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Abstract

In this paper, we extend the optimal securitization model of Pagès [41] and Possamaï and Pagès
[42] between an investor and a bank to a setting allowing both moral hazard and adverse selection.
Following the recent approach to these problems of Cvitanić, Wan and Yang [12], we characterize
explicitly and rigorously the so-called credible set of the continuation and temptation values of
the bank, and obtain the value function of the investor as well as the optimal contracts through
a recursive system of first-order variational inequalities with gradient constraints. We provide a
detailed discussion of the properties of the optimal menu of contracts.
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1 Introduction

Principal-Agent problems with moral hazard have an extremely rich history, dating back to the early

static models of the 70s, see among many others Zeckhauser [59], Spence and Zeckhauser [54], or

Mirrlees [33, 34, 35, 36], as well as the seminal papers by Grossman and Hart [19], Jewitt, [25],

Holmström [23] or Rogerson [48]. If moral hazard results from the inability of the Principal to monitor,

or to contract upon, the actions of the Agent, there is a second fundamental feature of the Principal-

Agent relationship which has been very frequently studied in the literature, namely that of adverse

selection, corresponding to the inability to observe private information of the Agent, which is often

referred to as his type. In this case, the Principal offers to the Agent a menu of contracts, each

having been designed for a specific type. The so-called revelation principle, states then that it is

always optimal for the Principal to propose menus for which it is optimal for the Agent to truthfully

reveal his type. Pioneering research in the latter direction were due to Mirrlees [37], Mussa and Rosen

[38], Roberts [46], Spence [53], Baron and Myerson [6], Maskin and Riley [29], Guesnerie and Laffont
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[20], and later by Salanié [50], Wilson [58], or Rochet and Choné [47]. However, despite the early

realisation of the importance of considering models involving both these features at the same time, the

literature on Principal-Agent problems involving both moral hazard and adverse selection has remained,

in comparison, rather scarce. As far as we know, they were considered for the first time by Antle [1],

in the context of auditor contracts, and then, under the name of generalised Principal-Agent problems,

by Myerson [39]1. These generalised agency problems were then studied in a wide variety of economic

settings, notably by Dionne and Lasserre [14], Laffont and Tirole [27], McAfee and McMillan [30],

Picard [44], Baron and Besanko [3, 4], Melumad and Reichelstein [31, 32], Guesnerie, Picard and Rey

[21], Page [40], Zou[60], Caillaud, Guesnerie and Rey [9], Lewis and Sappington [28], or Bhattacharyya

[7]2.

All the previous models are either in static or discrete-time settings. The first study of the continuous

time problem with moral hazard and adverse selection was made by Sung [55], in which the author

extends the seminal finite horizon and continuous-time model of Holmström and Milgrom [24]. A more

recent work, to which our paper is mostly related has been treated by Civtanić, Wan and Yang [12],

where the authors extend the famous infinite horizon model of Sannikov [51] to the adverse selection

setting. If one of the main contributions of Sannikov [51] was to have identified that the continuation

value of the Agent was a fundamental state variable for the problem of the Principal, [12] shows that

in a context with both moral hazard and adverse selection, the Principal has also to keep track of the

so-called temptation value, that is to say the continuation utility of the Agent who would not reveal his

true type. Although close to the latter paper, our work is foremost an extension of the bank incentives

model of Pagès and Possamaï [42], which studies the contracting problem between competitive investors

and an impatient bank who monitors a pool of long-term loans subject to Markovian contagion (we also

refer the reader to the companion paper by Pagès [41] for the economic intuitions and interpretations

of the model). In the model of [42], moral hazard emerges because the bank has more "skin a game"

than the investors, and has the opportunity, ex ante and ex post, to exercise a (costly) monitoring of

the non-defaulted loans. This is a stylised way to sum up all the actions than the bank can enter into to

ensure itself of the solvability of the borrowers. Since the investors cannot observe the monitoring effort

of the bank, they offer CDS type contracts offering remuneration to the bank, and giving it incentives

through postponement of payments and threat of stochastic liquidation of the contract (similarly to

the seminal paper of Biais, Mariotti, Rochet and Villeneuve [8]). In the present paper, we assume

furthermore that there are two types of banks, which we coin good and bad, co-existing in the market,

differing by their efficiency in using their remuneration (or equivalently differing by their monitoring

costs). Even if the investor is supposed to know the distribution of the type of banks, he cannot know

whether the one is entering into a contract with is good or bad.

Mathematically speaking, we follow both the general dynamic programming approach of Cvitanić,

Possamaï and Touzi [11], as well as the take on adverse selection problems initiated by [12]. Intuitively,

these approaches require first, using martingale (or more precisely backward SDEs) arguments, to solve

the (non-Markovian) optimal control problem faced by the two type of banks when choosing each

contracts. This requires obviously, using the terminology introduced above, to keep track of both the

continuation value and the temptation value of the banks, when they choose the contract designed for

them or not. The problem of the Principal rewrites then as two standard stochastic control problems,

1There were earlier attempts in this direction, but providing a less systematic treatment of the problem; see the

income tax model of Mirrlees [37], the Soviet incentive scheme study of Weitzman [57], or the papers by Baron and

Holmström [5] and Baron [2].
2We refer the interested reader to the more recent works of Faynzilberg and Kumar [16], Theilen [56], Jullien, Salanié

and Salanié [26], Gottlieb and Moreira [18].

2



one in which he hires the good bank, and one in which he hires the bad one. Each of these problems

uses in turn the aforementioned two state variables (and these two only, because the horizon is infinite

and the Principal is risk-neutral), with truth-telling constraint, asserting that the continuation value

should always be greater than the temptation value. This leads to optimal control problems with

state constraints, and thus to Hamilton-Jacobi-Bellman (HJB for short) equations (or more precisely

variational inequalities with gradient constraints, since our problem is actually a singular stochastic

control problem) in a domain, which, following [12], we call the credible set. This set is defined as the

set containing the pair of value functions of the good and bad bank under every admissible contract

offered by the investor. The determination of this set is the first fundamental step in our approach.

Following the the orignal ideas of [12], we prove that the determination of the boundaries of this set

can be achieved by solving two so-called double-sided moral hazard problems, in which one of the type

of banks is actually hiring the other one. Fortunately for us, it turned out to be possible to obtain

rigorously3 explicit expressions for these boundaries by solving the associated system of HJB equations

and using verification type arguments. We also would like to emphasise that unlike in [12], there is

certain dynamic component in our model, since we have to keep track of the number of non-defaulted

loans, through a time inhomogeneous Poisson process. This leads to a dynamic credible set, as well as,

in the end, to a recursive system of HJB equations characterising the value function of the Principal.

After having determined the credible set itself, we pursue our study by concentrating on two specific

forms of contracts: the shutdown contract in which the investor designs a contract which will be

accepted only by the good bank, and the more classical screening contract, corresponding to a menu

of contracts, one for each type of bank, which provides incentives to reveal her true type and choose

the contract designed for her. These two contracts correspond simply to the offering, over the correct

domain of expected utilities of the banks (so as to satisfy the proper truth-telling and participation

constraints), of the best contracts that the investor can design independently for hiring the good and

the bad bank.

Since we characterise, under classical verification type arguments, the value function of the investor

through a system of HJB equations, we also have classically access to the optimal contracts through this

value function and its derivatives. This allows us to provide an associated qualitative and quantitative

analysis. It turns out that he optimal contracts designed for the good and the bad bank share the

same attributes, and are close in spirit to the ones derived in the pure moral hazard case in [42]. On

the boundaries of the credible set, the value function of the bad bank plays the role of a state process.

The payments of the optimal contracts are postponed until the moment the state process reaches a

sufficiently high level, depending on the current size of the project. Similarly, when one of the loans

of the pool defaults, the project is liquidated with a probability that decreases with the value of the

state process. If the value function of the bad bank at the default time is below some critical level, the

project will be liquidated for sure under the optimal contracts. On the other side, if the value function

of the bad bank is high enough at the default time, the project will be maintained. In the interior of

the credible set, the continuation value and the temptation value of the banks are the state processes

for the optimal contracts. It is possible to identify zones of good performance inside of the credible

set, where the agents are remunerated and the project is maintained in case a default occurs. It is

also possible to identify zones of bad performance, where the agents are not paid and the project is

liquidated in case of default. In the rest of the credible set the optimal contracts provide intermediary

situations.

3Notice that in this respect the study in [12] was more formal, and our paper provides, as far as we know, the first

rigorous derivation of this credible set.
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The rest of the paper is organised as follows. In Section 2, we present the model, we define the set of

admissible contracts and we state the investor’s problem. In Section 3, we recall the results obtained

in [42] for the case of pure moral hazard, which will be useful later on for us. In Section 4, we formally

study the credible set and obtain an explicit expression for it. In Section 5, we study both the optimal

shutdown and screening contract, describing their characteristics and the behaviour of the banks when

they accept these contracts. The Appendix contains all the technical proofs of the paper.

Notations: Let N denote the set of non–negative integers. For any n ∈ N\{0}, we identify R
n

with the set of n−dimensional column vectors. The associated inner product between two elements

(x, y) ∈ R
n ×R

n will be denoted by x · y. For simplicity of notations, we will sometimes write column

vectors in a row form, with the usual transposition operator ⊤, that is to say (x1, . . . , xn)
⊤ ∈ R

n for

some xi ∈ R, 1 ≤ i ≤ n. Let R+ denote the set of non–negative real numbers, and B(R+) the associated

Borel σ−algebra. For any fixed non–negative measure ν on (R+,B(R+)), the Lebesgue–Stieljes integral

of a measurable map f : R+ −→ R will be denoted indifferently

∫

[u,t]
f(s)dνs or

∫ t

u
f(s)dνs, 0 ≤ u ≤ t.

2 The model

This section is dedicated to the description of the model we are going to study, presenting the contracts

as well as the criterion of both the Principal and the Agent. As recalled in the Introduction, it is actually

an adverse selection extension of the model introduced first by Pagès in [41] and studied in depth by

Pagès and Possamaï [42].

2.1 Preliminaries

We consider a model in continuous time, indexed by t ∈ [0,∞). Without loss of generality and for

simplicity, the risk–free interest rate is taken to be 04. Our first player will be a bank (the Agent,

referred to as "she"), who has access to a pool of I unit loans indexed by j = 1, . . . , I which are ex

ante identical. Each loan is a perpetuity yielding cash flow µ per unit time until it defaults. Once

a loan defaults, it gives no further payments. As is commonplace in the Principal-Agent literature,

especially since the paper of Sannikov [51], the infinite maturity assumption is here for simplicity and

tractability, since it makes the problem stationary, in the sense that the value function of the Principal

will not be time–dependent. We assume that the banks in the market are different, and that two types

of banks coexist, each one being characterised by a parameter taking values in the set R := {ρg, ρb}

with ρg > ρb. We call the bank good (respectively bad) if its type is ρg (respectively ρb). Furthermore,

it is considered to be common knowledge that the proportion of the banks of type ρi, i ∈ {g, b}, is pi.

Denote by

Nt :=

I∑

j=1

1{τ j≤t},

the sum of individual loan default indicators, where τ j is the default time of loan j. The current size

of the pool is, at some time t ≥ 0, I −Nt. Since all loans are a priori identical, they can be reindexed

in any order after defaults. The action of the banks consists in deciding at each time t ≥ 0 whether

4As already pointed out in the seminal paper of Biais, Mariotti, Rochet and Villeneuve [8], see also [42], the only

quantity of interest here is the difference between the discounting factors of the Principal and the Agent.
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they monitor any of the loans which have not defaulted yet. These actions are summarised by the

functions ej,it , where for 1 ≤ j ≤ I−Nt, i ∈ {g, b}, ej,it = 1 if loan j is monitored at time t by the bank

of type ρi, and ej,it = 0 otherwise. Non-monitoring renders a private benefit B > 0 per loan and per

unit time to the bank, regardless of its type. The opportunity cost of monitoring is thus proportional

to the number of monitored loans. Once more, more general cost structures could be considered, but

this choice has been made for the sake of simplicity.

The rate at which loan j defaults is controlled by the hazard rate αj
t specifying its instantaneous

probability of default conditional on history up to time t. Individual hazard rates are assumed to

depend on the monitoring choice of the bank and on the size of the pool. In particular, this allows to

incorporate a type of contagion effect in the model. Specifically, we choose to model the hazard rate

of a non–defaulted loan j at time t, when it is monitored (or not) by a bank of type ρi as

αj,i
t := αI−Nt

(
1 +

(
1− ej,it

)
ε
)
, t ≥ 0, j = 1, . . . , I −Nt, i ∈ {b, g}, (2.1)

where the parameters {αj}1≤j≤I represent individual “baseline” risk under monitoring when the number

of loans is j and ε > 0 is the proportional impact of shirking on default risk. We assume that the

impact of shirking is independent of the type of the bank. Actually, we found out that differentiating

between the banks in this regard created degeneracy in the model. We refer the reader to Section H

in the Appendix for a more detailed explanation.

For i ∈ {b, g}, we define the shirking process ki as the number of loans that the bank of type ρi fails

to monitor at time t ≥ 0. Then, according to (2.1), the corresponding aggregate default intensity is

given by

λk
i

t :=

I−Nt∑

j=1

αj,i
t = αI−Nt

(
I −Nt + εkit

)
. (2.2)

The banks can fund the pool internally at a cost r ≥ 0. They can also raise funds from a competitive

investor (the Principal, referred to as "he") who values income streams at the prevailing risk–less

interest rate of zero. We assume that both the banks and the investor observe the history of defaults

and liquidations, as well as the parameters pb and pg, but the monitoring choices and the type of the

bank are unobservable for the investor.

2.2 Description of the contracts

Before going on, let us now describe the stochastic basis on which we will be working. We will always

place ourselves on a probability space (Ω,F ,P) on which N is a Poisson process with intensity λ0t (which

is defined by (2.2)). We denote by F := (FN
t )t≥0 the P−completion of the natural filtration of N . We

call τ the liquidation time of the whole pool and let Ht := 1{t≥τ} be the liquidation indicator of the

pool. We denote by G := (Gt)t≥0 the minimal filtration containing F and that makes τ a G−stopping

time. We note that this filtration satisfies the usual hypotheses of completeness and right–continuity.

Contracts are offered by the investor to the bank and agreed upon at time 0. As usual in contracting

theory, the bank can accept or refuse the contract, but once accepted, both the bank and the investor

are fully committed to the contract. More precisely, the investor offers a menu of contracts Ψi :=

(ki, θi,Di), i ∈ {g, b} specifying on the one hand a desired level of monitoring ki for the bank of type

ρi, which is a G−predictable process such that for any t ≥ 0, kit takes values in {0, . . . , I − Nt} (this

set is denoted by K), as well as a flow of payment Di. These payments belong to set D of processes
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which are càdlàg, non–decreasing, non–negative, G−predictable and such that

E
P[Di

τ ] < +∞.

We do not rule out the possibility of immediate lump–sum payments at the initialisation of the contract,

and therefore the processes in D are assumed to satisfy D0− = 0. Hence, if D0 6= 0, it means that a

lump–sum payment has indeed been made.

The contract also specifies when liquidation occurs. We assume that liquidations can only take the form

of the stochastic liquidation of all loans following immediately default5 Hence, the contract specifies

the probability θit, which belongs to the set Θ of [0, 1]−valued, G−predictable processes, with which

the pool is maintained given default (dNt = 1), so that at each point in time, if the bank has indeed

chosen the contract Ψi

dHt =

{
0 with probability θit,

dNt with probability 1− θit.

With our notations, given a contract Ψi, the hazard rates associated with the default and liquidation

processes Nt and Ht are, if the bank does choose the contract Ψi, λ
ki
t and

(
1− θit

)
λk

i

t , respectively.

The above properties translate into

P
(
τ ∈

{
τ1, ..., τ I

})
= 1, and P(τ = τ j|Fτ j , τ > τ j−1) = 1− θiτ j , j ∈ {1, . . . , I} .

For ease of notations, a contract Ψ := (k, θ,D) will be said to be admissible if (k, θ,D) ∈ K ×Θ ×D.

As is commonplace in the Principal–Agent literature, we assume that the monitoring choices of the

banks affect only the distribution of the size of the pool. To formalise this, recall that, by definition,

any shirking process k ∈ K is G−predictable and bounded. Then, by Girsanov Theorem, we can define

a probability measure P
k on (Ω,F), equivalent to P, such that Nt−

∫ t
0 λ

k
t ds, is a P

k−martingale. More

precisely, we have on Gt

dPk

dP
= Zk

t ,

where Zk is the unique solution of the following SDE

Zk
t = 1 +

∫ t

0
Zk
s−

(
λks
λ0s

− 1

)(
dNs − λ0sds

)
, 0 ≤ t ≤ T, P− a.s.

Then, if the bank of type ρi chooses the contract Ψi, her utility at t = 0, if she follows the recommen-

dation ki, is given by

ui0(k
i, θi,Di) := E

Pki
[∫ τ

0
e−rs(ρidD

i
s +Bkis ds)

]
, (2.3)

while that of the investor is

v0
(
(Ψi)i∈{g,b}

)
:=

∑

i∈{g,b}

piE
Pki
[∫ τ

0
(I −Ns)µds− dDi

s

]
. (2.4)

The parameter ρi actually discriminates between the two types of banks through the way they derive

utility from the cash–flows delivered by the investor. Hence, for a same level of salary, the good bank

will get more utility than a bad bank. Such a form of adverse selection is also considered in the paper

of Civtanić, Wan and Yang [12].

5Obviously, several other liquidations procedures could be considered. In the pure moral hazard case treated in [42]

(see also the thesis [45, Chapter 8, Section 4]), which will be reviewed below in Section 3, some heuristic justifications

are given, which lead to thinking that this should in general be, at least, not too far from optimality.
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2.3 Formulation of the investor’s problem

We assume for simplicity that the reservation utility for banks of both type is R0. The investor’s

problem is to offer a menu of admissible contracts (Ψi)i∈{g,b} := (ki, θi,Di)i∈{g,b} which maximises his

utility (2.4), subject to the three following constraints

ui0(k
i, θi,Di) ≥ R0, i ∈ {g, b}, (2.5)

ui0(k
i, θi,Di) = sup

k∈K
ui0(k, θ

i,Di), i ∈ {g, b}, (2.6)

ui0(k
i, θi,Di) ≥ sup

k∈K
ui0(k, θ

j,Dj), i 6= j, (i, j) ∈ {g, b}2. (2.7)

Condition (2.5) is the usual participation constraint for the banks. Condition (2.6) is the so–called

incentive compatibility condition, stating that given (θi,Di) the optimal monitoring choice of the bank

of type ρi is the recommended effort ki. Finally, Condition (2.7) means that if a bank adversely selects

a contract, she cannot get more utility than if she had truthfully revealed her type at time 0. Following

the literature, we call such a contract a screening contract.

In the sequel, we will start by deriving the optimal contract in the pure moral-hazard case, then we

will look into the so–called optimal shutdown contract, for which the investor deliberately excludes the

bad bank, before finally investigating the optimal screening contract.

3 The pure moral hazard case

In this section, we assume that the type of the bank is publicly known and is fixed to be some ρi,

i ∈ {g, b}, which makes the problem exactly similar to the one considered in [42] (up to the modification

of some constants). In particular, the investor only offers one contract. We will briefly explain how

to solve the general maximisation problem for the bank and then recall the results obtained in [42].

Furthermore, the results we obtain here, in particular the dynamics of the continuation utilities of the

banks, will be crucial to the study of the shutdown and screening contracts later on. Therefore, they

will be used throughout without further references.

In this setting, the utility of the investor, when he offers a contract (ki, θi,Di) ∈ K×Θ×D is given by

vpm0 (ki, θi,Di) := E
Pki
[∫ τ

0
(I −Ns)µds− dDi

s

]
, (3.1)

for which we define the following dynamic version for any t ≥ 0

vpmt (ki, θi,Di) := E
Pki
[∫ τ

t∧τ
(I −Ns)µds− dDi

s

∣∣∣∣Gt

]
.

3.1 The bank’s problem

3.1.1 Dynamics of the bank’s value function

As usual, the so–called continuation value of the bank (that is to say her future expected payoff) when

offered (θi,Di) ∈ Θ×D plays a central role in the analysis. It is defined, for any (t, k) ∈ R+ × K by

uit(k, θ
i,Di) := E

Pk

[∫ τ

t∧τ
e−r(s−t)

(
ρidD

i
s + ksBds

)∣∣∣∣Gt

]
.
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We also define the value function of the bank for any t ≥ 0

U i
t (θ

i,Di) := ess sup
k∈K

uit(k, θ
i,Di).

Departing slightly from the usual approach in the literature, initiated notably by Sannikov [51, 52],

we reinterpret the problem of the bank in terms of BSDEs, which, we believe, offers an alternative

approach which may be easier to apprehend for the mathematical finance community. Of course, such

an interpretation of optimal stochastic control problem with control on the drift is far from being

original, and we refer the interested reader to the seminal papers of Hamadène and Lepeltier [22] and

El Karoui and Quenez [15] for more information, as well as to the recent articles by Cvitanić, Possamaï

and Touzi [10, 11] for more references and a systematic treatment of Principal–Agent type problems

with this backward SDE approach. Before stating the related result, let us denote by (Y i, Zi) the

unique (super–)solution (existence and uniqueness will be justified below) to the following BSDE

Y i
t = 0−

∫ τ

t
gi(s, Y i

s , Z
i
s)ds +

∫ τ

t
Zi
s · dM̃

i
s +

∫ τ

t
dKi

s, 0 ≤ t ≤ τ, P− a.s., (3.2)

where

Mt := (Nt,Ht)
⊤, M̃ i

t :=Mt −

∫ t

0
λ0s(1, 1 − θis)

⊤ds,

gi(t, y, z) := inf
k∈{0,...,I−Nt}

f i(t, k, y, z) = ry − (I −Nt)
(
αI−Ntεz · (1, 1 − θit)

⊤ −B
)−

.

We have the following proposition, which is basically a reformulation of [42, Proposition 3.2]. The

proof is postponed to Appendix A

Proposition 3.1. For any (θi,Di) ∈ Θ × D, the value function of the bank has the dynamics, for

t ∈ [0, τ ], P− a.s.

dU i
t (θ

i,Di) =
(
rU i

t (θ
i,Di)−Bk⋆,it + λk

⋆,i

t Zi
t · (1, 1 − θit)

⊤
)
dt− ρidD

i
t − Zi

t · dM̃
i
t ,

where Zi is the second component of the solution to the BSDE (3.2). In particular, the optimal moni-

toring choice of the bank is given by

k⋆,it = (I −Nt)1{Zi
t ·(1,1−θit)

⊤<bt}.

Notice that the above result implies that the monitoring choices of the bank are necessarily of bang–

bang type, in the sense that she either monitors all the remaining loans, or none at all, which in turn

implies that the investor can never give the bank incentives to monitor only a fraction of the loans at

a given time6.

