt,

δvt + A(t, x/[0,t], vt) dt � ν(t, x/[0,t], vt) dt + σ(t, x/[0,t], vt)δWt, 0 � t < τU ,

(x(0), v(0)) = (η1, η2).

Remark 5.3. We can remark that the process (xt, vt)0�t<τU
is Ft-adapted.

(b) Uniqueness

We have the following proposition.

Proposition 5.4. Let (x, v) and (x′, v′) be solutions to (4.1), then x = x′ almost
surely and v = v′ almost surely.

Proc. R. Soc. Lond. A (2004)



Proof . Indeed, by Itô’s formula,

‖vt − v′
t‖2 = 2

∫ t

0
(vs − v′

s, δvs − δv′
s)

= 2
∫ t

0
(νn(s, x/[0,s], vs) − νn(s, x′

/[0,s], v
′
s), vs − v′

s) ds

+2
∫ t

0
‖σn(s, x/[0,s], vs) − σn(s, x′

/[0,s], v
′
s)‖2 ds

+2
∫ t

0
(σn(s, x/[0,s], vs) − σn(s, x′

/[0,s], v
′
s), vs − v′

s)δWs

+ 2
∫ t

0
(vs − v′

s, dK ′
s − dKs). (5.5)

Using lemma 3.9, the inequality E‖xt −x′
t‖2 � CϕnE‖vt −v′

t‖2 and lemma 3.13, (5.5)
becomes

E sup
0�s�t

‖vs − v′
s‖2 � Cϕn(t)

∫ t

0
E sup

0�u�s
‖vu − v′

u‖2 ds,

and the Gronwall lemma yields the result. �

(c) Independence on the chart

Let V ′
1 and V ′

2 be two open subsets of M such that V ′ = V ′
1 ∩ V ′

2 �= ∅ and let
x0 ∈ V ′. We denote by E the tangent space of M at the point x0. Let W ′ be an
open subset of M such that x0 ∈ W ′ ⊂ W ′ ⊂ V ′ and each pair of points of W ′ can
be linked by a unique geodesic of M . Let ϕ1 : V ′

1 ⊂ M → V1 ⊂ E, ψ1 = ϕ−1
1 , ϕ2 :

V ′
2 ⊂ M → V2 ⊂ E, ψ2 = ϕ−1

2 two local charts of M such that ϕ1(x0) = ϕ2(x0) = 0
and Tx0ϕ1 = Tx0ϕ2 = IE . We denote by bi, νi, σi and Ai, 1 � i � 2 the maps
associated to ϕi. For all open subsets U ′ of M verifying W ′ ⊂ U ′ ⊂ U ′ ⊂ V ′ and for
all second-order random variables η on TM such that π(η) ∈ W ′, we put U = ϕ(U ′)
and denote by (xi, vi), (1 � i � 2), the solution to

dxi
t = bi(t, xi

/[0,t], v
i
t) dt,

δvi
t + Ai(t, xi

/[0,t], v
i
t) dt � νi(t, xi

/[0,t], v
i
t) dt + σi(t, xi

/[0,t], v
i
t)δWt,

(xi(0), vi(0)) = (ϕi(η), τ̄(π(η)x0)η),

⎫⎪⎪⎬⎪⎪⎭ (5.6)

until the exit time τ i
U of U .

Let τU = τ1
U ∧ τ2

U . To prove the independence on the chart, it suffices to show that
x2

t = ϕ2(ψ1(x1
t )) and v2

t = v1
t for all t < τU . To do this, by uniqueness of (5.6), we

will prove that (ϕ2(ψ1(x1
t )), v

1
t ) is a solution of (5.6) with i = 2. For t < τU , let us

define yt = ϕ2(ψ1(x1
t )) and write

ẏ(t) = Tψ1(x1
t )ϕ2(Tx1

t
ψ1ẋ

1
t )

= (Tψ2(x2)(t)ϕ2τ(ψ2(x2
/[0,t]))τ̄(x0, π(η)))(τ̄(π(η), x0)(τ(ψ1(x1

/[0,t])))
−1Tx1

t
ψ1ẋ

1
t )

= b2(t, x2
/[0,t])(b1(t, x1

/[0,t]))
−1ẋ1

t

= b2(t, x2
/[0,t], v

1
t ).



To complete the proof, it remains to show that ν2(t, y/[0,t]) = ν1(t, x1
/[0,t]) and similar

equalities for σ2 and A2. By definition of ν2, ν1, x1 and x2, we can write, for 0 � t <
τU and v ∈ E:

ν2(t, y/[0,t], v) = τ̄(π(η), x0)(τ(ψ2(y/[0,t])))−1ν′(t, ψ2(y)(t), τ(ψ2(y)τ̄(x0,π(η))v)

= τ̄(π(η), x0)(τ(ψ1(x1
/[0,t])))

−1ν′(t, ψ1(x1)(t), τ(ψ1(x1
/[0,t])τ̄(x0,π(η))v)

= ν1(t, x1
/[0,t], v)

and the calculations are similar for σ2 and A2.
In § 3, we have shown the existence and uniqueness in a local chart, and in this

section we have proved that two local solutions starting with the same local initial
data obtained thanks to several local charts define the same solution on the manifold.