3.1.2 Introducing feasible sets

Following the terminology of Cvitanić, Wan and Yang [12], let us discuss the so–called feasible set for

the banks.

Definition 3.1. We call V i
t the feasible set for the expected payoff of banks of type ρi, starting from

some time t ≥ 0, that is to say all the possible utilities that a bank of type ρi can get from all the

admissible contracts offered by the investor from time t on.

6We assume here, as is commonplace in the Principal–Agent literature, that in the case where the bank is indifferent

with respect to her monitoring decision, that is when Zi
t · (1, 1− θit)

⊤ = bt, she acts in the best interest of the investors,

and thus monitors all the I −Nt remaining loans.
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Our first result gives an explicit form of the the feasible set V i
t , which turns out to be independent of

the type of the bank. The proof is relegated to Appendix A

Lemma 3.1. For i ∈ {g, b} and for any t ≥ 0, we have that V i
t = Vt, with

Vt :=

[
B(I −Nt)

r + λI−Nt
t

,+∞

)
.

To describe the results of [42], we need to limit our subsequent analysis (for this section only), to

contracts enforcing a constant monitoring from the banks, that is to say contracts incentive–compatible

with k = 0. Obviously, for such contracts, the feasible set of the banks are not equal to Vt, although

we will see next that in this case again, it does not depend on the type of the bank.

Definition 3.2. The set V0,i
t ⊂ Vt is called the feasible set for the expected payoff of the banks of type

ρi, starting from some time t ≥ 0, when the investors can only offer contracts enforcing k = 0.

This sets can also be obtained explicitly, see Appendix A for the proof.

Lemma 3.2. We have for i ∈ {g, b} and for any t ≥ 0 that V0,i
t = V0

t , with V0
t := [bt,+∞) .

3.2 The investor’s problem and the optimal full–monitoring contract

As mentioned above, in this section only, we follow [42] and consider that the only acceptable be-

haviour for the bank, from the social point of view, is that she never shirks away from her monitoring

responsibilities7. In other words, we only allow contracts with a recommendation of k = 0. Therefore,

the value function of the investor becomes

V pm,0
t (R0) := ess sup

(Di,θi)∈A0,i(t,R0)

E
P0

[∫ τ

t∧τ
(I −Ns)µds− dDi

s

∣∣∣∣Gt

]
,

where the set of admissible contracts A0,i(t, R0) is defined for R0 ≥ bt, by

A0,i(t, R0) :=
{
(θi,Di) ∈ Θ×D, s.t. (θi,Di) enforces k = 0 and U i

t (θ
i,Di) ≥ R0

}
.

The main findings of [42] require the following assumptions. Define for any t ≥ 0 and j ∈ {1, . . . , I},

j

αj
:=

j∑

i=1

1

αi
, λ̂0j := αjj, b̂j :=

B

αjε
.

Assumption 3.1. (i) µ ≥ αI .

(ii) We have for all j ≤ I, rB(1 + ε) ≤ (µε−B)εαj .

(iii) Individual default risk is non–decreasing with past default, αj ≤ αj−1, for all j ≤ I.

Define next for x > 0

φ(x) :=

(
1 + x

1 + 2x

) 1
x
−1

, ψ(x) :=
φ(x)− x

(1− x)φ(x)
.

7We refer however to Example 3.1 below, where we show that this may not always be optimal for the investor, which

is reason why we will forego this assumption later in the paper.
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Let us then define some family of concave functions, unique solutions to the following system of ODEs





(
ru+ λ̂0j b̂j

)
(vij)

′(u) + jµ − λ̂0j

(
vij(u)−

u− b̂j

b̂j−1

vij−1(̂bj−1)

)
= 0, u ∈

(
b̂j , b̂j + b̂j−1

]
,

(
ru+ λ̂0j b̂j

)
(vij)

′(u) + jµ − λ̂0j

(
vij(u)− vij−1(u− b̂j)

)
= 0, u ∈

(
b̂j + b̂j−1, γ

i
j

]
,

ρi(v
i
j)

′(u) + 1 = 0, u > γij ,

(3.3)

with initial values γi1 := b̂1 and

vi1(u) := vi1 −
1

ρi
(u− b̂1), u ≥ b̂1, v

i
1 :=

µ

λ̂01
−
b̂1(r + λ̂01)

ρiλ̂01
,

and where for j ≥ 2, γij is defined recursively by r/λ̂0j − 1 ∈ ∂vij−1(γ
i
j − b̂j), where ∂vij−1 is the

super–differential of the concave function vij−1. The main result of [42] is

Theorem 3.1. Assume that the
(
λ̂0j
)
1≤j≤I

satisfy the following recursive conditions for j ≥ 2

r

λ̂0j
− 1 ≤

vij−1

(
b̂j−1

)

b̂j−1

and
(
(vij−1)

′
(
b̂j−1

))+ b̂j−1

vij−1

(
b̂j−1

) ≤ ψ

(
r

λ̂0j

)
.

Then, under Assumption 3.1, the system (3.3) is well–posed and we have

V pm,0
t (R0) = sup

ut≥R0

viI−Nt
(ut) ,

where (us)s≥t is defined as the unique solution to the SDE on [t, τ)

dus =
(
rus + λ0I−Ns

b̂I−Ns

)
ds− ρidD

⋆,i
s

−
(
1
{us∈[̂bI−Ns ,̂bI−Ns−1+b̂I−Ns )}

(us − b̂I−Ns−1) + b̂I−Ns1{us∈[̂bI−Ns+b̂I−Ns−1,γ
i
I−Ns

)}

)
dNs

−
(
1
{us∈[̂bI−Ns ,̂bI−Ns−1+b̂I−Ns )}

b̂I−Ns−1 + (us − b̂I−Ns)1{us∈[̂bI−Ns+b̂I−Ns−1,γ
i
I−Ns

)}

)
dHs,

with initial value ut at t, and where we defined for s ∈ [t, τ) and j = 1, . . . , I

D⋆,i
s := 1{s=t}

(ut − γiI−Nt
)+

ρi
+

∫ s

t
δI−Nr

i (ur)dr, θ
⋆
s := θI−Ns

i (us),

δji (u) := 1{u=γi
j}

λ̂0j b̂j + rγij
ρi

, θji (u) := 1
{u∈[̂bj ,̂bj−1+b̂j)}

u− b̂j

b̂j−1

+ 1
{u∈[̂bj+b̂j−1,γi

j)}
.

We finish this section with an example showing that forcing the bank to always monitor all the loans

may not always be optimal for the Principal, which we explain why we forego this assumption in the

rest of the paper.

Example 3.1. Consider the case when there is one loan in the project, I = 1. The value function of

the investor is given by

V pm,0
t (R0) = sup

ut≥R0

vi1 (ut) =

{
vi1 −

1
ρi
(R0 − b̂1), R0 ≥ b̂1,

vi1, R0 < b̂1.
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It follows from Lemma 3.1 that the contract given by θ ≡ 0, D ≡ 0 is the only one such that the banks

get utility equal to B

r+λ̂1
1

under it. Therefore, the value function of the investor at the point of minimum

utility is equal to

V pm
t

(
B

r + λ̂11

)
=

µ

λ̂11
.

If R0 ≤ B

r+λ̂1
1

and µ <
λ̂0
1 b̂1(r+λ̂0

1)

ρi(λ̂1
1−λ̂1

0)
, then V pm

t

(
B

r+λ̂1
1

)
< V pm,0

t

(
B

r+λ̂1
1

)
and it is not optimal for the

investor to offer contracts under which the banks never shirks.

4 Credible set

In this section we come back to the case in which there are two types of banks in the market, and

study the so–called credible set, which is formed by the pairs of value functions of the banks under the

admissible contracts.

As in [12], we do not expect all the points in the feasible set to correspond to a pair of reachable values

of the banks under some admissible contract. We will therefore follow the approach initiated by [12]

and we will characterize the credible set. We emphasise an important difference with [12] though, in

the sense that in our context, the credible set becomes dynamic as it depends on the current size of

the pool.

In this section we work with generic contracts (θ,D) ∈ Θ×D, not necessarily designed for a particular

type of bank.

4.1 Definition of the credible set and its boundaries

We first define V̂j := [Bj/(r + λ̂SHj ),∞). Observe that the feasible set

Vt =

[
B(I −Nt)

r + λI−Nt
t

,+∞

)
,

satisfies Vt = V̂I−Nt for every t, so the only dependence of the feasible set in time is due to the number

of loans left. The formal definition of the credible set is the following.

Definition 4.1. For any time t ≥ 0, we define the credible set CI−Nt as the set of (ub, ug) ∈

V̂I−Nt ×V̂I−Nt such that there exists some admissible contract (θ,D) ∈ Θ×D satisfying U b
t (θ,D) = ub,

Ug
t (θ,D) = ug and (U b

s (θ,D), Ug
s (θ,D)) ∈ V̂I−Ns × V̂I−Ns for every s ∈ [t, τ), P− a.s.

Given a starting time t ≥ 0 and ub ∈ V̂I−Nt, define the set of contracts under which the value function

of the bad bank at time t is equal to ub,

Ab(t, ub) =
{
(θ,D) ∈ Θ×D, U b

t (θ,D) = ub
}
.

We denote by Ut(u
b) the largest value Ug

t (θ,D) that the good bank can obtain from all the contracts

(θ,D) ∈ Ab(t, ub). Once again, this set only depends on t through the value of I −Nt, so that we will

also use the notation ÛI−Nt(u
b) := Ut(u

b). We also denote the lowest one by Lt(u
b) and L̂I−Nt(u

b)

indifferently. Next, define

Ĉj :=
{
(ub, ug) ∈ V̂j × V̂j , L̂j(u

b) ≤ ug ≤ Ûj(u
b)
}
.
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We will prove in Proposition 4.3 below that Ĉj = Cj for every j = 1, . . . I. Therefore, we will call

respectively the functions L̂j and Ûj the lower and upper boundary of the credible set when there are

j loans left. The aim of the next sections is to obtain explicit formulas for these boundaries.

4.2 Utility of not monitoring

We introduce some notations, and denote by kSH the strategy of a bank which does not monitor any

loan at any time, i.e. kSHs = I − Ns for every s ≥ 0. We also denote by λ̂SHj the default intensity

under kSH when there are j loans left, i.e. λ̂SHj := αjj(1 + ε). We observe that λ̂SHj = λk
SH

t =

αI−Nt(I −Nt)(1+ ε), for every t ≥ 0 such that I −Nt = j. Now consider any starting time t such that

I −Nt = j and any θ ∈ Θ. The continuation utility that the banks get from always shirking (without

considering the payments) is

ugt (k
SH , θ, 0) = ubt(k

SH , θ, 0) = E
PkSH

[∫ τ

t∧τ
e−r(s−t)BkSHs ds

∣∣∣∣Gt

]
. (4.1)

This quantity is obviously increasing in θ, so that (4.1) attains its minimum value under any contract

with θ ≡ 0, which is equal to c(j, 1) := Bj/(r + λ̂SHj ). Moreover, if the pool is liquidated exactly after

the next m defaults, with m ∈ {2, . . . , j}, (4.1) is equal to (see Appendix B)

c(j,m) :=
Bj

r + λ̂SHj
+

j−1∑

i=j−m+1

Bi

r + λ̂SHi

j∏

ℓ=i+1

λ̂SHℓ

r + λ̂SHℓ
.

In particular, under any contract such that θ ≡ 1, (4.1) attains its maximum value, which is equal to

C(j) := c(j, j) =
Bj

r + λ̂SHj
+

j−1∑

i=1

Bi

r + λ̂SHi

j∏

ℓ=i+1

λ̂SHℓ

r + λ̂SHℓ
. (4.2)

4.3 Lower boundary of the credible set

The lower boundary of the credible set is the simplest of the two boundaries and it can be computed

directly. We will see that it is a piecewise linear function corresponding to two lines with different

slopes. The next proposition states the main inequalities that determine the lower boundary.

Lemma 4.1. For any t ∈ [0, τ ] and any admissible contract (θ,D) ∈ Θ×D, the value functions of the

good and the bad banks satisfy, P− a.s.

Ug
t (θ,D) ≥ U b

t (θ,D), (4.3)

Ug
t (θ,D) ≥

ρg
ρb
U b
t (θ,D)−

(ρg − ρb)

ρb
C(I −Nt), (4.4)

where the function C(j) is defined in (4.2).

Using Lemma 4.1, we prove the following characterisation of the lower boundary of the credible set.

Proposition 4.1. For any j ∈ {1, . . . , I}, the lower boundary when there are j loans left is given by

L̂j(u
b) =




ub, c(j, 1) ≤ ub ≤ C(j),
ρg
ρb
ub −

(ρg − ρb)

ρb
C(j), C(j) ≤ ub < +∞.
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4.4 Upper boundary of the credible set

The upper boundary of the credible set is not as simple to obtain as the lower boundary and we have

to solve a specific stochastic control problem to identify it. Notice that this approach is similar to the

one used in [12].

Let us fix any contract (θ,D) ∈ Θ×D. We remind the reader that thanks to Proposition 3.1, we know

that there exist G−predictable and integrable processes (h1,g(θ,D), h2,g(θ,D)) such that

dUg
s (θ,D) = (rUg

s (θ,D)−Bk⋆,gs (θ,D)) ds− ρgdDs − h1,gs (θ,D)
(
dNs − λk

⋆,g(θ,D)
s ds

)

− h2,gs (θ,D)
(
dHs − (1− θs)λ

k⋆,g(θ,D)
s ds

)
, s ∈ [0, τ ], (4.5)

where we recall that the optimal monitoring choice k⋆,g(θ,D) is given by

k⋆,gs (θ,D) = (I −Ns)1{h1,g
s (θ,D)+(1−θs)h

2,g
s (θ,D)<bs}

.

Similarly, there exist G−predictable and integrable processes (h1,b(θ,D), h2,b(θ,D)) such that

dU b
s (θ,D) =

(
rU b

s (θ,D)−Bk⋆,bs (θ,D)
)
ds− ρbdDs − h1,bs (θ,D)

(
dNs − λk

⋆,b(θ,D)
s ds

)

− h2,bs (θ,D)
(
dHs − (1− θs)λ

k⋆,b(θ,D)
s ds

)
, s ∈ [0, τ ], (4.6)

with k⋆,bs (θ,D) = (I −Ns)1{h1,b
s (θ,D)+(1−θs)h

2,b
s (θ,D)<bs}

. We will use the dynamics (4.5)–(4.6) to define

a simple set of admissible contracts in which we will reinterpret both the value functions of the agents

as controlled diffusion processes, where the controls are (D, θ, h1,g, h2,g, h1,b, h2,b) and satisfying the

instanteneous conditions (A.2). Obviously, doing so makes us look at a larger class of "contracts",

in the sense that in the above representation of the value functions of the bank, the choice of the

processes (h1,g, h2,g, h1,b, h2,b) is not free, since they are completely determined by the choice of (θ,D).

Nonetheless, we will prove later a verification result that will ensure us that the solution of the stochastic

control problem we consider provides us the upper boundary of the credible set.

Let us therefore denote by H the set of non–negative, G−predictable and integrable processes. We

abuse notations and define, for every Ψ := (D, θ, h1,g, h2,g, h1,b, h2,b) ∈ D×Θ×H4, the processes Ug(Ψ)

and U b(Ψ) which satisfy the following (linear) SDEs (well–posedness is trivial)

dUg
s (Ψ) = rUg

s (Ψ)−Bk⋆,gs (Ψ)− ρgdDs − h1,gs

(
dNs − λk

⋆,g(Ψ)
s ds

)
− h2,gs

(
dHs − (1− θs)λ

k⋆,g(Ψ)
s ds

)
,

(4.7)

dU b
s (Ψ) = rU b

s (Ψ)−Bk⋆,bs (Ψ)− ρbdDs − h1,bs

(
dNs − λk

⋆,b(Ψ)
s ds

)
− h2,bs

(
dHs − (1− θs)λ

k⋆,b(Ψ)
s ds

)
,

(4.8)

where we defined

k⋆,gs (Ψ) := (I −Ns)1{h1,g
s +(1−θs)h

2,g
s <bs}

, k⋆,bs (Ψ) := (I −Ns)1{h1,b
s +(1−θs)h

2,b
s <bs}

.

Remark 4.1. In the model, there is no need to consider h1,g and h1,b as positive processes and we

do this just for technical reasons. Intuitively, the optimal contracts should satisfy this additional con-

straint because the investor does not benefit from earlier defaults and if a contract increases the banks’

continuation utilities after one of the defaults, the banks should increase the default intensity as much

as possible.
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For any starting time t ∈ [0, τ ] and for every ub ≥ B(I −Nt)/(r + λ̂SHI−Nt
) define

A
b
(t, ub) :=

{
Ψ = (D, θ, h1,b, h2,b) ∈ D ×Θ×H2, such that ∀s ∈ [t, τ ],

U b
s−(Ψ) = h1,bs + h2,bs , U b

s−(Ψ)− h1,bs ≥
B(I −Ns)

r + λI−Ns
s

, U b
t (Ψ) = ub

}
.

We will abuse notations and also call elements of A
b
(t, ub) contracts. The upper boundary Ut solves

the following control problem

Ut(u
b) = ess sup

Ψ∈A
b
(t,ub)

E
Pkg(Ψ)

[∫ τ

t
e−r(s−t)(ρgdDs +Bkgs(Ψ)ds)

∣∣∣∣∣Gt

]
,

subject to the dynamics

U b
r (Ψg) = ub +

∫ r

t

(
rubs −Bk⋆,bs (Ψ) + h1,bs λk

⋆,b

s + h2,bs (1− θs)λ
k⋆,b

s

)
ds− ρb

∫ r

t
dDs

−

∫ r

t
h1,bs dNs −

∫ r

t
h2,bs dHs, t ≤ r ≤ τ,

with

k⋆,bs (Ψ) = (I −Ns)1{h1,b
s +(1−θs)h

2,b
s <b̂I−Ns}

, kg(Ψ) ∈ argmax
k∈K

E
Pk

[ ∫ τ

t
e−r(s−t)(ρgdDs +Bksds)

∣∣∣∣∣Gt

]
.

Indeed, the above stochastic control problem corresponds to the highest value that the good bank can

obtain from any admissible contract, while ensuring that when the bad bank takes it, she receives

exactly ub, which is exactly the definition of the upper boundary of the credible set. Also, notice that

the dependence of U on the time is only through the number of loans left at time t.

The next subsections are devoted to first obtaining the HJB equation associated with the above prob-

lem, its resolution and then finally to the proof of a verification theorem adapted to our framework.

Notice that the above is actually a singular stochastic control problem, since the control D is a non–

decreasing process, which is not necessarily absolutely continuous with respect to the Lebesgue measure.

We refer the reader to the monograph by Fleming and Soner [17] for more details. In particular, this

implies that the HJB equation associated to the problem will be a variational inequality with gradient

constraints.

4.4.1 HJB equation for the upper boundary

Fix some 1 ≤ j ≤ I, and define for every k = 0, 1, · · · , j, λ̂kj := αj(j+kε). The system of HJB equations

associated to the previous control problem is given by Û0 ≡ 0, and for any 1 ≤ j ≤ I

min

{
− sup

(θ,h1,h2)∈Cj

{
Û ′
j(u

b)
(
rub −Bkb + [h1 + (1− θ)h2]λ̂k

b

j

)

+λ̂k
g

j θÛj−1(u
b − h1)− (λ̂k

g

j + r)Ûj(u
b) +Bkg

}
, Û ′

j(u
b)−

ρg
ρb

}
= 0, (4.9)

for every ub ≥ Bj

r+λ̂SH
j

, with the boundary condition Ûj(Bj/(r + λ̂SHj )) = Bj/(r + λ̂SHj ), where kb :=

j1
{h1+(1−θ)h2<b̂j}

, kg := j1
{Ûj(ub)−θÛj−1(ub−h1)<b̂j}

, and the set of constraints is defined by

Cj :=

{
(θ, h1, h2) ∈ [0, 1] × R

2
+, h

1 + h2 = ub,c, h2 ≥
B(j − 1)

r + λ̂SHj−1

}
.
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Remark 4.2. Note that the incentive compatibility condition for the good bank is implicit in the HJB

equation. Indeed, at every s we have

ÛI−Ns(U
b
s (Ψ))− ÛI−N

s−
(U b

s−(Ψ)) =
(
ÛI−N

s−
−1(U

b
s−(Ψ)− h1,bs (Ψ))− ÛI−N

s−
(U b

s−(Ψ))
)
∆Ns

− ÛI−N
s−

−1(U
b
s−(Ψ)− h1,bs (Ψ))∆Hs,

which implies that on the upper boundary h1,gs (Ψ) = ÛI−N
s−
(U b

s−(Ψ)) − ÛI−N
s−

−1(U
b
s−(Ψ) − h1,bs (Ψ))

and h2,gs (Ψ) = ÛI−N
s−

−1(U
b
s−(Ψ)− h1,bs (Ψ)). Therefore

h1,gs (Ψ) + (1− θgs)h
2,g
s (Ψ) = ÛI−N

s−
(U b

s−(Ψ))− θgs ÛI−N
s−

−1(U
b
s−(Ψ)− h1,bs (Ψ)).

At the points where Û ′
j(u

b) > ρg/ρb, the first term of the variational inequality (4.9) must be equal to

zero, so the upper boundary must satisfy the following equation

rÛj(u
b) = sup

(θ,h1,h2)∈Cj

{
Û ′
j(u

b)
(
rub −Bkb + [h1 + (1− θ)h2]λ̂k

b

j

)

+[Ûj−1(u
b − h1)θ − Ûj(u

b)]λ̂k
g

j +Bkg

}
. (4.10)

We will refer to this equation as the diffusion equation.

• Step 1: case of 1 loan, solving the diffusion equation

Before dealing with the variational inequality (4.9), we will solve the diffusion equation (4.10). When

j = 1, it reduces to

rÛ1(u
b) = Û ′

1(u
b)
(
rub −Bkb + ubλ̂k

b

1

)
− Û1(u

b)λ̂k
g

1 +Bkg, (4.11)

with kb = 1
{ub<b̂1}

, kg = 1
{Û(ub)<b̂1}

.

Remark 4.3. Notice that the boundary condition Û1

(
B

r+λ̂1
1

)
= B

r+λ̂1
1

is implicit in the equation.

Our first result is the following, whose proof is deferred to Appendix F

Lemma 4.2. There is a family of continuously differentiable solutions to the diffusion equation, indexed

by some constant C > 0, which are given by

ÛC
1 (ub) :=





C

r+λ̂11
r+λ̂0

1

(
ub −

B

r + λ̂11

)
+

B

r + λ̂11
, ub ∈

[
B

r + λ̂11
, x⋆C

)
,

Cb̂

λ̂11−λ̂01
r+λ̂1

1
1

(
r + λ̂11

r + λ̂01

) r+λ̂01
r+λ̂11

(
ub −

B

r + λ̂11

) r+λ̂01
r+λ̂11

, ub ∈ [x⋆C , b̂1),

Cub, ub ∈ [̂b1,+∞),

where xC,⋆
1 :=

(
1

C

) r+λ̂11
r+λ̂01 b̂1

r + λ̂01

r + λ̂11
+

B

r + λ̂11
.