6. Global existence on the manifold

We have the following result.

Proposition 6.1. Let T be a strictly positive number, and let A′, σ′ and ν′
satisfy assumptions 2.2–2.5. Let E ′ = (Ω, F ′, (F ′

t)t�0, P) be a filtered probability
space verifying the usual conditions. Let Bt be the standard Rd Brownian motion
on E ′, and let T0 be an F ′

t-stopping time with values in [0, T ] almost surely. Let
η′ be an F ′

T0
-measurable random variable which takes its values in TM and whose

second-order moment is finite. There exists a unique F ′
t-adapted solution (x′

t, v
′
t) to

the following system:

δx′
t = v′

t dt,

Dẋ′
t
v′

t + A′(t, x′
t, v

′
t) dt � ν′(t, x′

t, v
′
t) dt + σ′(t, x′

t, v
′
t)δBt, T0 � t � T,

(x′(T0), v′(T0)) = (π(η′), η′), a.s.

⎫⎪⎬⎪⎭ (6.1)

Proof . We keep the notation used until now. Under the assumption that π(η′)
takes its values almost surely in W ′, we have obtained the existence of a solution
(x′

t, v
′
t)T0�t<τU′ of (2.1) for all open subsets U ′ of M containing the closed set W ′ and

which can be described by a unique chart of M . Moreover, (x′
S , v′

S) is F ′
S-measurable

for all F ′
t-stopping time S such that T0 � S � T almost surely. We now suppose

that η′ can take its values in all TM .
A consequence of assumption 2.1 is that M can be covered by an, at most, count-

able number of open sets W ′
i such that

(i) for each pair of points of W ′
i there is a unique geodesic between them;

(ii) π−1W ′
i is trivializable;

(iii) W ′
i is included in one of the balls BM (zk, r′).

Let W ′′
i now be a measurable partition of M such that W ′′

i is included in W ′
i . We

define
Ωi = (πη′)−1W ′′

i

and η′
i a random variable on W ′′

i which coincides with η′ on Ωi. Let (x′
i, v

′
i) be the

solution to (2.1) with initial condition η′
i at time T0. Let K(i) be the set of indices k
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Figure 1. The weight is P , its normal and tangential components are, respectively, PN and PT,
Fr is the friction force, Fs is the stochastic force and F + R is the sum of the reaction of the
constraints and the tension of the stem.

such that W ′
i is included in BM (zk, r′). There is for each k ∈ K(i) an exit time σk,

which is the largest time for which x′
i/[T0,σk[ belongs to BM (zk, r), and we let

σ̄i = max{σk, k ∈ K(i)}.

We define now a F ′
t-stopping time

τ(T0, η
′) =

∑
i

1Ωi
σ̄i;

then (x′, v′) is obtained by patching together the (x′
i, v

′
i):

(x′, v′) =
∑

i

1Ωi
(x′

i, v
′
i),

which is well defined for all stopping times S ∈ [T0, τ(T0, η
′)[. In particular (x′

S , v′
S)

is F ′
S-measurable. We are going to estimate τ(T0, η

′) from below: on {τ(T0, η
′) < T},

x′(τ(T0, η
′)) is almost surely at least at a distance r − r′ from x′(T0). By the triangle

inequality, ∫ τ(T0,η′)

T0

‖v′(s)‖x′(s) ds � r − r′. (6.2)

Denoting by τ1 = τ(T0, η
′), we obtained thus a solution (x′

t, v
′
t)T0�t<τ1 of (2.1) with

initial condition η′ ∈ TM at time T0. We can apply the previous process with
η′ = v′(τ1) and T0 = τ1 and define then a F ′

t-stopping time τ2 and so on. We
construct thus a non-decreasing sequence (τn)n of stopping time, which tends to a



stopping time τ . By similar calculations to those presented in lemma 5.1, we can
show that, for t < T and for all n,

E sup
0�s�t

‖v′
s∧τn

‖2
x′(s) � C.

Moreover, by (6.2) applied on each [τi, τi+1[, we have for all stopping time S ∈ [T0, T [,

C � E

∫ S

T0

‖v′(s)‖x′(s) ds �
∫

{τn�S}
n(r − r′) dP,

and then
lim

n→+∞ P({τn � S}) = 0,

which proves that τ = T . �

7. Application to the pendulum

We consider a spherical pendulum (see figure 1) consisting of a material point with
unit mass attached to a rigid stem of length 1 and of negligible mass, which is
connected at its other end to a fixed point O by a connection authorizing only
angular displacements. In our units, the gravity is 1. In addition to its weight, the
pendulum is submitted, at its mobile end, to a dry friction of Coulomb type (with
coefficient μ) and a random force acting in the tangent plane of the sphere. We
will now define precisely our model of stochastic and dry friction forces. The initial
conditions are (x0, v0) ∈ TS2.