• Step 2: case of 1 loan, solving the HJB equation

In this case the variational inequality (4.9) reduces to

min

{
rÛ1(u

b)− Û ′(ub)
(
rub −Bkb + ubλ̂k

b

1

)
+ Û1(u

b)λ̂k
g

1 −Bkg, Û ′
1(u

b)−
ρg
ρb

}
= 0. (4.12)
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We already found the solutions of the diffusion equation inside of this variational inequality and now

we will take care of the whole HJB equation. We expect the upper boundary to saturate the second

term in the variational inequality for big values of ub, so we will search for a solution of (4.12) satisfying

the following condition: there exists x⋆ ∈ [B/(r + λ̂11),∞) such that

Û ′
1(x

⋆) =
ρg
ρb

and Û ′
1(u

b) >
ρg
ρb
, for ub < x⋆. (4.13)

At first sight it could seem that by doing this we face the risk of not finding the correct solution of the

dynamic programming equation. Nevertheless, this is not the case and we will prove later a verification

result which assures us that the solution that we find under this condition corresponds indeed to the

upper boundary of the credible set. The proof of the following Lemma will be given in Appendix F.

Lemma 4.3. The unique solution of the HJB equation which satisfies condition (4.13) is given by,

defining x⋆1 := x
ρg/ρb,⋆
1

Û⋆
1 (u

b) := Û
ρg/ρb,⋆
1 (ub) =





(
ρg
ρb

) r+λ̂11
r+λ̂01

(
ub −

B

r + λ̂11

)
+

B

r + λ̂11
, ub ∈

[
B

r + λ̂11
, x⋆1

)
,

ρg
ρb
b1

λ̂11−λ̂01
r+λ̂11

(
r + λ̂11

r + λ̂01

) r+λ̂01
r+λ̂11

(
ub −

B

r + λ̂11

) r+λ̂01
r+λ̂11

, ub ∈ [x⋆1, b̂1),

ρg
ρb
ub, ub ∈ [̂b1,+∞).

(4.14)

As an illustration, in Figure 1 we show the credible set which corresponds to the region delimited by its

upper and lower boundaries. In this example, we considered r = 0.02, B = 0.002, ε = 0.25, α1 = 0.055,
ρg
ρb

= 2.

B

r+λ̂1
1

x⋆1 b̂1

B

r+λ̂1
1

b̂1

ρg
ρb
b̂1 ug = ub

L̂1(u
b)Û⋆

1 (u
b)

ub

ug

Figure 1: Credible set with one loan left.

• Step 3: solving the HJB equation in the general case

In the general case, when j > 1, we can reduce the number of variables and rewrite the diffusion
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equation (4.10) in an equivalent form

rÛj(u
b) = sup

(θ,h1)∈Ĉj





Û ′
j(u

b)
(
rub −Bkb + [ub − θ(ub − h1)]λ̂k

b

j

)

+
(
Ûj−1(u

b − h1)θ − Ûj(u
b)
)
λ̂k

g

j +Bkg



 , (4.15)

where we recall that kb = 1
{ub−θ(ub−h1)<b̂j}

, kg = 1
{Ûj(ub)−θÛj−1(ub−h1)<b̂j}

and the set of constraints

is now given by

Ĉj :=

{
(θ, h1) ∈ [0, 1] × R+, u

b ≥ h1 +
B(j − 1)

r + λ̂SHj−1

}
. (4.16)

When we proved that the lower boundary of the credible set is reachable we used contracts of maximum

duration, which maintain the pool until the last default. This gives us the intuition that the longer the

contract lasts, the smaller the difference between the utilities of the banks will be. Therefore the upper

boundary of the credible set, where the difference between both utilities is maximal, should be reachable

with contracts of minimum duration, which terminate the contractual relationship immediately after

the first default. In the model this means that θ is equal to zero and the resulting HJB equation for

the upper boundary has the same form that the one in the case with one loan left. We expect then

that the solution of the diffusion equation will be the of the same form as (4.14). The object of the

next proposition is to prove our guess rigorously. We postpone the proof to Appendix F.

Proposition 4.2. For any j ≥ 1, the function Û⋆
j defined by

Û⋆
j (u

b) :=





(
ρg
ρb

) r+λ̂SH
j

r+λ̂0
j

(
ub −

Bj

r + λ̂SHj

)
+

Bj

r + λ̂SHj
, ub ∈

[
Bj

r + λ̂SHj
, x⋆j

)
,

ρg
ρb
bj

λ̂SH
j −λ̂0j

r+λ̂SH
j

(
r + λ̂SHj

r + λ̂0j

) r+λ̂0j

r+λ̂SH
j

(
ub −

Bj

r + λ̂SHj

) r+λ̂0j

r+λ̂SH
j

, ub ∈ [x⋆j , b̂j),

ρg
ρb
ub, ub ∈ [̂bj ,+∞),

(4.17)

where x⋆j :=

(
ρb
ρg

) r+λ̂SH
j

r+λ̂0
j b̂j

r + λ̂0j

r + λ̂SHj
+

Bj

r + λSHj
, is a solution of the HJB equation (4.9).

4.4.2 Verification Theorem

According to the maximisers in equation (4.15) we define the following controls




δj(ub) := 1
{ub≥b̂j}

ub(r+λ̂0
j )

ρb
,

θj(ub) := 0,

h1,b,j(ub) := ub, h2,b,j(ub) := 0,

kb,j(ub) := j1
{ub<b̂j}

, kg,j(ub) := j1
{Û⋆

j (u
b)<b̂j}

.

(4.18)

Before stating the verification result for the upper boundary, we make a comment about the domain

of the functions Û⋆
j . Rigorously speaking, it is possible for the utilities of the banks to be zero but this

happens only at time τ when all the pools are liquidated. The domain of Û⋆
j is the set V̂j but in the

proof of the verification theorem it will be implicitly understood that Û⋆
j (0) = 0. In any case, we do

not need the functions Û⋆
j to be defined at zero because Itô’s formula will be used on intervals which

do not contain τ .
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Theorem 4.1. Consider any starting time t ≥ 0. For any ub ≥ B(I−Nt)

r+λ̂SH
I−Nt

, let the process (ubs)s∈[t,τ ] be

the unique solution of the following SDE

ubv = ub +

∫ v

t

[
(r + λk

b,I−Nt

s )ubs −Bkb,I−Nt(ubs)− ρbδ
I−Nt(ubs)

]
ds−

∫ v

t
ubs−dNs, v ∈ [t, τ ]. (4.19)

Then, under the contract Ψ⋆ := (Dg,⋆, θg,⋆, h1,b,⋆, h2,b,⋆) ∈ D ×Θ×H2 defined for s ∈ [t, τ ] by

dD⋆
s := δI−Nt(ubs)ds, θ

⋆
s ≡ 0, h1,b,⋆s := h1,b,I−Nt(ubs), h

2,b,⋆
s ≡ 0,

the value function of the bad bank is U b
t (Ψ

⋆) = ub and the one of good bank is Ug
t (Ψ

⋆) = Û⋆
I−Nt

(ub).

Moreover, Ψ⋆ ∈ A
b
(t, ub) and for any other contract which belongs to A

b
(t, ub), the value function of

the good bank under such a contract is less or equal to Û⋆
I−Nt

(ub). In particular, this implies that

Û⋆
I−Nt

(ub) = ÛI−Nt(u
b).

To conclude the section, we state that Cj is indeed equal to the credible set with j loans left and

therefore the functions Ûj and L̂j correspond to its upper and lower boundaries.

Proposition 4.3. For every 1 ≤ j ≤ I, Ĉj = Cj .

5 Optimal contracts

In this section we study two kind of contracts that the investor can offer to the bank, the shutdown

contract, which corresponds to a single contract designed to be accepted only for the good bank and

the screening contract, corresponding to a menu of contracts, one for each type of agent, providing

incentives to the bank to accept the contract designed for her true type.

5.1 Shutdown contract

In the so–called shutdown contract, the investor designs a contract Ψg = (kg,Dg, θg) only for the good

bank and makes sure that the bad bank will not accept it. Under these conditions the utility of the

investor at time t = 0 is

vg,Shut0 (Ψg) = pgE
Pkg
[∫ τ

0
µ(I −Ns)ds− dDg

s

]
. (5.1)

So the investor will offer a contract which maximises (5.1) subject to the constraints

ug0(k
g, θg,Dg) ≥ R0 ≥ sup

k∈K
ub0(k, θ

g,Dg), (5.2)

ug0(k
g, θg,Dg) = sup

k∈K
ug0(k, θ

g,Dg). (5.3)

Recalling the dynamics (4.5)–(4.6), we can rewrite the investor’s maximisation problem as follows

vShut0 := sup
(θg ,Dg)∈Ag

Shut

pgE
Pk⋆,g(θg,Dg)

[∫ τ

0
µ(I −Ns)ds − dDg

s

]
,

where

Ag
Shut :=

{
(θg,Dg) ∈ Θ×D, U b,c

0 (θg,Dg) ≤ R0 ≤ Ug
0 (θ

g,Dg)
}
.

18



Remark 5.1. We will use the notation U b,c(θg,Dg) for the value function that the bad bank gets if she

does not reveal her true type and accepts the contract designed for the good bank. We make a distinction

between this process and U b(θb,Db), which corresponds to the value function that the bad bank obtain

if she accepts the contract designed for her by the investor. We make the same distinction between the

associated processes h1,b,c(θ,D), h2,b,c(θ,D) and h1,b(θ,D), h2,b(θ,D).

As in the previous section, we will define a simple set of contracts and consider the value functions

of the agents as diffussion processes controlled by (D, θ, h1,g, h2,g, h1,b,c, h2,b,c). As explained before,

by doing so we will look at a larger class of "contracts". Nonetheless, we will prove later that under

reasonable assumption the solution of the problem we consider do coincide with the optimal shutdown

contract.

Define for any (t, ug, ub,c) ∈ [0,+∞)× CI−Nt

Âg(t, ug, ub,c) :=

{
Ψg = (Dg, θg, h1,g, h2,g, h1,b,c, h2,b,c) ∈ D ×Θ×H4, such that ∀s ∈ [t, τ ],

Ug
s−
(Ψg) = h1,gs + h2,gs , Ug

s−
(Ψg)− h1,gs ≥

B(I −Ns)

r + λI−Ns
s

, Ug
t (Ψg) = ug

U b,c
s−

(Ψg) = h1,b,cs + h2,b,cs , U b,c
s−

(Ψg)− h1,b,cs ≥
B(I −Ns)

r + λI−Ns
s

, U b,c
t (Ψg) = ub,c

}
.

We will also consider in the sequel the following standard control problem, for any (ub,c, ug) ∈ CI

v̂g0(u
b,c, ug) := sup

Ψg∈Âg(0,ug ,ub,c)

pgE
P
k⋆,g(Ψg)

[∫ τ

0
µ(I −Ns)ds − dDg

s

]
.

We abuse notations and also call elements of Âg(t, ug, ub,c) contracts.

5.1.1 Value function of the investor

In this section, we characterise the value function of the investor when he offers only shutdown contracts.

We will start by computing the value function on the boundaries of the credible set, before explaining

how it can be characterised by a specific HJB equation in the interior of the credible set, under

reasonable assumptions.

5.1.1.1 Value function of the investor on the lower boundary

Recall the lower boundary with j loans left

L̂j(u
b,c) =




ub,c, c(j, 1) ≤ ub,c ≤ C(j),
ρg
ρb
ub,c −

(ρg − ρb)

ρb
C(j), C(j) ≤ ub,c <∞.

Consider any starting time t ≥ 0. For ub,c ∈ CI−Nt , we denote by V L,g(ub,c) the value function of the

investor in the lower boundary, that is

V L,g
t (ub,c) := ess sup

Ψg∈Âg(t,L̂I−Nt
(ub,c),ub,c)

E
P
k⋆,g(Ψg)

[∫ τ

t
(µ(I −Ns)ds − dDg

s)

∣∣∣∣Gt

]
. (5.4)

The following two propositions are proved in Appendix G and give explicitly the value of V L,g
t (ub,c).
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Proposition 5.1. For every ub,c ∈ CI−Nt, if ub,c ≥ C(I −Nt) then the value function of the investor

in the lower boundary is given by

V L,g
t (ub,c) =

I−1∑

i=Nt

µ(I − i)

λ̂SHI−i

−

(
ub,c − C(I −Nt)

ρb

)
.

Proposition 5.2. Fix some t ≥ 0. For every ub,c ∈ CI−Nt, with c(I − Nt, 1) ≤ ub,c < C(I − Nt), let

ν(ub,c) be the unique solution of the following equation in ν

(
B(I −Nt)

r + λ̂SHI−Nt

− ub,c

)
+

I−1∑

i=Nt+1

∫ ∞

si(ν)

(
B(I − i)

r + λ̂SHI−i

e−rx

)
fτi(x)dx = 0,

where fτi is the density of the law of τi under P
kSH

and where

si(ν) :=





0, ν ≤
µ(r + λ̂SHI−i)

Bλ̂SHI−i

,

1

r
ln

(
νBλ̂SHI−i

µ(r + λ̂SHI−i)

)
, ν ≥

µ(r + λ̂SHI−i)

Bλ̂SHI−i

.

Then the value function of the investor in the lower boundary is given by

V L,g
t (ub,c) =

µ(I −Nt)

λ̂SHI−Nt

+

I−1∑

i=Nt+1

∫ ∞

si(ν(ub,c))

µ(I − i)

λ̂SHI−i

fτi(x) dx.

Remark 5.2. Observe that the function V L,g
t computed in Propositions 5.1 and 5.2 depends on t only

through the quantity I −Nt. Define, for any j = 1, . . . , J the map

V̂ L,g
j (ub,c) :=





j∑

i=1

µi

λ̂SHi
−

(
ub,c − C(j)

ρb

)
, ub,c ≥ C(j),

µj

λ̂SHj
+

j−1∑

i=1

∫ ∞

sI−j(ν(ub,c))

µi

λ̂SHi
fτI−i

(x) dx, ub,c ∈ (c(j, 1), C(j)) .

We have therefore, that V L,g
t (ub,c) = V̂ L,g

I−Nt
(ub,c).

5.1.1.2 Value function of the investor on the upper boundary

The next proposition states that the upper boundary of the credible set is absorbing in the following

sense: if under any contract the pair of value functions of the banks reaches the upper boundary at

some time, the pair will stay on the upper boundary until the pool is liquidated.

Proposition 5.3. Consider (t, ug, ub,c) ∈ [0,+∞)×CI−Nt such that ug = ÛI−Nt(u
b,c) and any contract

Ψg = (Dg, θg, h1,g, h2,g, h1,b,c, h2,b,c) ∈ Âg(t, ug, ub,c). Then Ug
s (Ψg) = ÛI−Ns(U

b,c
s (Ψg)) for every s ∈

[t, τ).

The next proposition states an important property satisfied by the contracts which make the continu-

ation utilities of the banks lie in the upper boundary of the credible set.

Proposition 5.4. Consider (t, ug, ub,c) ∈ [0,+∞)×CI−Nt such that ug = ÛI−Nt(u
b,c) and any contract

Ψg = (Dg, θg, h1,g, h2,g, h1,b,c, h2,b,c) ∈ Âg(t, ug, ub,c). Then
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(i) θgs = 0 for every s ∈ [t, τ) such that U b,c
s (Ψg) < bs.

(ii) If U b,c
s0 (Ψg) ≥ bs0 for some s0 ∈ [t, τ) then k⋆,b,cs (Ψg) = 0 and U b,c

s (Ψg) ≥ bs for every s ∈ [s0, τ).

We are now ready to give the value function of the investor on the upper boundary of the credible set,

under the assumptions of Theorem 3.1.

Proposition 5.5. Under Assumption 3.1, we have that for any t ≥ 0 and any ub,c ∈ V̂I−Nt, the value

function of the investor on the upper boundary, defined by

V U,g
t (ub,c) := ess sup

Ψg∈Âg(t,ÛI−Nt
(ub,c),ub,c)

E
P
k⋆,g(Ψg)

[∫ τ

t
(µ(I −Ns)ds− dDg

s)

∣∣∣∣Gt

]
, (5.5)

verifies V U,g
t (ub,c) = V̂ U,g

I−Nt
(ub,c), where for any j = 1, · · · , I

V̂ U,g
j (ub,c) :=





µj

λ̂SHj
+ Ĉj

(
ub,c −

Bj

r + λ̂SHj

) λ̂SH
j

r+λ̂SH
j

, ub,c < x⋆j ,

µj

λ̂0j
+

(
vbj (̂bj)−

µj

λ̂0j

)(
b̂j

r + λ̂0j

r + λ̂SHj

)−
λ̂0j

r+λ̂SH
j

(
ub,c −

Bj

r + λ̂SHj

) λ̂0j

r+λ̂SH
j

, ub,c ∈
[
x⋆j , b̂j

)
,

vbj(u
b,c), ub,c ≥ b̂j,

with

Ĉj :=


µj
λ̂0j

−
µj

λ̂SHj
+

(
ρb
ρg

) λ̂0j

r+λ̂0
j

(
vbj (̂bj)−

µj

λ̂0j

)

(
ρb
ρg

)−
λ̂SH
j

r+λ̂0
j

(
b̂j(r + λ̂0j)

r + λ̂SHj

)−
λ̂SH
j

r+λ̂SH
j

.

5.1.1.3 Value function of the investor in the credible set

We define, for any t ≥ 0 and any (ub,c, ug) ∈ ĈI−Nt, the value function of the investor in the credible

set by

V g
t (u

b,c, ug) := ess sup
Ψg∈Âg(t,ug,ub,c)

E
P
k⋆,g(Ψg)

[∫ τ

t
(µ(I −Ns)ds − dDg

s)

∣∣∣∣Gt

]
. (5.6)

The system of HJB equations associated to this control problem is given by V̂ g
0 ≡ 0, and for any

1 ≤ j ≤ I

min





− sup
C

j





∂ub,c V̂
g
j (u

b,c, ug)
(
rub,c −Bkb,c + [h1,b,c + (1− θ)h2,b,c]λ̂k

b,c

j

)

+∂ug V̂ g
j (u

b,c, ug)
(
rug −Bkg + [h1,g + (1− θ)h2,g]λ̂k

g

j

)

+[V̂ g
j−1(u

b,c − h1,b,c, ug − h1,g)− V̂ g
j (u

b,c, ug)]λ̂k
g

j

−V̂ g
j−1(u

b,c − h1,b,c, ug − h1,g)(1− θ)λ̂k
g

j + µj





, ρb∂ub,c V̂
g
j (u

b,c, ug) + ρg∂ug V̂ g
j (u

b,c, ug) + 1
}
= 0. (5.7)

With kb,c = j · 1
{h1,b,c+(1−θ)h2,b,c<b̂j}

, kg = j · 1
{h1,g+(1−θ)h2,g<b̂j}

and the set of constraints

C
j
=

{
(θ, h1,b,c, h2,b,c, h1,g, h2,g), θ ∈ [0, 1], ug = h1,g+h2,g, ub,c = h1,b,c+h2,b,c, h2,g;h2,b,c ≥

B(j − 1)

r + λ̂SHj−1

}
.
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The boundary conditions of (5.7) are given by

V̂ g
j (u

b,c, Ûj(u
b,c)) = V̂ U ,g

j (ub,c), for every ub,c ∈ V̂j ,

V̂ g
j (u

b,c, L̂j(u
b,c)) = V̂ L,g

j (ub,c), for every ub,c ∈ V̂j.

The last step would now be to make a rigorous link between a solution in an appropriate sense to the

above system and the value function V g. We have then two possibilities at hand.

(i) First, we can use classical arguments to prove that V̂ g
j is a viscosity solution of the above PDE

for every j = 1, . . . , I, a result we should then complement with a comparison theorem ensuring

uniqueness of the viscosity solution. This would provide a complete characterisation of the value

function of the investor, and more importantly would make the problem amenable to numerical

computations, using for instance classical finite difference methods. As for the optimal contract, it

will correspond to the maximisers in the Hamiltonian above, and therefore would require that we

prove that V̂ g
j is at least weakly differentiable (for instance if V̂ g

j is concave or Lipschitz continuous,

which we expect from the form of the problem) to be well defined. This program can in principle be

carried out using standard arguments in viscosity theory of Hamilton–Jacobi equations. However,

given the length of the paper, we believe that it would not serve a specific purpose and decided to

leave these arguments out.

(ii) Another possibility would be to show existence of a smooth solution to the PDE, and prove a

comparison theorem similar to Theorem 4.1. However, since the above recursive system involves

elliptic PDEs in dimension 2 in a non–trivial domain, we do not expect to be able to obtain explicit

solutions in general, which means that existence would have to be proved through abstract arguments.

Once again, we believe that such considerations are outside the scope of the paper. We will therefore

simply state without proof (since it would be extremely similar to that of Theorem 4.1) a verification

theorem adapted to our framework.

Theorem 5.1. Assume that the system (5.7) has a C1−solution and that the supremum in the Hamil-

tonian is attained at some (θ⋆i (u
b,c, ug), h⋆,1,b,ci (ub,c, ug), h⋆,2,b,ci (ub,c, ug), h⋆,1,gi (ub,c, ug), h⋆,2,gi (ub,c, ug)).

Define then

δ⋆,gs (ub,c, ug) :=
1

ρg

(
rug −Bk⋆,gs + λ̂k

⋆,g
s

I−Ns
h⋆,1,gI−Ns

(ub,c, ug) + (1− θ⋆I−Ns
(ub,c, ug))λ̂k

⋆,g
s

I−Ns
h⋆,2,gI−Ns

(ub,c, ug))
)

× 1{ρb∂ub,c V̂
g
I−Ns

(ub,c,ug)+ρg∂ug V̂
g
I−Ns

(ub,c,ug)+1},

where

k⋆,gs (ub,c, ug) : = (I −Ns)1{h⋆,1,g
I−Ns

(ub,c,ug)+(1−θ⋆,g
I−Ns

(ub,c,ug))h⋆,2,g
I−Ns

(ub,c,ug)<b̂I−Ns}
,

k⋆,b,cs (ub,c, ug) : = (I −Ns)1{h⋆,1,b,c
I−Ns

(ub,c,ug)+(1−θ⋆,g
I−Ns

(ub,c,ug))h⋆,2,b,c
I−Ns

(ub,c,ug)<b̂I−Ns}
.

If the corresponding contract is admissible

Ψ⋆,g :=
((
δ⋆,gI−N·

, θ⋆I−N·
, h⋆,1,b,cI−N·

, h⋆,2,b,cI−N·
, h⋆,1,gI−N·

, h⋆,2,gI−N·

)
(U⋆,b,c, U⋆,g)

)
,

where (U⋆,b,c, U⋆,g) are weak solutions to the corresponding SDEs

dU⋆,g
s =

(
rU⋆,g

s −Bk⋆,gs (U⋆,b,c
s , U⋆,g

s )− ρgδ
⋆,g
I−Ns

(U⋆,b,c
s , U⋆,g

s )
)
ds

− h⋆,1,gI−Ns
(U⋆,b,c

s , U⋆,g
s )

(
dNs − λk

⋆,g((U⋆,b,c,U⋆,g))
s ds

)

− h⋆,2,gI−Ns
(U⋆,b,c

s , U⋆,g
s )

(
dHs − (1− θ⋆,gI−Ns

(U⋆,b,c
s , U⋆,g

s ))λk
⋆,g((U⋆,b,c,U⋆,g))

s ds
)
,
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dU⋆,b,c
s =

(
rU⋆,b,c

s −Bk⋆,b,cs (U⋆,b,c
s , U⋆,g

s )− ρbδ
⋆,g
I−Ns

(U⋆,b,c
s , U⋆,g

s )
)
ds

− h⋆,1,b,cI−Ns
(U⋆,b,c

s , U⋆,g
s )

(
dNs − λk

⋆,b,c((U⋆,b,c,U⋆,g))
s ds

)

− h⋆,2,b,cI−Ns
(U⋆,b,c

s , U⋆,g
s )

(
dHs − (1− θ⋆,gs (U⋆,b,c

s , U⋆,g
s ))λk

⋆,b,c((U⋆,b,c,U⋆,g))
s ds

)
,

then we have

vShut0 = sup
ub,c≤R0≤ug

v̂g0(u
b,c, ug) = sup

ub,c≤R0≤ug

pgV̂
g
I (u

b,c, ug),

and Ψ⋆,g is an optimal contract for the investor.

5.2 Screening contract

Recall that in the screening contract the investor designs a menu of contracts, one for each agent, and

his expected utility is given by

v0
(
(Ψi)i∈{g,b}

)
=

∑

i∈{g,b}

piE
Pki
[∫ τ

0
(I −Ns)µds− dDi

s

]
. (5.8)

In this case, we will have to keep track of the continuation utilities of both banks, when they choose

the contract designed for them, as well as when they do not truthfully reveal their type. We will denote

by v0 the maximal utility that the investor can get out of the screening contract.

v0 := sup
(θg,θb,Dg,Db)∈AScr

pgE
Pk⋆,g(θg,Dg)

[ ∫ τ

0
µ(I−Ns)ds− dD

g
s

]
+ pbE

Pk⋆,b(θb,Db)

[ ∫ τ

0
µ(I−Ns)ds− dD

b
s

]
,

where

AScr :=
{
(θg, θb,Dg,Db) ∈ Θ2×D2, U b

0(θ
b,Db) ≥ R0, U

j
0 (θ

j,Dj) ≥ U j,c
0 (θi,Di), (i, j) ∈ {g, b}2, i 6= j

}
.

Remark 5.3. Observe that we can omit the condition Ug
0 (θ

g,Dg) ≥ R0 in the definition of AScr.

Indeed, it is implied by the inequality Ug,c
0 (θb,Db) ≥ U b

0(θ
b,Db), which follows from Lemma 4.1.

Different from the study of the shutdown contract, where the investor contracts only the good bank,

in order to obtain the optimal screening contract we need to characterise also the value function of the

investor when he contracts the bad bank. We will therefore follow Section 5.1.1, but by replacing the

good bank by the bad bank. Hence, we define for any (t, ub, ug,c) ∈ [0,+∞)× CI−Nt the set

Âb(t, ug,c, ub) :=

{
Ψb = (Db, θb, h1,g,c, h2,g,c, h1,b, h2,b) ∈ D ×Θ×H4, such that ∀s ∈ [t, τ ],

U b
s−(Ψb) = h1,bs + h2,bs , U b

s−(Ψb)− h1,bs ≥
B(I −Ns)

r + λI−Ns
s

, U b
t (Ψb) = ub,

Ug,c
s−

(Ψb) = h1,g,cs + h2,g,cs , Ug,c
s−

(Ψb)− h1,g,cs ≥
B(I −Ns)

r + λI−Ns
s

, Ug,c
t (Ψb) = ug,c

}
.

We also introduce the following stochastic control problem for any (ub, ug,c) ∈ CI

v̂b0 (u
b, ug,c) := sup

Ψb∈Âb(0,ug,c,ub)

pbE
P
k⋆,b(Ψb)

[∫ τ

0
µ(I −Ns)ds − dDb

s

]
.

The aim of the next sections is to compute the function v̂b0 (u
g,c, ub), representing the utility of the

investor when hiring the bad bank. We start by studying it on the boundary of the credible set.
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5.2.1 Boundary study

We denote by V L,b(ug,c) the value function of the investor in the lower boundary, when hiring the bad

bank, defined by

V L,b
t (ub) := ess sup

Ψb∈Âb(t,L̂I−Nt
(ub),ub)

E
Pk⋆,b(Ψb)

[∫ τ

t

(
µ(I −Ns)ds− dDb

s

)∣∣∣∣Gt

]
. (5.9)

The first result is that the value function of the investor on the lower boundary of the credible set is

the same when hiring either the bad or the good bank. This is mainly due to the fact that both banks

shirk on the lower boundary.

Proposition 5.6. For every ub ∈ CI−Nt, we have V L,b
t (ub) = V L,g

t (ub).

Proof. By definition we have the set equality Âg(t, L̂I−Nt(u
b), ub) = Âb(t, L̂I−Nt(u

b), ub). From

Lemmas E.1 and E.2 we know that for every Ψb ∈ Âb(t, L̂I−Nt(u
b), ub), both agents always shirk under

Ψb, therefore the objective functions in the definitions of V L,g
t (ub) and V L,b

t (ub) are also the same and

equality holds. ⊔⊓

Let us now consider the upper boundary. We denote by V U,b(ub) the value function of the investor on

the upper boundary when hiring the bad agent.

V U,b
t (ub) := ess sup

Ψb∈Âb(t,ÛI−Nt
(ub),ub)

E
Pk⋆,b(Ψb)

[∫ τ

t

(
µ(I −Ns)ds − dDb

s

)∣∣∣∣Gt

]
. (5.10)

We have the following result.

Proposition 5.7. Under the assumptions of Theorem 3.1, for any t ≥ 0 and any ub ∈ V̂I−Nt, we have

that V U,b
t (ub) = V̂ U,b

I−Nt
(ub), where for any j = 1, · · · , I

V̂ U,b
j (ub) :=





µj

λ̂SHj
+ C̃j

(
ub −

Bj

r + λ̂SHj

) λ̂SH
j

r+λ̂SH
j

, ub < b̂j ,

vbj(u
b), ub ≥ b̂j ,

with

C̃j =

(
vbj (̂bj)−

µj

λ̂SHj

)(
b̂j(r + λ̂0j)

r + λ̂SHj

) −λ̂SH
j

r+λ̂SH
j

.

Proof. The proof is identical to the proof of Proposition 5.5, with the only difference that since the

principal is hiring the bad agent, for ub < b̂j the ODE associated to the value function is

0 = V̂ ′
j(u

b)
((
r + λ̂SHj

)
ub −Bj

)
− V̂j(u

b)λ̂SHj + µj,

with the boundary condition V̂j

(
Bj

r+λ̂SH
j

)
= µj

λ̂SH
j

. ⊔⊓
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5.2.2 Study of the credible set

We define, for any t ≥ 0 and any (ub, ug,c) ∈ ĈI−Nt, the value function of the investor in the credible

set when hiring the bad bank by

V b
t (u

b, ug,c) := ess sup
Ψb∈Âb(t,ug,c,ub)

E
P
k⋆,b(Ψb)

[∫ τ

t

(
µ(I −Ns)ds− dDb

s

)∣∣∣∣Gt

]
. (5.11)

The system of HJB equations associated to this control problem is given by V̂ b
0 ≡ 0, and for any

1 ≤ j ≤ I

min





− sup
C

j





∂ubV̂ b
j (u

b, ug,c)
(
rub −Bkb + [h1,b + (1− θ)h2,b]λ̂k

b

j

)

+∂ug,c V̂ b
j (u

b, ug,c)
(
rug,c −Bkg,c + [h1,g,c + (1− θ)h2,g,c]λ̂k

g,c

j

)

+[V̂ b
j−1(u

b − h1,b, ug,c − h1,g,c)− V̂ b
j (u

b, ug,c)]λ̂k
b

j

−V̂ b
j−1(u

b − h1,b, ug,c − h1,g,c)(1− θ)λ̂k
b

j + µj





, ρb∂ub V̂ b
j (u

b, ug,c) + ρg∂ug,c V̂ b
j (u

b, ug,c) + 1
}
= 0. (5.12)

With kb = j · 1
{h1,b+(1−θ)h2,b<b̂j}

, kg,c = j · 1
{h1,g,c+(1−θ)h2,g,c<b̂j}

and the same set of constraints C
j

as

in the system of HJB equations associated to the functions V̂ g
j (u

b,c, ug). The boundary conditions of

(5.12) are given by

V̂ b
j (u

b, Ûj(u
b)) = V̂ U ,b

j (ub), for every ub,c ∈ V̂j,

V̂ b
j (u

b, L̂j(u
b)) = V̂ L,g

j (ub), for every ub,c ∈ V̂j.

Theorem 5.2. Assume that the conditions of Theorem 5.1 hold, that (5.12) admits a C1−solution and

that the supremum in the Hamiltonian is attained for (θ⋆i , h
⋆,1,g,c
i , h⋆,2,g,ci , h⋆,1,bi , h⋆,2,bi )(ug,c, ub). Define

then

δ⋆,bs (ug,c, ub) :=
1

ρb

(
rub −Bk⋆,bs + λ̂k

⋆,b
s

I−Ns
h⋆,1,bI−Ns

(ug,c, ub) + (1− θ⋆I−Ns
(ug,c, ub))λ̂k

⋆,b
s

I−Ns
h⋆,2,bI−Ns

(ug,c, ub))
)

× 1
{ρg∂ug,c V̂

b
I−Ns

(ug,c,ub)+ρb∂ub V̂
b
I−Ns

(ug,c,ub)+1}
,

where

k⋆,bs (ug,c, ub) : = (I −Ns) · 1{h⋆,1,b
I−Ns

(ug,c,ub)+(1−θ⋆,b
I−Ns

(ug,c,ub))h⋆,2,b
I−Ns

(ug,c,ub)<b̂I−Ns}
,

k⋆,g,cs (ug,c, ub) : = (I −Ns) · 1{h⋆,1,g,c
I−Ns

(ug,c,ub)+(1−θ⋆,b
I−Ns

(ug,c,ub))h⋆,2,g,c
I−Ns

(ug,c,ub)<b̂I−Ns}
.

If the corresponding contract is admissible

Ψ⋆,b :=
((
δ⋆,bI−N·

, θ⋆I−N·
, h⋆,1,g,cI−N·

, h⋆,2,g,cI−N·
, h⋆,1,bI−N·

, h⋆,2,bI−N·

)
(U⋆,g,c, U⋆,b)

)
,

where (U⋆,g,c, U⋆,b) are weak solutions to the corresponding SDEs

dU⋆,b
s =

(
rU⋆,b

s −Bk⋆,bs (U⋆,g,c
s , U⋆,b

s )− ρbδ
⋆,b
I−Ns

(U⋆,g,c
s , U⋆,b

s )
)
ds

− h⋆,1,bI−Ns
(U⋆,g,c

s , U⋆,b
s )

(
dNs − λk

⋆,b((U⋆,g,c,U⋆,b))
s ds

)

− h⋆,2,bI−Ns
(U⋆,g,c

s , U⋆,b
s )

(
dHs − (1− θ⋆,bI−Ns

(U⋆,g,c
s , U⋆,b

s ))λk
⋆,b((U⋆,g,c,U⋆,b))

s ds
)
,
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dU⋆,g,c
s =

(
rU⋆,g,c

s −Bk⋆,g,cs (U⋆,g,c
s , U⋆,b

s )− ρgδ
⋆,b
I−Ns

(U⋆,g,c
s , U⋆,b

s )
)
ds

− h⋆,1,g,cI−Ns
(U⋆,g,c

s , U⋆,b
s )

(
dNs − λk

⋆,g,c((U⋆,g,c,U⋆,b))
s ds

)

− h⋆,2,g,cI−Ns
(U⋆,g,c

s , U⋆,b
s )

(
dHs − (1− θ⋆,bI−Ns

(U⋆,g,c
s , U⋆,b

s ))λk
⋆,g,c((U⋆,g,c,U⋆,b))

s ds
)
,

then (Ψ⋆,g,Ψ⋆,b) is an optimal menu of contracts for the investor, and we have

v0 = sup
{R0≤ub,ub,c≤ub,ug,c≤ug}

v̂g0(u
b,c, ug) + v̂b0 (u

b, ug,c)

= sup
{R0≤ub,ub,c≤ub,ug,c≤ug}

pgV̂
g
I (u

b,c, ug) + pbV̂
b
I (u

b, ug,c).

5.3 Description of the optimal contracts

In this section we describe the optimal contracts for the investor when he designs a contract for the

good or the bad bank. We explain in detail the optimal contracts on the boundaries of the credible set,

which can be obtained explicitly from the value function of the investor. In the interior of the credible

set, we discuss the properties we expect the optimal contracts to have when the verification theorems

5.1 and 5.2 hold.

5.3.1 Optimal contracts on the boundaries of the credible set

We start with the upper boundary of the credible set. The following result is a direct consequence of

the proofs of Proposition 5.5 and 5.7, and the optimal contract for the pure moral hazard case described

in Theorem 3.1.

Proposition 5.8. Under Assumption 3.1, consider for any t ≥ 0 and (ub,Ut(u
b)) ∈ CI−Nt the process

(ubs)s≥t as the solution of the following SDE on [t, τ)

dubs =
(
(rubs −Bkb,⋆s + λk

b,⋆

s (h1,b,⋆s + (1− θ⋆s)h
2,b,⋆
s )

)
ds− ρbdD

⋆
s − h1,b,⋆s dNs − h2,b,⋆s dHs, (5.13)

with initial value ub at t, and with

D⋆
s := 1{s=t}

(ub − γbI−Nt
)+

ρb
+

∫ s

t
δI−Nr(ubr)dr, θ

⋆
s := θI−Ns(ubs),

h1,b,⋆s := h1,b,I−Ns(ubs), h
2,b,⋆
s := h2,b,I−Ns(ubs), k

b,⋆
s := kb,j(ubs),

for s ∈ [t, τ) and j = 1, . . . , I, where

δj(u) := 1{u=γb
j
}

λ̂0j b̂j + rγbj
ρi

, θj(u) := 1
{u∈[̂bj ,̂bj−1+b̂j)}

u− b̂j

b̂j−1

+ 1
{u∈[̂bj+b̂j−1,γb

j )}
,

h1,b,j(u) := 1
{u∈[c(j,1),̂bj)}

u+ 1
{u∈[̂bj ,̂bj−1+b̂j)}

(u− b̂j−1) + 1
{u∈[̂bj+b̂j−1,γb

j )}
b̂j,

h2,b,j(u) := u− h1,b,j(u), kb,j(u) = j1
{h1,b,j (u)+(1−θj (u))h2,b,j (u)<b̂j}

.

Then, the contract Ψ⋆ = (D⋆, θ⋆, h1,b,⋆, h2,b,⋆) is the unique solution of problems (5.5) and (5.10).

Let us comment the optimal contract for the investor on the upper boundary of the credible set. It

is the same if he designs a contract for the good or the bad bank. The state process (ubs)s≥t defined

by (5.13) corresponds to the value function of the bad bank under the optimal contract. The optimal
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contract offers no payments to the banks when ubs is smaller than γbI−Ns
. In this case the continuation

utility of the bad bank is an increasing process and eventually reaches the value γbI−Ns
, if no default

happens in the meantime. Payments are postponed until this moment. If the initial value for the

bad agent ub is greater than γbI−Nt
, a lump-sum payment is made at t− in order to have ut = γbI−Nt

.

When ubs = γbI−Ns
, the banks receive constant payments which keep the value function of the bad bank

constant at this level. Concerning the liquidation of the project, if at the default time τj, it holds

that ubτj < b̂j the project is liquidated. In case ubτj ∈ [̂bj + b̂j−1, γ
b
j), the project will continue with

probability θj ∈ (0, 1) which will be closer to one as ubτj gets closer to γbj . If ubτj ≥ γbj , the project

will be maintained. Finally, the bad bank will monitor all the loans only when her value function is

greater than b̂I−Ns , whereas the good bank will monitor when the value of the bad bank is greater than

x⋆I−Ns
. Figure 2 depicts the optimal contract of the investor on the upper boundary of the credible

set, denoting B̂j := b̂j + b̂j−1.

ubsc(I −Ns, 1) x⋆I−Ns b̂I−Ns
B̂I−Ns

γbI−Ns

kgs = I −Ns kgs = 0 kgs = 0 kgs = 0 kgs = 0

kbs = I −Ns kbs = I −Ns kbs = 0 kbs = 0 kbs = 0

θs = 0 θs = 0 θs ∈ (0, 1) θs = 1 θs = 1

dDs = 0 dDs = 0 dDs = 0 dDs = 0 dDs > 0

Figure 2: Optimal contract on the upper boundary.

For the lower boundary of the credible set, we have the following result.

Proposition 5.9. Under Assumption 3.1, consider for any t ≥ 0 and (ub,Lt(u
b)) ∈ CI−Nt the process

(ubs)s≥t as the solution of the following SDE on [t, τ)

dubs =
(
(rubs −Bkb,⋆s + λk

b,⋆

s (h1,b,⋆s + (1− θ⋆s)h
2,b,⋆
s )

)
ds− ρbdD

⋆
s − h1,b,⋆s dNs − h2,b,⋆s dHs, (5.14)

with initial value ub at t, and with

D⋆
s := 1{s=t}

(ub − C(I −Ns))
+

ρb
, θ⋆s := 1{ub

s≥C(I−Ns)},

h1,b,⋆s := ubs − C(I −Ns − 1)1{ub
s≥C(I−Ns)}, h

2,b,⋆
s := C(I −Ns − 1)1{ub

s≥C(I−Ns)},

kb,⋆s = (I −Ns)1{h1,b,⋆
s +(1−θ⋆s )h

2,b,⋆
s <bs}

,

for s ∈ [t, τ). Then, the contract Ψ⋆ = (D⋆, θ⋆, h1,b,⋆, h2,b,⋆) is the unique solution of (5.4) and (5.9).

Proof. The payments and the value of θ⋆ in the case ub ≥ C(I −Nt) are a direct consequence of the

proof of Proposition 5.1. From the proof of Proposition 5.2 we have that if ub < C(I −Nt) then

θ⋆s = 1{
s−t> 1

r
ln

(
ν(ub)Bλ̂SH

I−Nt

µ(r+λ̂SH
I−Nt

)

)},

where ν(ub) the solution of the associated dual problem. Since the quantity inside of the logarithm

decreases with time, we have that θ⋆ is a process which starts at zero, jumps to one at some instant

and keeps constant afterwards. This means that if θ⋆ jumps to one at some time s and the project is

still running, necessarily the continuation utility of the bad agent is equal to C(I − Ns) because the

project will continue until the last default. ⊔⊓
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On the lower boundary of the credible set, the optimal contract for the investor also does not depend

on the type of the bank. If the initial value of the bad bank ub is greater than C(I −Nt), the banks

receive a lump-sum payment such that ubt+ = C(I − Nt). This is the only payment offered by the

contract. If there is a default at some time s such that ubs < C(I − Ns), the project is liquidated.

When ubs = C(I − Ns) the contract maintains the project until the last default. Since the optimal

contract does not provides incentives to the banks to monitor the loans, the good and the bad bank

shirk until the liquidation of the project. Figure 3 depicts the optimal contract of the investor on the

lower boundary of the credible set.

ubsc(I −Ns, 1) C(I −Ns)

kgs = I −Ns kgs = I −Ns

kbs = I −Ns kbs = I −Ns

θs = 0 θs = 1

dDs = 0 dDs > 0

Figure 3: Optimal contract on the lower boundary.

5.3.2 Discussion about the optimal contracts in the interior of the credible set

Figure 4 represents the optimal contracts on the boundaries of the credible set as well as the movements

of the values of the banks along these curves. The green zone corresponds to the region where the

contract offers payments to the agents and the project is maintained if there is a default. The red zone

corresponds to the region where there are no payments and the project is liquidated immediately after

a default. Intermediate situations correspond to the yellow zone. We remark that the banks are paid

only on the green zone.

Bj

r+λ̂j
j

x⋆j b̂j C(j) γj

Bj

r+λ̂j
j

b̂j

ρg
ρb
b̂j

C(j)

ug = ub

L̂j(u
b)Û⋆

j (u
b)

ub

ug

Figure 4: Optimal contract on the boundaries of the credible set.

Let us now consider the whole credible set and explain how we expect the green and red zones on the

boundaries to propagate towards the interior region. If the verification theorems 5.1 and 5.2 hold, then
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the optimal contracts for problems (5.6) and (5.11) correspond to the maximisers in the Hamiltonian

of the systems (5.7) and (5.12). Moreover, payments only take place when the value function of the

investor saturates the gradient constraint. Therefore, it is natural to expect that if at some point of

the credible set the banks are paid, this will also be the case under movements in the direction (ρb, ρg).

The interpretation of this property is that the green region, where the banks are paid and the project is

maintained after a default, is formed by the points where the banks have a good performance and they

are rewarded. A movement in the direction (ρb, ρg) correspond to a better performance of both banks,

so it seems unnatural to deprive them of the reward. We can do the opposite interpretation for the

red region, consisting of the points where the banks receive no payments and the project is liquidated

after a default. In consequence, we expect that under the optimal contracts, it will be possible to

identify red and green areas in the credible set, where the characteristics described in the boundaries

will remain, and that will be delimited by some curves similar to those shown in figure 5 below.

Bj

r+λ̂j
j

x⋆j b̂j C(j) γj

Bj

r+λ̂j
j

b̂j

ρg
ρb
b̂j

C(j)

ug = ub

L̂j(u
b)Û⋆

j (u
b)

ub

ug

Figure 5: Optimal contract on the credible set.
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A Proofs for the pure moral hazard case

We provide in this section all the proofs of the results of Section 3. We start with the

Proof. [Proof of Proposition 3.1] Using the martingale representation theorem8 (recall that D is

supposed to be integrable and that k is bounded by definition), we deduce that for any k ∈ K there

exist G−predictable processes h1,i,k and h2,i,k such that

duit(k, θ
i,Di) =

(
ruit(k,D

i, θi)−Bkt
)
dt− ρidD

i
t − h1,i,kt

(
dNt − λkt dt

)

− h2,i,kt

(
dHt − (1− θit)λ

k
t dt
)
, 0 ≤ t < τ, P− a.s. (A.1)

Let us then define

Y i,k
t := uit(k, θ

i,Di), Zi,k
t := (h1,i,kt , h2,i,kt )⊤, Mt := (Nt,Ht)

⊤,

M̃ i
t :=Mt −

∫ t

0
λ0s(1, 1 − θis)

⊤ds, Ki
t := ρiD

i
t,

so that we can rewrite (A.1) as follows

Y i,k
t = 0−

∫ τ

t
f i(s, ks, Y

i,k
s , Zi,k

s )ds +

∫ τ

t
Zi,k
s · dM̃ i

s +

∫ τ

t
dKi

s, 0 ≤ t ≤ τ, P− a.s.,

8We emphasise that since the filtration G is augmented and generated by inhomogeneous Poisson processes, the

predictable martingale representation holds for any of the probability measures (Pk)k∈K.
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where

f i(t, k, y, z) := ry −Bk + kαI−Ntεz · (1, 1 − θit)
⊤.