In the present case, the Riemannian metric is the metric induced by the Euclidean
metric of R3 and, therefore, we will abuse notation and denote the scalar product in
the tangent space at x to S2 without an index x, the same convention holding for
the norm of tangent vectors.

Let H1 and H2 be two sections of TS2 which satisfy the following conditions.

Assumption 7.1.

∀x ∈ S2, ‖H1(x)‖x + ‖H2(x)‖x � C, (7.1)

∀x, y ∈ S2 in the same open hemisphere

‖H1(x) − τ̄(y, x)H1(y)‖x + ‖H2(x) − τ̄(y, x)H2(y)‖x � CdS2(x, y). (7.2)

Observe that (7.2) implies the continuity of H1 and H2; therefore, according to
the theorem of the hairy sphere, each of the fields H1 and H2 has to vanish at some
point of S2.

Let (W 1, W 2) be a two-dimensional Brownian motion; we formally write the sto-
chastic part of the exterior forces as

Fs(t, x) dt = dW 1(t)H1(x) + dW 2(t)H2(x).

Thanks to assumptions (7.1) and (7.2), the linear mapping

σ′(x)(v1, v2) = v1H1(x) + v2H2(x)

satisfies assumptions 2.3 and 2.4 of § 2.



If t �→ x(t) is a motion on the sphere S2, we differentiate twice the relation
‖x(t)‖2 = 1 and we find x · ẍ = −|ẋ|2, which means that the normal component
of the acceleration is aN(x, v) = −‖v‖2x.

The normal component of the weight at x is PN(x) = pn(x)x, with pn(x) equal to
x3. Therefore, the sum of the reaction of the support and of the tension of the stem
is

R(x, v) + F (x, v) = x(x3 + ‖v‖2).

The friction force is then given by the multivalued relation

Fr(x, v) ∈

⎧⎪⎨⎪⎩
{0} if pn(x) � −‖v‖2,

−μ{(pn(x) + ‖v‖2)v/‖v‖} if pn(x) > −‖v‖2 and v �= 0,

μ{u ∈ TxS2, ‖u‖ � pn(x), } if pn(x) > 0 and v = 0.

(7.3)

Let us check now that −Fr is a monotone operator in the fibre, i.e. for all w ∈
−Fr(x, v) and w′ ∈ −Fr(x, v′), the following inequality holds:

(w − w′, v − v′) � 0. (7.4)

If v and v′ are both in case 1 or 3 of (7.3), it is plain that (7.4) holds. If w is in case 2
or 3, and w′ is in case 1, the conclusion is still clear; therefore, we just have to check
the inequality when v and v′ are in case 2, or when v is in case 2 and v′ is in case 3.

If neither v nor v′ vanish and pn(x) > −min(‖v‖2, ‖v′‖2), then

(w − w′, v − v′) = pn(x)
((

v

‖v‖ − v′

‖v′‖
)

, v − v′
)

+ (‖v‖v − ‖v′‖v′, v − v′).

An elementary calculation shows that the above expression is non-negative.
If v is in the second case and v′ in the third, we have to study the expression(

(pn(x) + ‖v‖2)
v

‖v‖ − u, v

)
,

where ‖u‖ � pn(x). It is once again straightforward to verify that this expression is
non-negative.

If we put ν′(x, v) = PT(x) = −x + x3x, which is the tangential component of the
weight, the equation of the dynamic applied to the pendulum takes the form:

dxt = vt dt,

Dẋ(t)vt + A′(xt, vt) dt � ν′(xt, vt) dt + σ′(xt) dWt, 0 � t < T,

(x(0), v(0)) = (x0, v0).

⎫⎪⎬⎪⎭ (7.5)

Remark 7.2. Observe that we could have considered more general forces than
the weight, which can be easily included in this theory.

Thanks to remark 2.8 and, since assumptions 2.3–2.5 are clearly verified, we then
have the existence and uniqueness of solutions to equation (7.5).

8. Conclusion

In this work a new result on stochastic differential equations is given: the existence
and uniqueness of solutions to MSDEs on Riemannian manifolds are obtained. This



work generalizes the results of Cépa (1998) devoted to the Euclidean case. To simplify
the expression of Stratonovich’s covariant differential in the equation relative to
velocities, that is, to eliminate the quadratic terms, which offers the possibility to
approximate equations by classical (with Lipschitz continuous assumptions) MSDE
on Euclidean space, we used the parallel transport along the solution curve, but
we had to pay by losing Lipschitz continuity of b̃. Then we had to approximate b̃ by
Lipschitz continuous maps bn and this allowed us to construct the expected solution.
From the application viewpoint the result obtained in this article finds its interest in
the modelling of mechanical systems submitted to stochastic forcing and friction; the
example of the stochastic spherical pendulum with friction fits into this framework.

To approximate the solution it is possible to adapt a numerical scheme developed
for classical stochastic differential equations with convex constraints in Pettersson
(2000) and for general MSDE in Bernardin (2003). Numerical simulation of this class
of models is the topic of future work.

The authors express their thanks to Professor J. Picard and Professor A. Lachal for their sug-
gestions and encouragement.
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