In other words, (Y i,k, Zi,k) appears as a (super–)solution to a BSDE with (finite) random terminal

time, as studied for instance by Peng [43] or Darling and Pardoux [13]. Following then Hamadène and

Lepeltier [22] and El Karoui and Quenez [15]. By direct computations, it is easy to see that gi satisfies,

for any (t, y, y′, z, z′) ∈ R+ × R× R× R
2 × R

2

∣∣gi(t, y, z)− gi(t, y′, z)
∣∣ = r

∣∣y − y′
∣∣ ,

gi(t, y, z) − gi(t, y, z′) ≤ sup
0≤k≤I−Nt

{
kαI−Ntε(z − z′) · (1, 1 − θit)

⊤
}
= γt(z, z

′)λ0t (z − z′) · (1, 1 − θit)
⊤,

where γt(z, z
′) := ε1{(z−z′)·(1,1−θit)

⊤>0}, verifies 0 ≤ γt(z, z
′) ≤ ε. In particular, this means that the

generator gi satisfies the classical sufficient condition, introduced by Royer [49, Condition (Aγ)], en-

suring that a comparison theorem holds for the corresponding BSDE with jumps (see [49, Theorem

2.5]). Moreover, since the intensity of the Poisson process M under P is bounded, it is clear that τ

has exponential moments of any order. Since in addition we have gi(t, 0, 0) = −B(I −Nt), it is clear

that the generator and the terminal condition of the BSDE (3.2) admit moments of any order and thus

satisfy all the requirements ensuring wellposedness. Therefore, we deduce immediately that for any

k ∈ K

Y i,k
t ≤ Y i

t = Y i,k⋆,i

t , P− a.s.,

where we defined

k⋆,it := (I −Nt)1{Zi
t ·(1,1−θit)

⊤<bt}, and bt :=
B

αI−Ntε
, t ≥ 0.

This means that Y i is the value function of the bank, and that her optimal response given (θi,Di) ∈

Θ×D is k⋆,i. ⊔⊓

We continue with the

Proof. [Proof of Lemma 3.1] First of all, it is clear that the bank of type ρi can get arbitrarily large

levels of utility (it suffices for the investor to set dDi
s := nds for n large enough, starting from time t).

The bank’s maximal level of utility is therefore +∞, which corresponds to a utility equal to −∞ for

the investor. Then, coming back to the definition of the bank’s problem, or to the BSDE (3.2), it is

clear, for instance by using the comparison theorem for super solutions to (3.2) (see [49, Theorem 2.5]),

that in order to minimise the utility that the bank obtains, the investor has to set Di = 0. Moreover,

since by definition we must always have Y i
t ≥ 0 and Y i

τ = 0, and since the totally inaccessible jumps

of Y (recall that D is assumed to be predictable) are given by ∆Y i
t = −Zi

t ·∆Mt, we must have that

Y i
t− = Zi

t · (1, 1)
⊤, and Y i

t− ≥ Zi
t · (1, 0)

⊤, t > 0, P− a.s., (A.2)

Indeed, the support of the laws of τ and the τ j under P is [0,+∞). This implies in particular that

we must have Zi
t · (0, 1)

⊤ ≥ 0, which in turn implies that the generator gi is then non–increasing with

respect to θi, and thus that the minimal utility for the bank is attained, as expected, when θi = 0.

Then, if (θi,Di) = (0, 0) (which is obviously in Θ × D) starting from time t, it is clear that the bank
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will never monitor and will obtain

U i
t (0, 0) = B(I −Nt)E

PI−N·

[∫ τ

t
e−r(s−t)ds

∣∣∣∣Gt

]
=
B(I −Nt)

r

(
1− E

PI−N·
[
e−r(τ−t)

∣∣∣Gt

])

=
B(I −Nt)

r

(
1−

∫ +∞

0
λI−Nt
t e−x(r+λ

I−Nt
t )dx

)

=
B(I −Nt)

r + λI−Nt
t

.

Notice that this corresponds to the investor getting

µ(I −Nt)E
PI−N·

[τ − t| Gt] =
µ(I −Nt)

λI−Nt
t

.

⊔⊓

We finish with the

Proof. [Proof of Lemma 3.2] Let us show that for any (θi,Di) ∈ Θ×D enforcing k = 0 from time t,

we have U i
t (θ

i,Di) ≥ bt. With such a contract, we must have

Zi
s · (1, 1 − θis)

⊤ ≥ bs, s ≥ t.

By (A.2), this implies that for s ≥ t, Y i
s− ≥ bs, which, by right-continuity at time t leads to the desired

result. Notice also that this result implies the so–called limited liability property of the bank, which

reads

Y i
t− − Zi

t · (1, 0)
⊤ ≥ bt.

Now, in order for the investor to ensure that U i
t (θ

i,Di) = bt, it suffices for him, after time t, to offer

the optimal contract derived in [42] (with initial condition bt at time t), which we recall below (see

Theorem 3.1). By [42, Proposition 3.16], the utility of the bank will then be bt. ⊔⊓

B Utility of not monitoring

In this section we compute the utilities that the banks get from always shirking (without considering

the payments) under contracts which liquidates the pool after some fixed number of defaults. Observe

first that we have

E
PkSH

[
e−r(τNt+1−t)

∣∣∣∣Gt

]
=

∫ ∞

0
e−rxλSHI−Nt

e
−λSH

I−Nt
x
dx =

λSHI−Nt

r + λSHI−Nt

,

and for any l ∈ {Nt + 1, . . . , I − 1}

E
PkSH

[
e−r(τl+1−τl)

∣∣∣∣Gt

]
=

∫ ∞

0
e−rxλSHI−le

−λSH
I−l

x dx =
λSHI−l

r + λSHI−l

.

For m ∈ {2, . . . , I −Nt}, consider θ ∈ Θ given by

θs =

{
1, t ≤ s ≤ τNt+m,

0, s > τNt+m.
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It means that the pool will be liquidated exactly after the following m defaults, so that the utility that

the bank gets from shirking is

ut(k
SH , θ, 0) = E

PkSH
[∫ τ

t
e−r(s−t)B(I −Ns) ds

∣∣∣∣Gt

]

= E
PkSH

[∫ τNt+1

t
e−r(s−t)B(I −Nt) ds+

Nt+m−1∑

i=Nt+1

∫ τi+1

τi

e−r(s−t)B(I − i) ds

∣∣∣∣Gt

]

=
B(I −Nt)

r
E
PkSH

[
1− e−r(τNt+1−t)

∣∣∣∣Gt

]

+

Nt+m−1∑

i=Nt+1

B(I − i)

r
E
PkSH

[
e−r(τi−t) − e−r(τi+1−t)

∣∣∣∣Gt

]

=
B(I −Nt)

r + λSHI−Nt

+

Nt+m−1∑

i=Nt+1

B(I − i)

r
E
PkSH



(
1− e−r(τi+1−τi)

) i−1∏

l=Nt

e−r(τl+1−τl)

∣∣∣∣∣∣
Gt


 .

Therefore, by independence we have

ut(k
SH , θ, 0) =

B(I −Nt)

r + λSHI−Nt

+
Nt+m−1∑

i=Nt+1

B(I − i)

r + λSHI−i

i−1∏

l=Nt

λSHI−l

r + λSHI−l

=
B(I −Nt)

r + λSHI−Nt

+

I−Nt−1∑

i=I−Nt−m+1

Bi

r + λSHi

I−Nt∏

l=i+1

λSHl
r + λSHl

.

C Short–term contracts with constant payment

In this section we analyse the optimal responses and the value functions of the banks at a starting time

t ≥ 0, under contracts with constant payments of the form dDs = cds, where c is any Gt-measurable

random variable, and with θ ≡ 0, so that the pool is liquidated immediately after the first default.

C.1 Optimal responses and feasible set

In this section we compute the optimal responses of the agents to the described contracts, depending

on the value of c. We also show that for this class of contracts the set of expected payoff of the agents,

starting of time t, is exactly Vt =
[
B(I −Nt)/(r + λk

SH

t ),∞
)
.

(i) Let k0 := 0. If the bank of type ρi always monitors, we have

uit(k
0, θ,D) = E

P0

[∫ τ

t
e−r(s−t)ρicds

∣∣∣∣Gt

]
=

ρic

r + λk
0

t

.

Hence, the continuation utility is constant in time and if the payment c is exactly equal to ui(r+λk
0

t )/ρi,

then the bank receives exactly ui. In this case, k0 is incentive compatible if and only if ui ≥ bI−Nt .

The minimum payment such that the bank of type ρi will always work is therefore

ci =
bI−Nt(r + λk

0

t )

ρi
.

(ii) If the bank of type ρi always shirks, her continuation utility is constant and equal to

uit(k
SH , θ,D) = E

PkSH
[∫ τ

t
e−r(s−t)(ρic+B)ds

∣∣∣∣Gt

]
=
ρic+B(I −Nt)

r + λk
SH

t

.
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Then, if one takes c equal

ui(r + λk
SH

t )−B(I −Nt)

ρi
,

the bank receives ui. Therefore kSH is incentive compatible if and only if ui < bI−Nt. Nevertheless,

since the payment c must be positive, ui must be greater than B(I −Nt)/(r + λk
SH

t ). The supremum

of the payments such that the bank of type ρi will always shirk is therefore equal to

ci =
bI−Nt(r + λk

SH

t )−B(I −Nt)

ρi
=
bI−Nt(r + λk

0

t )

ρi
= ci.

Therefore the set of expected payoff under this class of contracts is Vt. Let us summarise our findings.

Response of the bank of type ρi to the contract θ ≡ 0, dDs = cds, after time t:

With ci =
bI−Nt(r + λk

0

t )

ρi
,

• if c ≤ ci =⇒ k⋆,i(θ,D) = kSH , U i
t (θ,D) =

ρic+B(I −Nt)

r + λk
SH

t

.

• if c ≥ ci =⇒ k⋆,i(θ,D) = k0, U i
t (θ,D) =

ρic

r + λk
0

t

.

C.2 Credible region under short–term contracts with constant payments

Once we know the optimal responses of the good and the bad bank for every payment c, we can study

the relationship between their value functions for any short–term contract with constant payments.

(i) Suppose c ∈ [0, cg). Since cg < cb, we have that k⋆,b(θ,D) = k⋆,g(θ,D) = kSH and

Ug
t (θ,D) =

B(I −Nt)

r + λk
SH

t

+
ρgc

r + λk
SH

t

, U b
t (θ,D) =

B(I −Nt)

r + λk
SH

t

+
ρbc

r + λk
SH

t

.

Thus, the value functions verify the following equation

Ug
t (θ,D) =

ρg
ρb
U b
t (θ,D) +

B(I −Nt)

r + λk
SH

t

(
1−

ρg
ρb

)
,

as well as

Ug
t (θ,D) ∈

[
B(I −Nt)

r + λk
SH

t

, bI−Nt

)
, U b

t (θ,D) ∈

[
B(I −Nt)

r + λk
SH

t

,
ρb
ρg
bI−Nt +

B(I −Nt)

r + λk
SH

t

(
1−

ρb
ρg

))
.

(ii) If c ∈ [cg, cb), then k⋆,g(θ,D) = k0, k⋆,b(θ,D) = kSH and the value functions of the banks are

Ug
t (θ,D) =

ρgc

r + λk
0

t

, U b
t (θ,D) =

B(I −Nt)

r + λk
SH

t

+
ρbc

r + λk
SH

t

.

Hence, they verify

Ug
t (θ,D) =

ρg
ρb

(
r + λk

SH

t

r + λk
0

t

)
U b
t (θ,D)−

ρg
ρb

B(I −Nt)

r + λk
0

t

,

with

Ug
t (θ,D) ∈

[
bI−Nt ,

ρg
ρb
bI−Nt

)
, U b

t (θ,D) ∈

[
ρb
ρg
bI−Nt +

B(I −Nt)

r + λk
SH

t

(
1−

ρb
ρg

)
, bI−Nt

)
.
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(iii) Finally, if c ∈ [cb,∞) then k⋆,b(θ,D) = k⋆,g(θ,D) = k0 and

Ug
t (θ,D) =

ρgc

r + λk
0

t

, U b
t (θ,D) =

ρbc

r + λk
SH

t

.

Hence

Ug
t (θ,D) =

ρg
ρb
U b
t (θ,D),

with

Ug
t (θ,D) ∈

[
ρg
ρb
bI−Nt ,∞

)
, U b

t (θ,D) ∈ [bI−Nt ,∞) .

Figure 6 shows the pair of values of the banks that can be obtained using contracts with constant

payments. For simplicity, ug denotes the value function of the good bank and ub that of the bad bank,

and j := I −Nt. Depending on the payments, the values of the banks belong to one of the three lines

represented, the last one being unbounded.

ub

ug

ug = ub

L3

L2

L1

Bj

r+λ̂SH
j

Bj

r+λ̂SH
j

bj

ρg
ρb
bj

xj bj

L1 : u
g =

ρg
ρb
ub

L2 : u
g =

ρg(r+λ̂SH
j )

ρb(r+λ̂0
j )
ub −

ρg
ρb

Bj

r+λ̂0
j

L3 : u
g =

ρg
ρb
ub + Bj

r+λ̂SH
j

(
1−

ρg
ρb

)

xj :=
ρb
ρg
bj +

Bj

r+λ̂SH
j

(
1− ρb

ρg

)

Figure 6: Credible region under short-term contracts with constant payments.

C.3 Initial lump–sum payment

Take any point (ub, ug) ∈ L1∪L2∪L3. We know that there exists a contract θ ≡ 0, dDs = cds, starting

from time t, such that U b
t (θ,D) = ub and Ug

t (θ,D) = ug. Consider the payments Dℓ which differ from

D only at time t, where a lump-sum payment of size ℓ > 0 is made. This added lump-sum payment

will not change the banks’ incentives and the new value functions at time t will be

Ug
t (θ,D

ℓ) = ug + ρgℓ, U
b
t (θ,D

ℓ) = ub + ρbℓ.

Hence, the new pair of values of the banks belong to the line with slope
ρg
ρb

which passes through the

point (ub, ug). Since in our setting there is no upper bound on the payment, by increasing the value of

ℓ it is possible to reach every point of the ray which starts at (ub, ug) and goes in the positive direction.
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The subregion of the credible set that can be obtained by short-term contracts with constant payments

and initial lump–sum payments is shown in Figure 7, with the same conventions as in Figure 6.
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ug = ub

L3
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Bj
r+λSH
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bj

ρg
ρb
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xj bj

L1 : u
g =

ρg
ρb
ub

L2 : u
g =

ρg(r+λSH
j )

ρb(r+λ0
j )
ub −

ρg
ρb

Bj
r+λ0

j

L3 : u
g =

ρg
ρb
ub + Bj

r+λSH
j

(
1−

ρg
ρb

)

xj =
ρb
ρg
bSHj + Bj

r+λSH
j

(
1− ρb

ρg

)

Figure 7: Credible region under short-term contracts with constant payment and lump-sum payments.

D Short-term contracts with delay

In this section we study the optimal responses of the banks and their value functions at a starting time

t ≥ 0, under contracts with constant payment after a certain time t⋆ > t, and θ ≡ 0. The case t⋆ = t

corresponds to the situation of Appendix C.

D.1 Optimal responses and feasible set

In this section we compute the optimal responses of the agents to the described contracts, depending

on the values of c and t⋆. We also show that under this class of contracts the set of expected payoff of

the agents, starting at time t, is exactly Vt =
[
B(I −Nt)/(r + λk

SH

t ),∞
)
.

(i) If the bank of type ρi always works, at any time t ≤ s < t⋆, her continuation utility is, noticing

that since θ = 0, we have that (λk
0

u )u≥t is constant,

uis(k
0, θ,D) = E

P0

[∫ τ

t⋆∧τ
e−r(u−s)ρicdu

∣∣∣∣Gs

]
=
e−(r+λk0

t )(t⋆−s)ρic

r + λk
0

t

= uit(k
0, θ,D)e(r+λk0

t )(s−t).

Therefore, at s = t⋆ the continuation utility of the bank is uit⋆(k
0, θ,D) = uit(k

0, θ,D)e(r+λk0

t )(t⋆−t).

Next, for any s > t⋆, the continuation utility of the bank will be

uis(k
0, θ,D) = E

P0

[∫ τ

s
e−r(u−s)ρicds

∣∣∣∣Gs

]
=

ρic

r + λk
0

t

.
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Then, we see that once the bank starts being paid, her continuation utility becomes constant and it

must be equal to uit⋆(k
0, θ,D). Then, if for some ui ≥ 0, one chooses c equal to

uie(r+λk0

t )t⋆(r + λk
0

t )

ρi
, (D.1)

the continuation utility of the bank will be an increasing process with initial value ui. Therefore, k0 is

incentive compatible if and only if ui ≥ bI−Nt . The minimum payment and delay such that the bank

always works are t⋆ = 0 and

ci =
bI−Nt(r + λk

0

t )

ρi
.

(ii) If the bank of type ρi always shirks, at any time t ≤ s < t⋆, her continuation utility is

uis(k
SH , θ,D) = E

PSH

[∫ τ

t⋆∧τ
e−r(u−s)ρicdu+

∫ τ

s
Bdu

∣∣∣∣Gs

]
=
e−(r+λkSH

t )(t⋆−s)ρic

r + λk
SH

t

+
B(I −Nt)

r + λk
SH

t

.

Therefore

uis(k
SH , θ,D) = e(r+λkSH

t )(s−t)

(
uit(k

SH , θ,D)−
B(I −Nt)

r + λk
SH

t

)
+
B(I −Nt)

r + λk
SH

t

,

and the continuation utility is an increasing process. Recall that kSH is incentive compatible if and

only if uis(k
SH , θ,D) < bI−Nt for every s ≥ t. However, if t⋆ is large, there will exist tw such that

uitw(k
SH , θ,D) = bI−Nt and the bank will start to work. More precisely, tw depends on the initial value

uit(k
SH , θ,D) and is given by

tw = t+
1

r + λk
SH

t

log

(
bI−Nt(r + λk

SH

t )−B(I −Nt)

uit(k
SH , θ,D)(r + λk

SH

t )−B(I −Nt)

)
.

Notice that tw ≥ t if and only if bI−Nt ≥ uit(k
SH , θ,D). Therefore, kSH is incentive compatible if and

only if t⋆ < tw. Under this condition, at t = t⋆ the continuation utility of the bank is

uit⋆(k
SH , θ,D) = e(r+λkSH

t )(t⋆−t)

(
uit(k

SH , θ,D)−
B(I −Nt)

r + λk
SH

t

)
+
B(I −Nt)

r + λk
SH

t

< bI−Nt.

Once the bank starts being paid her continuation utility is constant and equal to

uis(k
SH , θ,D) = E

PSH

[∫ τ

s
e−r(u−s)(ρic+B(I −Nt))ds

]
=
ρic+B(I −Nt)

r + λk
SH

t

.

So if the payment c is equal to

e(r+λSH
j )(t⋆−t)

(
ui(r + λk

SH

t )−B(I −Nt)
)

ρi
, (D.2)

the expected payoff of the bank at time t is ui. The supremum of the delays and payments such that

the bank always shirks are tw and

ci =
e(r+λkSH

t )(tw−t)
[
bI−Nt(r + λk

SH

t )−B(I −Nt)
]

ρi
=
bI−Nt(r + λk

0

t )

ρi
= ci.
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(iii) Finally, consider the case when t⋆ is greater than tw. Under this contract, the bank will shirk

until time tw and will work afterwards. Indeed, from the previous analysis we know that this strategy

is incentive compatible. At time tw we have that uitw(k
SH , θ,D) = bI−Nt and for s ∈ [tw, t

⋆) the

continuation utility is given by

uis(k
0, θ,D) = E

P0

[∫ τ

t⋆∧τ
e−r(u−s)ρicdu

∣∣∣∣Gs

]
=
e−(r+λk0

t )(t⋆−s)ρic

r + λk
0

t

= e(r+λk0

t )(s−tw)uitw(k
SH , θ,D) = bI−Nte

(r+λk0

t )(s−tw).

Therefore, at t = t⋆ the continuation utility of the bank is

uit⋆(k
0, θ,D) = bI−Nte

(r+λk0

t )(t⋆−tw),

and for any s > t⋆, the continuation utility of the bank is constant and equal to

uis(k
0, θ,D) = E

P0

[∫ τ

s
e−r(u−s)ρicdu

∣∣∣∣Gs

]
=

ρic

r + λk
0

t

.

So if the payment c is equal to

bI−Nt(r + λk
0

t )e(r+λk0

t )(t⋆−t)

ρi

(
ui(r + λk

SH

t )−B(I −Nt)

bI−Nt(r + λk
0

t )

) r+λk
0

t

r+λk
SH

t
, (D.3)

the expected payoff of the bank at time t is ui. The minimum payment and delay such that the bank

shirks first and works afterwards are t⋆ = tw and

ci =
bI−Nt(r + λk

0

t )

ρi
= ci.

The following box summarizes our findings in this case. Here, ti(c) is the corresponding expression for

tw as a function of the payments c.

Response of the bank of type ρi to the contract θ ≡ 0, dDs = 1{s≥t⋆}cds after t:

Let ci =
bI−Nt(r + λk

0

t )

ρi
, ti(c) := t+

1

r + λk
0

t

log

(
ρic

bI−Nt(r + λk
0

t )

)
.

• If c ≤ ci =⇒ k⋆,i(θ,D) = kSH , U i
t (θ,D) = e−(r+λkSH

t )(t⋆−t) ρic

r + λk
SH

t

+
B(I −Nt)

r + λk
SH

t

.

• If c > ci, t
⋆ ≤ ti(c) =⇒ k⋆,i(θ,D) = k0, U i

t (θ,D) = e−(r+λk0

t )(t⋆−t) ρic

r + λk
0

t

.

• If c > ci, t
⋆ > ti(c) =⇒ k⋆,is (θ,D) = kSHs 1{s<tj(c)}

+ k0s1{s≥tj(c)}
and

U i
t (θ,D) = e−(r+λkSH

t )(t⋆−t)

[
ρic

bI−Nt(r + λk
0

t )

] r+λk
SH

t

r+λk
0

t
bI−Nt(r + λk

0

t )

r + λk
SH

t

+
B(I −Nt)

r + λk
SH

t

.
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D.2 The upper boundary can be reached with contracts with delay

In this section we show that in some cases the short-term contracts with delay provide to the agents a

pair of value functions lying in the upper boundary of the credible set.

(i) Let c > cb > cg and t⋆ ≤ tb(c) < tg(c). Then k⋆,b(θ,D) = k⋆,g(θ,D) = k0 and the values of the

banks are

Ug
t (θ,D) =

ρgc

r + λk
0

t

e−(r+λk0

t )(t⋆−t), U b
t (θ,D) =

ρbc

r + λk
0

t

e−(r+λk0

t )(t⋆−t).

Therefore the utilities satisfy

Ug
t (θ,D) =

ρg
ρb
U b
t (θ,D), with Ug

t (θ,D) ∈

[
ρg
ρb
bI−Nt ,∞

)
, U b

t (θ,D) ∈ [bI−Nt,∞) .

(ii) If c > cb and tb(c) < t⋆ ≤ tg(c), we have that the good bank will always work and the bad bank

will start to work at time tb(c). Their value functions are

Ug
t (θ,D) =

ρgc

r + λk
0

t

e−(r+λk0

t )(t⋆−t),

U b
t (θ,D) = e−(r+λkSH

t )(t⋆−t)

[
ρbc

bI−Nt(r + λk
0

t )

] r+λk
SH

t

r+λk
0

t
bI−Nt(r + λk

0

t )

r + λk
SH

t

+
B(I −Nt)

r + λk
SH

t

,

so they belong to the curve

Ug
t (θ,D) =

ρg
ρb
b

λk
SH

t −λk
0

t

r+λk
SH

t

I−Nt

(
U b
t (θ,D)−

B(I −Nt)

r + λk
SH

t

) r+λk
0

t

r+λk
SH

t

(
r + λk

SH

t

r + λk
0

t

) r+λk
0

t

r+λk
SH

t
,

and take values in the sets (recall the definition of x⋆j in proposition 4.2)

Ug
t (θ,D) ∈

[
bI−Nt,

ρg
ρb
bI−Nt

)
, U b

t (θ,D) ∈ [x⋆I−Nt
, bI−Nt).

(iii) If c > cb and tg(c) < t⋆, the good bank will start to work at time tg(c) and the bad bank will start

to work at time tb(c). Their value functions are

Ug
t (θ,D) = e−(r+λkSH

t )(t⋆−t)

[
ρgc

bI−Nt(r + λk
0

t )

] r+λk
SH

t

r+λk
0

t
bI−Nt(r + λk

0

t )

r + λk
SH

t

+
B(I −Nt)

r + λk
SH

t

,

U b
t (θ,D) = e−(r+λkSH

t )(t⋆−t)

[
ρbc

bI−Nt(r + λk
0

t )

] r+λk
SH

t

r+λk
0

t
bI−Nt(r + λk

0

t )

r + λk
SH

t

+
B(I −Nt)

r + λk
SH

t

,

so they belong to the line

Ug
t (θ,D) =

(
ρg
ρb

) r+λk
SH

t

r+λk
0

t

(
U b
t (θ,D)−

B(I −Nt)

r + λk
SH

t

)
+
B(I −Nt)

r + λk
SH

t

,

with

Ug
t (θ,D) ∈

[
B(I −Nt)

r + λk
SH

t

, bI−Nt

)
, U b

t (θ,D) ∈

[
B(I −Nt)

r + λk
SH

t

, x⋆I−Nt

)
.
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D.3 Credible region under contracts with delay

From the previous subsection we know that for every point (ub, ug) on the upper boundary there exists a

pair (c, t⋆), with c > cb, such that under the contract (θ ≡ 0, dDs = c1{s≥t⋆}ds) we have U b
t (θ,D) = ub

and Ug
t (θ,D) = ug. As explained in C.3, if we consider the contract (θ,Dℓ) with an additional initial

lump-sum payment, the incentives of the banks will not change and the new value functions of the

agents will be U b
t (θ,D

ℓ) = ub + ρbℓ, U
g
t (θ,D) = ug + ρgℓ. Therefore under short-term contracts with

delay which reach the upper boundary and lump-sum payments, all the subregion of the credible set

delimited by the lines shown in Figure 8 can be reached. We will not enter into details but it can

be proved that under all the short-term contracts with delay (not only the ones who reach the upper

boundary) and lump-sum payments, the subregion of the credible set which can be reached is exactly

the same. When there is only one loan left, this region is equal to the whole credible set but when

j > 1 the credible set is strictly bigger due to the pair of utilities that can be achieved in situations

when θ 6≡ 0.

ub

ug ug = ub

L

U(ub)

B

r+λ̂SH
j

B

r+λ̂SH
j

bj

ρg
ρb
bj

x⋆1 bj

L : ug =
ρg
ρb
ub + B

r+λ̂SH
j

(
1−

ρg
ρb

)
.

Figure 8: Credible region under short-term contracts with delay and lump-sum payment.

E Technical results for the lower boundary

We begin this section with the

Proof. [Proof of Lemma 4.1] The value functions of the banks under Ψ := (θ,D) are given by

Ug
t (Ψ) = E

Pk⋆,g(Ψ)

[∫ τ

t
e−r(s−t)(ρgdDs +Bk⋆,gs (Ψ)ds)

∣∣∣∣Gt

]
,

U b
t (Ψ) = E

Pk⋆,b(Ψ)

[∫ τ

t
e−r(s−t)(ρbdDs +Bk⋆,bs (Ψ)ds)

∣∣∣∣Gt

]
.
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Thus, we first have, P− a.s.

Ug
t (Ψ) ≥ E

Pk⋆,b(Ψ)

[∫ τ

t
e−r(s−t)(ρgdDs +Bk⋆,bs (Ψ)ds)

∣∣∣∣Gt

]

≥ E
Pk⋆,b(Ψ)

[∫ τ

t
e−r(s−t)(ρbdD

g
s +Bk⋆,bs (Ψ)ds)

∣∣∣∣Gt

]
= U b

t (Ψ).

But we also have

Ug
t (Ψ) ≥ E

Pk⋆,b(Ψ)

[∫ τ

t
e−r(s−t)(ρgdDs +Bk⋆,bs (Ψ)ds)

∣∣∣∣Gt

]

= U b
t (Ψ) + (ρg − ρb)E

Pk⋆,b(Ψ)

[∫ τ

t
e−r(s−t)dDs

∣∣∣∣Gt

]

= U b
t (Ψ) +

(ρg − ρb)

ρb

(
U b
t (Ψ)− E

Pk⋆,b(Ψ)

[∫ τ

t
e−r(s−t)Bk⋆,bs (Ψ)ds

∣∣∣∣Gt

])

=
ρg
ρb
U b
t (Ψ)−

(ρg − ρb)

ρb
E
Pk⋆,b(Ψ)

[∫ τ

t
e−r(s−t)Bk⋆,bs (Ψ)ds

∣∣∣∣Gt

]
.

Observe next that

sup
k∈K

E
Pk

[∫ τ

t
e−r(t−s)Bksds

∣∣∣∣Gt

]
= E

PkSH
[∫ τ

t
e−r(t−s)BkSHs ds

∣∣∣∣Gt

]
,

because the left–hand side is the value function of a bank who is offered a contract with no payments.

Therefore, we have that

Ug
t (Ψ) ≥

ρg
ρb
U b
t (Ψ)−

(ρg − ρb)

ρb
E
PkSH

[∫ τ

t
e−r(s−t)BkSHs ds

∣∣∣∣Gt

]
≥
ρg
ρb
U b
t (Ψ)−

(ρg − ρb)

ρb
C(I −Nt),

because the utility that the banks get from shirking is non–decreasing with respect to the process θ

and its maximum value is equal to C(I −Nt), attained when θ ≡ 1 (see (4.2)). ⊔⊓

We continue this section with the

Proof. [Proof of Proposition 4.1] Due to Lemma 4.1, it suffices to prove the existence of contracts

under which the value functions of the banks satisfy the equalities.

• Step 1: First, fix some t ≥ 0, take any ub ∈ [c(I −Nt, 1), C(I −Nt)] and fix m ∈ {1, . . . , I −

Nt − 1} such that c(I −Nt,m) ≤ ub ≤ c(I −Nt,m+ 1). Next, take θ0t (u
b) ∈ [0, 1] such that

ub = c(I −Nt,m) + θ0t (u
b) (c(I −Nt,m+ 1)− c(I −Nt,m)) .

Then, there is a contract (θ,D) ∈ Θ×D such that Ug
t (θ,D) = U b

t (θ,D) = ub. Such a contract can be

defined as follows

dDs := 0, θs := 1{t≤s≤τNt+m} + (1− θ0t (u
b))1{τNt+m<s≤τNt+m+1}, for every s ≥ t.

The contract has no payments, it always maintains the pool after the first m defaults, maintains the

pool with probability θ0 after default m+ 1, and liquidates the pool at default m+ 2. It is clear that

under this contract both banks always shirk in [t, τ ], since they are not paid, and their value functions

satisfy

Ug
t (θ,D) = U b

t (θ,D) = E
PkSH

[∫ τ

t
e−r(s−t)BkSHs ds

∣∣∣∣Gt

]

= c(I −Nt,m) + θ0t (u
b) (c(I −Nt,m+ 1)− c(I −Nt,m)) = ub.
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• Step 2: Fix again some t ≥ 0, and choose now any ub ≥ C(I −Nt) and define

ug :=
ρg
ρb
ub −

(ρg − ρb)

ρb
C(I −Nt).

Let ℓt := (ub −C(I −Nt))/ρb and consider the admissible contract satisfying, θs = 1, dDs = ℓt1{s=t},

for every s ≥ t. The optimal strategy for both banks under this contract is to always shirk and then

U b
t (θ,D) = E

PkSH
[∫ τ

t
e−r(s−t)(ρbdDs +BkSHs ds)

∣∣∣∣Gt

]
= ρbℓt + C(I −Nt) = ub,

Ug
t (θ,D) = E

PkSH
[∫ τ

t
e−r(s−t)(ρgdDs +BkSHs ds)

∣∣∣∣Gt

]
= ρgℓt + C(I −Nt) = ug.

⊔⊓

We conclude this section by proving some useful results that will be used in Section 5.1.1 in the study

of the value function of the investor on the lower boundary. We show that there are several ways of

reaching the lower boundary and that all the contracts which can achieve it have the same structure

as the ones used in the proof of Proposition 4.1.

Lemma E.1. Consider any (t, ub, ug) ∈ [0, τ ] × V̂I−Nt × V̂I−Nt such that in addition ub = ug. Any

contract Ψ = (θ,D) ∈ Θ × D such that U b
t (Ψ) = ub and Ug

t (Ψ) = ug, has no payments on [t, τ ] and

consequently both banks always shirk under Ψ.

Proof. Looking at the proof of (4.3) we deduce that necessarily

k⋆,gs (Ψ) = k⋆,bs (Ψ), dDs = 0, ∀s ≥ t.

Since there are no payments, we have that k⋆,gs (Ψ) = k⋆,bs (Ψ) = kSHs for s ∈ [t, τ ] and indeed have

Ug
t (Ψ) = U b

t (Ψ) = E
PkSH

[∫ τ

t
e−r(s−t)B(I −Ns)ds

∣∣∣∣Gt

]
.

⊔⊓

Lemma E.2. Consider any (t, ug, ub) ∈ R+ × V̂I−Nt × V̂I−Nt such that in addition

ug =
ρg
ρb
ub −

(ρg − ρb)

ρb
C(I −Nt).

Under any contract Ψ = (θ,D) ∈ Θ × D such that U b
t (Ψ) = ub and Ug

t (Ψ) = ug, the pool is not

liquidated until the last default (τ = τ I) and both banks always shirk on [t, τ ].

Proof. Looking at the proof of (4.4), we deduce that necessarily k⋆,gs (Ψ) = k⋆,bs (Ψ) = kSHs , θs = 1,

for every s ≥ t. Thus, the value functions of the banks are given by

Ug
t (Ψ) = ρgE

PkSH

[∫ τI

t
e−r(s−t)dDs

∣∣∣∣∣Gt

]
+ C(I −Nt),

U b
t (Ψ) = ρbE

PkSH

[∫ τI

t
e−r(s−t)dDs

∣∣∣∣∣Gt

]
+ C(I −Nt).

⊔⊓
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F Technical results for the upper boundary

Lemma F.1. For every j ≥ 1, x⋆j >
ρb
ρg
bj .

Proof. For any j ≥ 1, define the functions g, h : R −→ R by

g(x) := x

r+λ̂SH
j

r+λ̂0
j bj

r + λ̂0j

r + λ̂SHj
+

Bj

r + λ̂SHj
, h(x) := bjx.

Then g is strictly convex in R+ and we have that g(1) = h(1) = bj and g′(1) = h′(1) = bj. Thus, h is

the tangent line to g at x = 1 so g(x) > h(x) for every x 6= 1 and therefore

x⋆j = g

(
ρb
ρg

)
> h

(
ρb
ρg

)
=
ρb
ρg
bj .

⊔⊓

Proposition F.1. For every j ≥ 1, the function Û⋆
j defined by (4.17) satisfies

Û⋆
j (x)

x
≤
ρg
ρb
, ∀x ≥

Bj

r + λ̂SHj
.

Moreover, equality holds if and only if x ≥ b̂j.

Proof. Define A(x) :=
Û⋆
j (x)

x
. If x ≥ b̂j−1 then A(x) = ρg/ρb. If now x ∈ [x⋆j , b̂j), we have

A(x) =
ρg
ρb

(̂bj)

λ̂SH
j −λ̂0j

r+λ̂SH
j

(
r + λ̂SHj

r + λ̂0j

) r+λ̂0j

r+λ̂SH
j 1

x

(
x−

Bj

r + λ̂SHj

) r+λ̂0j

r+λ̂SH
j

.

This function is decreasing so that A reaches its maximum value over [x⋆j , b̂j) at x⋆j . Next, we have

A(x⋆j ) =
b̂j
x⋆j

<
ρg
ρb

⇐⇒ x⋆j >
ρb
ρg
bj,

and the last inequality holds as a consequence of Lemma F.1.

Finally, if x ∈

[
Bj

r+λ̂SH
j

, x⋆j

)
then

A(x) =
1

x

(
ρg
ρb

) r+λ̂SH
j

r+λ̂0
j

(
x−

Bj

r + λ̂SHj

)
+

1

x

Bj

r + λ̂SHj
.

This function is increasing, hence A(x) ≤ A(x⋆j ) <
ρg
ρb
, ∀x ∈

[
Bj

r+λ̂SH
j

, x⋆j

]
. ⊔⊓

Corollary F.1. Let j ≥ 2 and Û⋆
j , Û

⋆
j−1 defined by (4.17), and assume that λ̂k

g

j ≤ λ̂k
b

j . Then, for any

ub ≥ h1,b + B(j−1)

r+λ̂SH
j−1

we have

Û⋆
j−1(u

b − h1,b)λ̂k
g

j −
(
Û⋆
j

)′
(ub)λ̂k

b

j (ub − h1,b) ≤ 0.

Furthermore, equality holds if and only if ub − h1,b ≥ b̂j , u
b ≥ b̂j and λ̂k

b

j = λ̂k
g

j .
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Proof. Under the conditions of the corollary, the following allows us to conclude immediately

Û⋆
j−1(u

b − h1,b)

ub − h1,b
≤
ρg
ρb

≤
(
Û⋆
j

)′
(ub).

⊔⊓

Corollary F.2. For j ≥ 1, let Ĉj and Û⋆
j be defined by (4.16) and (4.17) respectively. If (θ, h1,b) ∈ Ĉj

is such that ub−θ(ub−h1,b) ≥ b̂j then Û⋆
j (u

b)−θÛ⋆
j−1(u

b−h1,b) ≥ b̂j . As a consequence, in the context

of equation (4.15), for every (θ, h1,b) ∈ Ĉj we have kg ≤ kb and λ̂k
g

j ≤ λ̂k
b

j .

Proof. First observe that ub − θ(ub − h1,b) ≥ b̂j implies ub ≥ b̂j. Then we have

Û⋆
j (u

b)− b̂j ≥
ρg
ρb

(ub − b̂j) ≥
Û⋆
j−1(u

b − h1,b)

ub − h1,b
(ub − b̂j).

Also, θ ≤
ub − b̂j
ub − h1,b

and thus

Û⋆
j (u

b)− θÛ⋆
j−1(u

b − h1,b) ≥ Û⋆
j (u

b)−

(
ub − b̂j
ub − h1,b

)
Û⋆
j−1(u

b − h1,b) ≥ b̂j .

⊔⊓

We now proceed with the

Proof. [Proof of Lemma 4.2] We start with the region ub < b̂1, Û1(u
b) < b̂1. For these points, we have

that kb = kg = 1, so (4.11) can be solved easily and leads to, for some C1 ∈ R,

Û1(u
b) = C1

(
ub −

B

r + λ̂11

)
+

B

r + λ̂11
.

If ub < b̂1 and Û1(u
b) ≥ b̂1, then kb = 1, kg = 0 and we can solve (4.11) to obtain for some C2 ∈ R

Û1(u
b) = C2

(
ub −

B

r + λ̂11

) r+λ̂01
r+λ̂1

1

.

Finally, when ub ≥ b̂1 and Û(ub) ≥ b̂1 the optimal strategies are kb = kg = 0 and we have for some

C3 ∈ R, Û1(u
b) = C3u

b. We are interested in smooth solutions of (4.11). Denote by Û
(1)
1 , Û

(2)
1 and Û

(3)
1

the following functions

Û
(1)
1 (ub) := C1

(
ub −

B

r + λ̂11

)
+

B

r + λ11
, Û

(2)
1 (ub) := C2

(
ub −

B

r + λ̂11

) r+λ̂01
r+λ̂1

1

, Û
(3)
1 (ub) := C3u

b.

We will determine the relations between the constants which allow the smooth fitting of Û1. First we

impose Û
(2)
1 (̂b1) = Û

(3)
1 (̂b1) and we get

C2

(
b̂1
r + λ̂01

r + λ̂11

) r+λ̂01
r+λ̂11

= C3b̂1.
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It can be checked that this relation between C1 and C2 ensures also that (Û
(2)
1 )′(̂b1) = (Û

(3)
1 )′(̂b1).

Next, define x1 as the point such that Û
(1)
1 (x1) = b̂1, i.e.

x1 =
b̂1
C1

(
r + λ̂01

r + λ̂11

)
+

B

r + λ̂11
.

Also, define x2 as the point such that Û
(2)
1 (x2) = b̂1, i.e.

x2 =

(
b̂1
C2

) r+λ̂11
r+λ̂0

1

+
B

r + λ̂11
.

We impose x1 = x2 and we get

b̂1
C1

(
r + λ̂01

r + λ̂11

)
=

(
b̂1
C2

) r+λ̂11
r+λ̂01

,

and this relation ensures also that (Û
(1)
1 )′(x1) = (Û

(2)
1 )′(x2). Expressing both C1 and C2 in terms of

C3 we get Û
(3)
1 (ub) = C3u

b, and

Û
(1)
1 (ub) = C3

r+λ̂11
r+λ̂01

(
ub −

B

r + λ̂11

)
+

B

r + λ̂11
,

Û
(2)
1 (ub) = C3b̂

λ̂11−λ̂01
r+λ̂11
1

(
r + λ̂11

r + λ̂01

) r+λ̂01
r+λ̂1

1

(
ub −

B

r + λ̂11

) r+λ̂01
r+λ̂1

1

.

⊔⊓

We pursue with the

Proof. [Proof of Lemma 4.3] For C > 0, define the following modification ÛC,⋆
1 of ÛC

1

ÛC,⋆
1 (ub) :=





ÛC
1 (ub), ub ≤ xC,⋆

1 ,

ρg
ρb

(ub − xC,⋆
1 ) + ÛC

1 (xC,⋆
1 ), ub ≥ xC,⋆

1 ,

where

xC,⋆
1 := inf

{
ub ∈

[
B

r + λ̂11
,+∞

)
,
(
ÛC
1

)′
(ub) ≤

ρg
ρb

}
.

The function ÛC,⋆
1 is continuously differentiable, solves the diffusion equation in [B/(r+ λ̂11), x

C,⋆
1 ) and

satisfies
(
ÛC,⋆
1

)′
= ρg/ρb in (xC,⋆

1 ,∞). In the following we will study for which values of C this function

indeed solves the HJB equation.

− First of all, if C

r+λ̂11
r+λ̂0

1 ≤
ρg
ρb

, we have that

xC,⋆
1 =

B

r + λ̂11
, ÛC,⋆

1 (ub) =
ρg
ρb

(
ub −

B

r + λ̂11

)
+

B

r + λ̂11
,
(
ÛC,⋆
1

)′
(ub)ρb − ρg = 0,

so that we need to check that for every ub in [B/(r + λ̂11),∞)

rÛC,⋆
1 (ub)−

(
ÛC,⋆
1

)′
(ub)

(
rub −Bkb + ubλ̂k

b

1

)
+ ÛC,⋆

1 (ub)λ̂k
g

1 −Bkg ≥ 0.
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Take ub > b̂1. Then kg = kb = 0, and we have

rÛC,⋆
1 (ub)−

(
ÛC,⋆
1

)′
(ub)

(
rub −Bkb + ubλ̂k

b

1

)
+ ÛC,⋆

1 (ub)λ̂k
g

1 −Bkg

= r

[
ρg
ρb

(
ub −

B

r + λ̂11

)
+

B

r + λ̂11

]
−
ρg
ρb

[
(r + λ̂01)u

b
]
+ λ̂01

[
ρg
ρb

(
ub −

B

r + λ̂11

)
+

B

r + λ̂11

]

= (r + λ̂01)
B

r + λ̂11

(
1−

ρg
ρb

)
< 0.

Hence ÛC,⋆
1 is not a solution of (4.12).

− If
(
ρg
ρb

) r+λ̂01
r+λ̂11 < C ≤

ρg
ρb

, then xC,⋆
1 = b̂1

r+λ̂0
1

r+λ̂1
1

(
C ρb

ρg

) r+λ̂11
λ̂11−λ̂01 + B

r+λ̂1
1

. Take ub > b̂1, then kg = kb = 0

and

rÛC,⋆
1 (ub)−

(
ÛC,⋆
1

)′
(ub)

(
rub −Bkb + ubλ̂k

b

1

)
+ ÛC,⋆

1 (ub)λ̂k
g

1 −Bkg

= (r + λ̂01)


b̂1C

r+λ̂11
λ̂11−λ̂01

(
ρb
ρg

) r+λ̂01
λ̂11−λ̂01 λ̂

1
1 − λ̂01

r + λ̂11
−
ρg
ρb

B

r + λ̂11




≤ (r + λ̂01)


b̂1

(
ρg
ρb

) r+λ̂11
λ̂1
1
−λ̂0

1

(
ρb
ρg

) r+λ̂01
λ̂1
1
−λ̂0

1 λ̂
1
1 − λ̂01

r + λ̂11
−
ρg
ρb

B

r + λ̂11




= (r + λ̂01)

(
b̂1
ρg
ρb

λ̂11 − λ̂01

r + λ̂11
−

B

r + λ̂11

ρg
ρb

)
= 0.

The inequality is strict if C <
ρg
ρb

so the only value of C such that ÛC,⋆
1 solves the HJB equation is

C =
ρg
ρb

.

− For large values of C, i.e. C >
ρg
ρb

, we have that xC,⋆
1 = +∞ and then ÛC,⋆

1 = ÛC
1 . We exclude

this case because these functions do not satisfy condition (4.13). ⊔⊓

We end this section with the

Proof. [Proof of Proposition 4.2] The proof is by induction. For j = 1 the result is proved in Step

2, so we take any j > 1 and assume that Û⋆
j−1 solves its corresponding diffusion equation. We will

need to consider three different cases to prove that Û⋆
j solves the equation (4.15). In each one of them

we prove that the supremum in the right–hand side of (4.15) is attained with θ = 0, so therefore the

diffusion equation takes the same form as the one in the case with one loan left. Then, it follows from

the analysis in Step 2 that its solution satisfies also the variational inequality (4.9).

− Case 1: ub < b̂j , Û
⋆
j (u

b) < b̂j.

In this case for any (θ, h1) ∈ Ĉj, we have that kg = kb = j. To simplify the notations, let us define

cj(u
b) :=

(
Û⋆
j

)′
(ub)

(
rub −Bj + ubλ̂SHj

)
, then the term inside the sup in (4.15) becomes

cj(u
b)− Û⋆

j (u
b)λ̂SHj +Bj + θλ̂SHj

[
Û⋆
j−1(u

b − h1)−
(
Û⋆
j

)′
(ub)(ub − h1)

]
,

and the optimal choice of θ in this case is 0 (uniquely) because from Corollary F.1 we have

Û⋆
j−1(u

b − h1)−
(
Û⋆
j

)′
(ub)(ub − h1) < 0.
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− Case 2: ub < b̂j , Û
⋆
j (u

b) ≥ b̂j.

In this case kb = j for every (θ, h1) ∈ Ĉj. The term inside the sup in (4.15) becomes

cj(u
b)− Û⋆

j (u
b)λ̂k

g

j +Bkg + θ

[
Û⋆
j−1(u

b − h1)λ̂k
g

j −
(
Û⋆
j

)′
(ub)λ̂SHj (ub − h1)

]
.

Define the following sets

Ĉ0
j := {(θ, h1) ∈ Ĉj, Û⋆

j (u
b)−θÛ⋆

j−1(u
b−h1) ≥ b̂j}, Ĉ

j
j := {(θ, h1) ∈ Ĉj, Û⋆

j (u
b)−θÛ⋆

j−1(u
b−h1) < b̂j},

and note that kg = 0 for every (θ, h1) ∈ Ĉ0
j and kg = j for every (θ, h1) ∈ Ĉj

j . Also, the pair (0, h1)

belongs to Ĉ0
j for every feasible h1.

• If (θ, h1) ∈ Ĉ0
j we have

cj(u
b)− Û⋆

j (u
b)λ̂k

g

j +Bkg + θ

[
Û⋆
j−1(u

b − h1)λ̂k
g

j −
(
Û⋆
j

)′
(ub)λ̂SHj (ub − h1)

]

= cj(u
b)− Û⋆

j (u
b)λ̂0j + θ

[
Û⋆
j−1(u

b − h1)λ̂0j −
(
Û⋆
j

)′
(ub)λ̂SHj (ub − h1)

]
≤ cj(u

b)− Û⋆
j (u

b)λ̂0j ,

where the inequality is due to Corollary F.1.

• If (θ, h1) ∈ Ĉj
j we have

cj(u
b)− Û⋆

j (u
b)λ̂k

g

j +Bkg + θ

[
Û⋆
j−1(u

b − h1)λ̂k
g

j −
(
Û⋆
j

)′
(ub)λ̂SHj (ub − h1)

]

= cj(u
b)− Û⋆

j (u
b)λ̂SHj +Bj + θ

[
Û⋆
j−1(u

b − h1)λ̂SHj −
(
Û⋆
j

)′
(ub)λ̂SHj (ub − h1)

]

< cj(u
b)− Û⋆

j (u
b)λ̂SHj +Bj

= cj(u
b)− Û⋆

j (u
b)λ̂SHj + bj(λ̂

SH
j − λ̂0j)

≤ cj(u
b)− Û⋆

j (u
b)λ̂SHj + Û⋆

j (u
b)(λ̂SHj − λ̂0j) = cj(u

b)− Û⋆
j (u

b)λ̂0j ,

where the first inequality is a consequence of Corollary F.1 and the second one holds because Û⋆
j (u

b) ≥

b̂j. So we conclude that the optimal value for θ in this case is also 0 (uniquely).

− Case 3: ub ≥ b̂j , Û
⋆
j (u

b) ≥ b̂j.

Thanks to Proposition F.2 , we know that there are only three possibilities for the value of (kb, kg).

Define the sets

Ĉ0,0
j :=

{
(θ, h1) ∈ Ĉj, ub − θ(ub − h1) ≥ b̂j , Û

⋆
j (u

b)− θÛ⋆
j−1(u

b − h1) ≥ b̂j

}
,

Ĉj,0
j :=

{
(θ, h1) ∈ Ĉj, ub − θ(ub − h1) < b̂j , Û

⋆
j (u

b)− θÛ⋆
j−1(u

b − h1) ≥ b̂j

}
,

Ĉj,j
j :=

{
(θ, h1) ∈ Ĉj, ub − θ(ub − h1) < b̂j , Û

⋆
j (u

b)− θÛ⋆
j−1(u

b − h1) < b̂j

}
.

Then, (kb, kg) = (0, 0) for every (θ, h1) ∈ Ĉ0,0
j , (kb, kg) = (j, 0) for every (θ, h1) ∈ Ĉj,0

j and (kb, kg) =

(j, j) for every (θ, h1) ∈ Ĉj,j
j . Also, (0, h1) belongs to Ĉ0,0

j for any feasible h1.

• If (θ, h1) ∈ Ĉ0,0
j then the term inside the sup in (4.15) is, because of Corollary F.1, equal to

(
Û⋆
j

)′
(ub)ub

(
r + λ̂0j

)
− Û⋆

j (u
b)λ̂0j + θλ̂0j

[
Û⋆
j−1(u

b − h1)−
(
Û⋆
j

)′
(ub)(ub − h1)

]

≤
(
Û⋆
j

)′
(ub)ub

(
r + λ̂0j

)
− Û⋆

j (u
b)λ̂0j ,
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• If (θ, h1) ∈ Ĉj,0
j , then h1 < b̂j and

ub−bj
ub−h1 < θ ≤

Û⋆
j (u

b)−b̂j

Û⋆
j−1(u

b−h1)
. The term in the sup in (4.15) is

cj(u
b)− Û⋆

j (u
b)λ̂0j + θ

[
Û⋆
j−1(u

b − h1)λ̂0j −
(
Û⋆
j

)′
(ub)λ̂SHj (ub − h1)

]

< cj(u
b)− Û⋆

j (u
b)λ̂0j +

(
ub − b̂j
ub − h1

)[
Û⋆
j−1(u

b − h1)λ̂0j −
(
Û⋆
j

)′
(ub)λ̂SHj (ub − h1)

]

≤ cj(u
b)− Û⋆

j (u
b)λ0j + (ub − b̂j)

[(
Û⋆
j

)′
(ub)λ̂0j −

(
Û⋆
j

)′
(ub)λ̂SHj

]

=
(
Û⋆
j

)′
(ub)

(
rub + ubλ̂0j

)
− Û⋆

j (u
b)λ̂0j .

Both inequalities are direct consequences of Corollary F.1.

• Finally, if (θ, h1) ∈ Ĉj,j
j , note that h1 < b̂j , Û

⋆
j (u

b)− Û⋆
j−1(u

b − h1) < b̂j and

ub − b̂j
ub − h1

≤
Û⋆
j (u

b)− b̂j

Û⋆
j−1(u

b − h1)
< θ.

Then, the term inside the sup in (4.15) becomes

cj(u
b)− Û⋆

j (u
b)λ̂SHj +Bj + θλ̂SHj

[
Û⋆
j−1(u

b − h1)−
(
Û⋆
j

)′
(ub)(ub − h1)

]

≤ cj(u
b)− Û⋆

j (u
b)λ̂SHj +Bj +

Û⋆
j (u

b)− b̂j

Û⋆
j−1(u

b − h1)
λ̂SHj

(
Û⋆
j−1(u

b − h1)−
(
Û⋆
j

)′
(ub)(ub − h1)

)

≤ cj(u
b)− Û⋆

j (u
b)λ̂SHj +Bj + λ̂SHj

(
Û⋆
j (u

b)− b̂j −
(
Û⋆
j

)′
(ub)

Û⋆
j (u

b)− b̂j
ρg
ρb

)

= cj(u
b)− b̂jλ̂

0
j + λ̂SHj

(
−
ρb
ρg

(
Û⋆
j

)′
(ub)Û⋆

j (u
b) +

ρb
ρg

(
Û⋆
j

)′
(ub)̂bj

)

= λ̂SHj

(
Û⋆
j

)′
(ub)

(
ub −

ρb
ρg

Û⋆
j (u

b)

)
+
(
Û⋆
j

)′
(ub)

(
rub +

ρb
ρg
λ̂SHj b̂j −Bj

)
− λ̂0j b̂j .

The first inequality is a consequence of Corollary F.1 and the second one of the fact that the function

h1 7−→ Û⋆
j−1(u

b − h1)/(ub − h1) is non–decreasing and constant for large values of h1, which implies

that Û⋆
j−1(u

b − h1)/(ub − h1) ≤ ρg/ρb. Now we use the explicit form of Û⋆
j and compute

λ̂SHj

(
Û⋆
j

)′
(ub)

(
ub −

ρb
ρg

Û⋆
j (u

b)

)
+
(
Û⋆
j

)′
(ub)

(
rub +

ρb
ρg
λ̂SHj b̂j −Bj

)
− λ̂0j b̂j

=
ρg
ρb
rub + λ̂SHj b̂j −

ρg
ρb
Bj − λ̂0j b̂j =

ρg
ρb
rub +Bj

(
1−

ρg
ρb

)
<
ρg
ρb
rub.

The term in the last line corresponds to
(
Û⋆
j

)′
(ub)

(
rub + ubλ̂0j

)
−Û⋆

j (u
b)λ̂0j and therefore the optimal

θ in this case is also 0. Observe that in this case every (θ, h1) ∈ Ĉ0,0
j such that ub −h1 ≥ b̂j is optimal.

⊔⊓

We next continue with the

Proof. [Proof of Theorem 4.1] We divide the proof in 3 steps.

• Step 1: Let us prove first that the SDE (4.19) has a unique solution, keeping in mind that

Ψ⋆ liquidates the pool immediately after the first default. We consider two cases: if ub < b̂I−Nt, by
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right–continuity we can find for every solution of (4.19) some ε ∈ (0, τ − t) such that ubs < b̂I−Nt for

s ∈ [t, t+ ε]. Consequently ub solves the ODE

dubs =
[
(r + λ̂SHI−Nt

)ubs −B(I −Nt)
]
ds, s ∈ [t, t+ ε],

whose unique solution is given by

ubs = e
(r+λ̂SH

I−Nt
)(s−t)

(
ub −

B(I −Nt)

r + λ̂SHI−Nt

)
+
B(I −Nt)

r + λ̂SHI−Nt

, s ∈ [t, t+ ε].

So, as long as there is no default and the project keeps running ubs will be deterministic until it reaches

the value b̂I−Nt . That will eventually happen at time

t⋆(ub) := t+
1

r + λ̂SHI−Nt

log

(
b̂I−Nt(r + λ̂0I−Nt

)

ub(r + λ̂SHI−Nt
)−B(I −Nt)

)
,

and we see from (4.19) that at time t⋆(ub) we will have dubs = 0, so ubs = b̂I−Nt for every s ∈ [t⋆(ub), τ).

In the second case, if ub ≥ b̂I−Nt then (4.19) becomes dubs = −ubs−dNs, s ∈ [t, τ ], and necessarily

ubs = ub for every s ∈ [t, τ). This proves the existence and uniqueness of the solution of (4.19) in both

cases.

• Step 2: Now we turn to the values of the banks under Ψ⋆. If ub ≥ b̂I−Nt , we know from the

previous analysis that ubs = ub ≥ b̂I−Nt for every s ∈ [t, τ), so in this case Ψ⋆ is a short–term contract

with constant payment, see Section C.1. Using the notations of this section, since c ≥ cb ≥ cg both

banks will always work, the value function of the bad bank is U b
t (Ψ

⋆) = ρbc/(r + λ̂0I−Nt
) = ub and the

one of the good bank is Ug
t (Ψ

⋆) = ρgc/(r + λ̂0I−Nt
) = ρg/ρbu

b = Û⋆
I−Nt

(ub).

In the case where ub < b̂I−Nt, Ψ
⋆ is a short–term contract with delay t⋆(ub) and constant payment,

see Section D.1. Using the notations of this section, since c = cb the bad bank will always shirk and

her value function is

U b
t (Ψ

⋆) = ρbc
e
−(r+λ̂SH

I−Nt
)t⋆(ub)

r + λ̂SHI−Nt

+
B

r + λ̂SHI−Nt

= ub.

For the good bank we have two sub-cases. First, if ub ∈ [x⋆I−Nt
, b̂I−Nt) then tg(c) ≥ t⋆(ub), so the good

bank will always work and her value function is

Ug
t (Ψ

⋆) =
ρg
ρb
b̂

λ̂SH
I−Nt

−λ̂0
I−Nt

r+λ̂SH
I−Nt

I−Nt

(
r + λ̂SHI−Nt

r + λ̂0I−Nt

) r+λ̂0
I−Nt

r+λ̂SH
I−Nt

(
ub −

B(I −Nt)

r + λ̂SHI−Nt

) r+λ̂0
I−Nt

r+λ̂SH
I−Nt

= Û⋆
I−Nt

(ub).

If ub ∈

[
B

r+λ̂SH
I−Nt

, x⋆I−Nt

)
then tg(c) < t⋆(ub), so the good bank will start working at time t⋆(ub) and

her value function is

Ug
t (Ψ

⋆) =
ρg
ρb

r+λ̂SH
I−Nt

r+λ̂0
I−Nt

(
ub −

B(I −Nt)

r + λ̂SHI−Nt

)
+
B(I −Nt)

r + λ̂SHI−Nt

= Û⋆
I−Nt

(ub).

• Step 3: Since U b
t (Ψ

⋆) = ub, it is trivial that Ψ⋆ ∈ A
b
(t, ub). Consider now any contract

Ψ = (D, θ, h1,b, h2,b) ∈ A
b
(t, ub). We recall that the value function of the bad bank under Ψ satisfies

dU b
s (Ψ) =

(
rU b

s (Ψ)−Bk⋆,bs (Ψ) + [h1,bs + h2,bs (1− θs)]λ
k⋆,b(Ψ)
s

)
ds− ρbdDs − h1,bs dNs − h2,bs dHs,
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with k⋆,bs (Ψ) = 1
{h1,b

s +(1−θs)h
2,b
s <bs}

. Define the process

Gw :=

∫ w

t
e−r(s−t) [ρgdDs + k⋆,gs (Ψ)Bds] + e−r(w−t)Û⋆

I−Nw
(U b

w(Ψ)), w ∈ [t, τ ].

Observe we can rewrite the second term in the following form (with the convention τNt = t, τNw+1 = w)

e−r(w−t)Û⋆
I−Nw

(U b
w(Ψ)) =

Nw∑

i=Nt

e−r(τi+1−t)Û⋆
I−i

(
U b
τ−i+1

(Ψ)
)
− e−r(τi−t)Û⋆

I−i

(
U b
τi(Ψ)

)

+

Nw−1∑

i=Nt

e−r(τi+1−t)
(
Û⋆
I−(i+1)

(
U b
τi+1

(Ψ)
)
− Û⋆

I−i

(
U b
τ−i+1

(Ψ)
))

+ Û⋆
I−Nt

(
U b
t (Ψ)

)
.

Since the functions Û⋆
j are C1, we can apply Itô’s formula on the intervals [τi ∧ τ, τi+1 ∧ τ) with

i ∈ {Nt, . . . , Nw} to obtain an integral expression for the first sum. Regarding the second sum, observe

that

Û⋆
I−(i+1)

(
U b
τi+1

(Ψ)
)
− Û⋆

I−i

(
U b
τ−i+1

(Ψ)
)

=
(
Û⋆
I−(i+1)

(
U b
τ−
i+1

(Ψ)− h1,bτi+1

)
− Û⋆

I−i

(
U b
τ−
i+1

(Ψ)
))

∆Nτi+1 − Û⋆
I−(i+1)

(
U b
τ−
i+1

(Ψ)− h1,bτi+1

)
∆Hτi+1

=

∫ τi+1

τi

(
Û⋆
I−(i+1)

(
U b
s−(Ψ)− h1,bs

)
− Û⋆

I−i

(
U b
s−(Ψ)

))
dNs −

∫ τi+1

τi

Û⋆
I−(i+1)

(
U b
s−(Ψ)− h1,bs

)
dHs.

Hence

Gτ∧v = Û⋆
I−Nt

(ub) +
I−1∑

i=Nt

∫ τi+1∧v

τi∧v
e−r(s−t)

(
ρg − ρb

(
Û⋆
I−i

)′ (
U b
s (Ψ)

))
dDs

+

I−1∑

i=Nt

∫ τi+1∧v

τi∧v
e−r(s−t)

(
k⋆,gs (Ψ)B − rÛ⋆

I−i

(
U b
s (Ψ)

))
ds

+

I−1∑

i=Nt

∫ τi+1∧v

τi∧v
e−r(s−t)λk

⋆,g(Ψ)
s

(
θsÛ

⋆
I−i−1

(
U b
s−(Ψ)− h1,bs

)
− Û⋆

I−i

(
U b
s (Ψ)

))
ds

+
I−1∑

i=Nt

∫ τi+1∧v

τi∧v
e−r(s−t)Û⋆′

I−i

(
U b
s (Ψ)

)(
rU b

s (Ψ)−Bk⋆,bs (Ψ) + λk
⋆,b(Ψ)

s (h1,bs + (1− θs)h
2,b
s )
)
ds

+
I−1∑

i=Nt

∫ τi+1∧v

τi∧v
e−r(s−t)

(
Û⋆
I−i−1

(
U b
s−(Ψ)− h1,bs

)
− Û⋆

I−i

(
U b
s−(Ψ)

))
(dNs − λk

⋆,g(Ψ)
s ds)

−

I−1∑

i=Nt

∫ τi+1∧v

τi∧v
e−r(s−t)Û⋆

I−i−1

(
U b
s−(Ψ)− h1,bs

)
(dHs − λk

⋆,g(Ψ)
s (1− θs)ds).

We know that the derivative of every Û⋆
j is greater than ρg/ρb by definition, and since D is non–

decreasing, the first sum of integrals is non–positive. Also, the functions Û⋆
j are solutions of the system

of HJB equations, which implies that for any admissible contract the second and the third sum of

integrals are also non–positive. We deduce

Gτ∧v ≤ Û⋆
I−Nt

(ub) +
I−1∑

i=Nt

∫ τi+1∧v

τi∧v
er(t−s)

(
Û⋆
I−i−1

(
U b
s−(Ψ)− h1,bs

)
− Û⋆

I−i

(
U b
s−(Ψ)

))
(dNs − λk

⋆,g

s ds)

−

I−1∑

i=Nt

∫ τi+1∧v

τi∧v
e−r(s−t)Û⋆

I−i−1

(
U b
s−(Ψ)− h1,bs

)
(dHs − λk

⋆,g(Ψ)
s (1− θs)ds). (F.1)
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Next, for every i we have that, recalling that the functions Û⋆
j are non–decreasing and null at 0

E
Pk⋆,g

[∫ τ

t
e−r(s−t)

∣∣∣Û⋆
I−i−1

(
U b
s (Ψ)− h1,bs

)∣∣∣ ds
∣∣∣∣Gt

]
≤ E

Pk⋆,g
[∫ τ

t
e−r(s−t) ρg

ρb
U b
s (Ψ)ds

∣∣∣∣Gt

]

≤ E
Pk⋆,g

[∫ τ

t
e−r(s−t) ρg

ρb
ube(r+λ)sds

∣∣∣∣Gt

]
<∞,

with λ := max1≤j≤I λ̂
SH
j . Indeed, we have between two consecutive jump times of N

dU b
s (Ψ) =

(
rU b

s (Ψ)−Bk⋆,bs (Ψ) + (h1,bs + (U b
s (Ψ)− h1,bs )(1− θs))λ

k⋆,b(Ψ)
s

)
ds− ρbdDs

≤
(
rU b

s (Ψ) + h1,bs λk
⋆,b(Ψ)

s + (U b
s (Ψ)− h1,bs )(1 − θs)λ

k⋆,b(Ψ)
s

)
ds

= U b
s (Ψ)

(
r + (1− θs)λ

k⋆,b(Ψ)
s

)
ds+ h1,bs θsλ

k⋆,b(Ψ)
s ds

≤ U b
s (Ψ)

(
r + λk

⋆,b(Ψ)
s

)
ds,

where we used the facts that h1,bs ∈ [0, U b
s (Ψ)], the functions Û⋆

j are non–decreasing and U b
s (Ψ) is

bounded from below and has positive jumps. Similarly

E
Pk⋆,g

[∫ τ

t
e−r(s−t)

∣∣∣Û⋆
I−i−1

(
U b
s−(Ψ)− h1,bs

)
− Û⋆

I−i

(
U b
s−(Ψ)

)∣∣∣ ds
∣∣∣∣Gt

]

≤ E
Pk⋆,g

[∫ τ

t
e−r(s−t)

∣∣∣Û⋆
I−i−1

(
U b
s−(Ψ)− h1,bs

)∣∣∣ ds
∣∣∣∣Gt

]
+ E

Pk⋆,g
[∫ τ

t
e−r(s−t)

∣∣∣Û⋆
I−i

(
U b
s−(Ψ)

)∣∣∣ ds
∣∣∣∣Gt

]

≤ E
Pk⋆,g

[∫ τ

t
e−r(s−t) ρg

ρb
U b
s (Ψ)ds

∣∣∣∣Gt

]
+ E

Pk⋆,g
[∫ τ

t
e−r(s−t) ρg

ρb
U b
s (Ψ)ds

∣∣∣∣Gt

]

≤ 2EPk⋆,g
[∫ τ

t
e−r(s−t) ρg

ρb
ube(r+λ)sds

∣∣∣∣Gt

]
<∞.

Then, the stochastic integrals appearing above are martingales, and taking conditional expectation in

(F.1) we get E
Pk⋆,g

[Gτ∧v| Gt] ≤ Û⋆
I−Nt

(ub) and from Fatou’s Lemma we obtain

Û⋆
I−Nt

(ub) ≥ lim
v→∞

E
Pk⋆,g

[Gτ∧v | Gt] ≥ E
Pk⋆,g

[
lim
v→∞

Gτ∧v

∣∣∣∣Gt

]
= Ug

t (Ψ),

where we used that, Pk⋆,g − a.s.

lim
v→∞

Gτ∧v = lim
v→∞

∫ τ∧v

t
e−r(s−t) [ρgdDs + k⋆,gs (Ψ)Bds] + 1{v<τ}e

−r(v−t)Û⋆
I−Nv

(U b
v(Ψ))

=

∫ τ

t
e−r(s−t) [ρgdDs + k⋆,gs (Ψ)Bds] .

⊔⊓

We end this section with the

Proof. [Proof of Proposition 4.3] The definition of Ĉj does not necessarily match with the credible set

Cj, however we can notice that the inclusion Cj ⊆ Ĉj holds and therefore we only need to prove that

Ĉj ⊆ Cj. We will make use of contracts with lump–sum payments to prove that every point from Ĉj
belongs to the credible set Cj. We start by defining the line with slope ρg/ρb which passes through the

point (ub, ug) =

(
Bj

r+λ̂SH
j

, Bj

r+λ̂SH
j

)
,

M̂j(u
b) :=

ρg
ρb
ub +

Bj

r + λ̂SHj

(
1−

ρg
ρb

)
,
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and the sets

Ĉ1
j :=

{
(ub, ug) ∈ V̂j × V̂j, M̂j(u

b) ≤ ug ≤ Ûj(u
b)
}
,

Ĉ2
j :=

{
(ub, ug) ∈ V̂j × V̂j, L̂j(u

b) ≤ ug ≤ M̂j(u
b)
}
.

From Section D.3 in the Appendix, we know that Ĉ1
j ⊆ Cj . The reason of this is that every point from

the upper boundary Ûj belongs to the credible set and that if we perturb a contract Ψ = (θ,D) only by

adding a lump–sum payment ε at time t, that is dDΨ′

s = 1{s=t}ε+ dDΨ
s , then the values of the banks

under Ψ′ are Ug
t (Ψ

′) = ug + ερg and U b
t (Ψ

′) = ub + ερb, so (U b
t (Ψ

′), Ug
t (Ψ

′)) = (ub, ug) + ε(ρb, ρg).

We use this idea to prove also that Ĉ2
j ⊆ Cj. From Proposition 4.1, we know that the graph of L̂j is

contained in Cj. Therefore any point of the following form belongs to Cj

(ûb, ûg) = (ub, ug) + ℓ(ρb, ρg), ℓ ≥ 0, ug = L̂j(u
b). (F.2)

By the geometry of the lower boundary L̂j, the set of points of the form (F.2) is exactly Ĉ2
j . ⊔⊓

G Principal’s value function on the boundary of the credible set

We start this section with the

Proof. [Proof of Proposition 5.1] Consider any time t ≥ 0 and take any ub,c ≥ C(I −Nt), as well as

some Ψg ∈ Âg(t, L̂I−Nt(u
b,c), ub,c). From Lemma E.2, we know that the components of Ψg must satisfy

θg ≡ 1 and that both banks shirk under Ψg. The payments determine the utility of the banks and the

following holds by definition

E
PkSH

[∫ τI

t
e−r(s−t)dDg

s

∣∣∣∣∣Gt

]
=
ub,c − C(I −Nt)

ρb
.

Besides, the utility of the investor under the contract Ψg is

E
PkSH

[∫ τI

t
(µ(I −Ns)ds − dDg

s )

∣∣∣∣∣Gt

]
=

I−1∑

i=Nt

µ(I − i)

λ̂SHI−i

− E
PkSH

[∫ τI

t
dDg

s

∣∣∣∣∣Gt

]
.

Now, observe that

E
PkSH

[∫ τI

t
dDg

s

∣∣∣∣∣Gt

]
≥ E

PkSH

[∫ τI

t
e−r(s−t)dDg

s

∣∣∣∣∣Gt

]
=
ub,c − C(I −Nt)

ρb
,

and the equality holds if and only if Dg has a jump at time t of size ub,c−C(I−Nt)
ρb

and dDg
s = 0 for

every s > t. That means that it is optimal for the investor to use a contract with an initial lump–sum

payment and to pay nothing afterwards. Consequently, the value function of the investor on the lower

boundary is given by

V L,g
t (ub,c) =

I−1∑

i=Nt

µ(I − i)

λ̂SHI−i

−

(
ub,c − C(I −Nt)

ρb

)
.

⊔⊓

We continue this section with the
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Proof. [Proof of Proposition 5.2] Consider any time t ≥ 0. Take any ub,c ∈ [c(I −Nt, 1), C(I −Nt)),

and Ψg ∈ Âg(t, ub,c, ub,c). From Lemma E.1, we know that the components of Ψg must satisfy dDg
s = 0

for all s ≥ t and that both banks will shirk under this contract. Then, θg determines the continuation

utilities of the banks in the following way

ub,c = E
PkSH

[∫ τ

t
e−r(s−t)B(I −Ns)ds

∣∣∣∣Gt

]
,

so in this case, the problem (5.4) reduces to

(P ) sup
θ∈Θ

E
PkSH

[∫ τ

t
µ(I −Ns)ds

∣∣∣∣Gt

]
, s.t EPkSH

[∫ τ

t
e−r(s−t)B(I −Ns)ds

∣∣∣∣Gt

]
= ub,c.

Next, we rewrite the objective function in a more convenient way

E
PkSH

[∫ τ

t
µ(I −Ns)ds

∣∣∣∣Gt

]

= µ(I −Nt)E
PkSH

[τNt+1 − t|Gt] +
I−1∑

i=Nt+1

µ(I − i)EPkSH [
1{τ>τi}(τi+1 − τi)

∣∣Gt

]

=
µ(I −Nt)

λ̂SHI−Nt

+
I−1∑

i=Nt+1

µ(I − i)EPkSH
[
E
PkSH [

1{τ>τi}(τi+1 − τi)
∣∣Gτi

]∣∣∣∣Gt

]

=
µ(I −Nt)

λ̂SHI−Nt

+

I−1∑

i=Nt+1

µ(I − i)EPkSH
[
E
PkSH [

1{τ>τi}

∣∣Gτi

]
E
PkSH

[τi+1 − τi| Gτi ]

∣∣∣∣Gt

]

=
µ(I −Nt)

λ̂SHI−Nt

+

I−1∑

i=Nt+1

µ(I − i)

λ̂SHI−i

E
PkSH

[θτi | Gt] .

We do the same with the constraint

E
PkSH

[∫ τ

t
e−r(s−t)B(I −Ns)ds

∣∣∣∣Gt

]

= E
PkSH

[∫ τNt+1

t
B(I −Nt)e

−r(s−t)ds+

I−1∑

i=Nt+1

1{τ>τi}

∫ τi+1

τi

e−r(s−t)B(I − i)ds

∣∣∣∣∣Gt

]

=
B(I −Nt)

r + λ̂SHI−Nt

+
I−1∑

i=Nt+1

B(I − i)

r
E
PkSH

[
E
PkSH [

1{τ>τi}

(
e−r(τi−t) − e−r(τi+1−t)

)∣∣∣Gτi

]∣∣∣∣Gt

]

=
B(I −Nt)

r + λ̂SHI−Nt

+

I−1∑

i=Nt+1

B(I − i)

r
E
PkSH

[
e−r(τi−t)

E
PkSH [

1{τ>τi}

∣∣Gτi

]
E
PkSH [

1− e−r(τi+1−τi)
∣∣∣Gτi

]∣∣∣∣Gt

]

=
B(I −Nt)

r + λ̂SHI−Nt

+

I−1∑

i=Nt+1

B(I − i)

r + λ̂SHI−i

E
PkSH [

θτie
−r(τi−t)

∣∣∣Gt

]
.

So we obtain the following expression for our problem

(P )





sup
θ∈Θ

µ(I −Nt)

λ̂SHI−Nt

+
I−1∑

i=Nt+1

µ(I − i)

λ̂SHI−i

E
PkSH

[θτi | Gt]

s.t
B(I −Nt)

r + λ̂SHI−Nt

+
I−1∑

i=Nt+1

B(I − i)

r + λ̂SHI−i

E
PkSH [

θτie
−r(τi−t)

∣∣∣Gt

]
= ub,c.

55



We do not know how to solve (P ) directly, so we will define its dual problem, characterise its solution

and show that the duality gap is zero. In order to do that, we define the Lagrangian function L :

Θ× R× Ω −→ R as follows

L(θ, ν, ω) := −
µ(I −Nt(ω))

λ̂SHI−Nt(ω)

−

I−1∑

i=Nt(ω)+1

µ(I − i)

λ̂SHI−i

E
PkSH

[θτi | Gt] (ω)

+ ν


B(I −Nt(ω))

r + λ̂SHI−Nt(ω)

+

I−1∑

i=Nt(ω)+1

B(I − i)

r + λ̂SHI−i

E
PkSH [

θτie
−r(τi−t)

∣∣∣Gt

]
(ω)− ub,c


 ,

and also define the dual function and the dual problem respectively as

g(ν, ω) := inf
θ∈Θ

L(θ, ν, ω), (D) sup
ν∈R

g(ν, ω) .

Then, we have the weak duality inequality (where val denotes the value of the optimisation problem)

−val(P ) = inf
θ∈Θ

sup
ν∈R

L(θ, ν, ω) ≥ sup
ν∈R

inf
θ∈Θ

L(θ, ν, ω) = val(D).

We rewrite the dual function as follows

g(ν, ω) =−
µ(I −Nt(ω))

λ̂SHI−Nt(ω)

+ ν


B(I −Nt(ω))

r + λ̂SHI−Nt(ω)

− ub,c




+ inf
θ∈Θ

I−1∑

i=Nt(ω)+1

∫

Ω
θτi(ω̃)

(
ν
B(I − i)

r + λ̂SHI−i

e−r(τi(ω̃)−t) −
µ(I − i)

λ̂SHI−i

)
dPSH

t,ω (ω̃),

where P
SH
t,ω is a regular conditional probability distribution for the conditional expectation with respect

to the raw (that is to say not completed) version of Gt. We have easily that it is optimal to set the

optimal control θν to be θντi(ω̃) := 1ω̃∈Ai
ν
(ω̃), where the set Ai

ν is defined by

Ai
ν :=





Ω, if ν <
µ

B

r + λ̂SHI−i

λ̂SHI−i

,

{
ω̃, τi(ω̃)− t >

1

r
ln

(
νBλ̂SHI−i

µ(r + λ̂SHI−i)

)}
, if ν ≥

µ

B

r + λ̂SHI−i

λ̂SHI−i

.

Therefore, for any ν ∈ R the dual function has the following form, using that the conditional law of

τi − t given Gt is the same as the law of τi

g(ν, ω) =−
µ(I −Nt(ω))

λ̂SHI−Nt(ω)

+ ν


B(I −Nt(ω))

r + λ̂SHI−Nt(ω)

− ub,c




+
I−1∑

i=Nt(ω)+1

∫ ∞

si(ν)

(
νB(I − i)e−rx

r + λ̂SHI−i

−
µ(I − i)

λ̂SHI−i

)
fτi(x)dx. (G.1)

It is not difficult to see that g is a continuous and differentiable function. As we want to maximise g

in the dual problem, we compute its derivative with respect to ν and we get

g′(ν, ω) =
B(I −Nt(ω))

r + λ̂SHI−Nt

− ub,c +

I−1∑

i=Nt+1

∫ ∞

si(ν)

B(I − i)

r + λ̂SHI−i

e−rxfτi(x)dx.
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Since ν 7−→ si(ν) is non–decreasing for any i = 1, . . . , I, g′ is non–increasing in ν. Furthermore, since

ub,c ≥ c(I − Nt, 1), we have the limit at +∞ of g′ is non–positive, and that its value for small ν is

positive because ub,c < C(I −Nt) and

B(I −Nt(ω))

r + λ̂SHI−Nt

+

I−1∑

i=Nt+1

∫ ∞

0

B(I − i)

r + λ̂SHI−i

e−rxfτi(x)dx = C(I −Nt).

Therefore, there is a unique value of ν that makes g′ equal to 0.

Now, we compute for any ν the value of the constraint from the primal problem for the control θν

I−1∑

i=Nt+1

B(I − i)

r + λ̂SHI−i

E
PkSH [

θντie
−r(τi−t)

∣∣∣Gt

]
=

I−1∑

i=Nt+1

∫ ∞

si(ν)

B(I − i)

r + λ̂SHI−i

e−rxfτi(x)dx,

so θν is feasible in problem (P ) if and only if g′(ν, ω) = 0. Next, we compute for θν the value of the

objective function in the primal (minimisation) problem

−
µ(I −Nt)

λ̂SHI−Nt

−

I−1∑

i=Nt+1

µ(I − i)

λ̂SHI−i

E
PkSH

t

[
θντi
]
= −

µ(I −Nt)

λ̂SHI−Nt

−

I−1∑

i=Nt+1

∫ ∞

si(ν)

µ(I − i)

λ̂SHI−i

fτi(x)dx.

If this quantity is equal to g(ν, ·), the duality gap is zero. From (G.1) we see that this happens if and

only if

ν

(
B(I −Nt)

r + λ̂SHI−Nt

− ub,c +
I−1∑

i=Nt+1

∫ ∞

si(ν)

B(I − i)

r + λ̂SHI−i

e−rxfτi(x)dx

)
= 0 ⇐⇒ νg′(ν, ·) = 0.

We conclude that if ν ∈ R is such that g′(ν) = 0 then the control θν is optimal in the primal problem.

⊔⊓

We continue with the

Proof. [Proof of Proposition 5.3] Define the process ℓs = ÛI−Ns(U
b,c
s (Ψg)) − Ug

s (Ψg) and note that

ℓs ≥ 0 for every s ≥ 0. We will prove that ℓt = 0 implies ℓv = 0 for every v ≥ t. Assume thus that

ℓt = 0. Following the same idea as in the proof of Theorem 4.1, we have for v ≥ t

ℓv =

I−1∑

i=Nt

∫ τi+1∧v

τi∧v
−
(
rUg

s (Ψg)−Bk⋆,gs (Ψg) + [h1,gs + (1− θgs)h
2,g
s ]λ

k⋆,g(Ψg)
s

)
ds

+

I−1∑

i=Nt

∫ τi+1∧v

τi∧v
Û
′
I−i(U

b,c
s (Ψg))

(
rU b,c

s (Ψg)−Bk⋆,b,cs (Ψg) + λ
k⋆,b,c(Ψg)
I−i (h1,b,cs + (1− θgs)h

2,b,c
s )

)
ds

+
I−1∑

i=Nt

∫ τi+1∧v

τi∧v

(
h1,gs + ÛI−i−1(U

b,c
s−

(Ψg)− h1,b,cs )− ÛI−i(U
b,c
s−

(Ψg))
)
dNs

+
I−1∑

i=Nt

∫ τi+1∧v

τi∧v

(
h2,gs − ÛI−i−1(U

b,c
s−

(Ψg)− h1,b,cs )
)
dHs +

(
ρg − ρbÛ

′
I−i(U

b,c
s (Ψg))

)
dDg

s .

Since the functions Ûi solve the system of HJB equations (4.9), and
(
ρg − ρbÛ

′
i(U

b,c
s (Ψg))

)
dDg

s ≤ 0
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for every s, we have

ℓv ≤
I−1∑

i=Nt

∫ τi+1∧v

τi∧v

(
rÛI−i(U

b,c
s (Ψg))− rUg

s (Ψg)− [h1,gs + (1− θgs)h
2,g
s ]λ

k⋆,g(Ψg)
s

)
ds

−
I−1∑

i=Nt

∫ τi+1∧v

τi∧v
λ
k⋆,g(Ψg)
s

(
θsÛI−i−1(U

b,c
s−

(Ψg)− h1,b,cs )− ÛI−i(U
b,c
s (Ψg))

)
ds

+

I−1∑

i=Nt

∫ τi+1∧v

τi∧v

(
h1,gs + ÛI−i−1(U

b,c
s−

(Ψg)− h1,b,cs )− ÛI−i(U
b,c
s−

(Ψg))
)
dNs

+

I−1∑

i=Nt

∫ τi+1∧v

τi∧v

(
h2,gs − ÛI−i−1(U

b,c
s−

(Ψg)− h1,b,cs )
)
dHs

=
I−1∑

i=Nt

∫ τi+1∧v

τi∧v
(r + λk

⋆,g

s )(ÛI−i(U
b,c
s (Ψg))− Ug

s (Ψg)) + (h2,gs − ÛI−i−1(U
b,c
s (Ψg)− h1,b,cs ))θgsλ

k⋆,g

s ds

+
I−1∑

i=Nt

∫ τi+1∧v

τi∧v

(
h1,gs + ÛI−i−1(U

b,c
s−

(Ψg)− h1,b,cs )− ÛI−i(U
b,c
s−

(Ψg))
)
dNs

+

I−1∑

i=Nt

∫ τi+1∧v

τi∧v

(
h2,gs − ÛI−i−1(U

b,c
s−

(Ψg)− h1,b,cs )
)
dHs.

Recall from Remark 4.2 that on the upper boundary, we have

h1,gs = ÛI−N
s−
(U b,c

s−
(Ψg))− ÛI−N

s−
−1(U

b,c
s−

(Ψg)− h1,b,cs (Ψg)), h
2,g
s = ÛI−N

s−
−1(U

b,c
s−

(Ψg)− h1,b,cs (Ψg)),

so that for i = Nt the drift of the right–hand side is 0 in [τi, τi+1) and the jump at time τi+1 is also 0.

It is easy to see that the same happens for every i ∈ {Nt, . . . , I} and therefore ℓv ≤ 0 for every v ≥ 0

which means ℓv = 0 for every v ≥ t. ⊔⊓

We go on with the

Proof. [Proof of Proposition 5.4]

(i) We have from the proof of Proposition 5.3 that the processes (θg, h1,b,c, h2,b,c) are necessarily max-

imisers of the system of HJB equations (4.9). We can go back to the proof of Proposition 4.2, which

is based on Corollary F.1, to observe that for ub,c < b̂j the optimal θ ∈ Cj is uniquely given by θ = 0.

(ii) Observe that for every (t, ub,c, ug) ∈ [0, τ ] × V̂I−Nt × V̂I−Nt and Ψg ∈ Âg(t, ug, ub,c) we have

U b,c
t (Ψg) ≥ E

P
k⋆,g(Ψg)

[∫ τ

t
e−r(s−t)(ρbdD

g
s +Bk⋆,gs (Ψg)ds)

∣∣∣∣Gt

]

=
ρb
ρg
Ug
t (Ψg) + E

P
k⋆,g(Ψg)

[∫ τ

t
e−r(s−t)Bk⋆,gs (Ψg)ds

∣∣∣∣Gt

](
1−

ρb
ρg

)
≥
ρb
ρg
Ug
t (Ψg).

Then U b,c
s0 (Ψg) =

ρg
ρb
Ug
s0(Ψg) implies that k⋆,gs (Ψg) = k⋆,b,cs (Ψg) = 0, for every s ∈ [s0, τ), and in

consequence

U b,c
s (Ψg) =

ρg
ρb
Ug
s (Ψg) ≥ bs, for every s ∈ [s0, τ).

⊔⊓

We end this section with the
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Proof. [Proof of Proposition 5.5] We divide the proof in 2 steps.

• Step 1: We start with the region ub,c > b̂I−Nt . Let Ψg = (Dg, θg, h1,b,c, h2,b,c) ∈ A
g
(t, ub,c) be

such that U b,c
t (Ψg) = ub,c ≥ b̂I−Nt, U

g
t (Ψg) = ÛI−Nt(u

b,c). From Proposition 5.4 we know that

U b,c
s (Ψg) ≥ b̂I−Ns , k

⋆,b,c(Ψg) = 0, s ∈ [t, τ).

Therefore, Problem (5.5) is equivalent to

V U,g
t (ub,c) = sup

Ψg∈A
g
(t,ub,c)

E
P0

[∫ τ

t
µ(I −Ns)ds−

∫ τ

t
dDg

s

]
, s.t





U b,c
s (Ψg) ≥ b̂I−Ns , s ∈ [t, τ),

E
P0

[∫ τ

t
e−r(s−t)dDg

s

]
=
ub,c

ρb
.

This is exactly the problem of [42], recalled in Section 3.2, so we conclude that V U,g
t (ub,c) = vbI−Nt

(ub,c).

• Step 2: For the rest of the upper boundary, observe that the system of HJB equations

associated to (5.5) is is given by V̂0 ≡ 0, and for any 1 ≤ j ≤ I

min

{
− sup

(θ,h1,h2)∈CU,j

{
V̂ ′
j(u

b,c)
(
rub,c −Bkb,c + [h1 + (1− θ)h2]λ̂k

b,c

j

)

+µj + λ̂k
g

j θV̂j−1(u
b,c − h1)− λ̂k

g

j V̂j(u
b,c)

}
, V̂ ′

j(u
b,c)+

1

ρb

}
= 0, (G.2)

for every ub,c ≥ Bj

r+λ̂SH
j

, with the boundary condition V̂j(Bj/(r + λ̂SHj )) = µj/λ̂SHj , and where

kb,c := j1
{h1+(1−θ)h2<b̂j}

, kg := j1
{Û⋆

j (u
b,c)−θÛ⋆

j−1(u
b,c−h1)<b̂j}

,

and the set of constraints CU,j determined by Proposition 5.4 is defined by

CU,j :=

{
(θ, h1, h2) ∈ [0, 1]×R

2
+, h

1+h2 = ub,c, h2 ≥
B(j − 1)

r + λ̂SHj−1

, θ1
{ub,c<b̂j}

= (kb,c+kg)1
{ub,c≥b̂j}

= 0

}
.

Then, for any ub,c < b̂j, the diffusion equation in (G.2) reduces to the ODE

0 = V̂ ′
j(u

b,c)
((
r + λ̂SHj

)
ub,c −Bj

)
− V̂j(u

b,c)λ̂k
g

j + µj, (G.3)

with the boundary condition V̂j

(
Bj

r+λ̂SH
j

)
= µj

λ̂SH
j

. If ub,c < x⋆j , we get that

V̂j(u
b,c) =

µj

λ̂SHj
+ C1

((
r + λ̂SHj

λ̂SHj

)
ub,c −

Bj

λ̂SHj

) λ̂SH
j

r+λ̂SH
j

,

for some C1 ∈ R. If ub,c ∈
[
x⋆j , b̂j

)
, equation (G.3) is solved by

V̂j(u
b,c) =

µj

λ̂0j
+ C2

((
r + λ̂SHj

λ̂0j

)
ub,c −

Bj

λ̂0j

) λ̂0j

r+λ̂SH
j

,

for some C2 ∈ R. The values of C1 and C2 for which the solution of equation (G.3) is continuous are

C1 =

µj

λ̂0
j

− µj

λ̂SH
j

+
(

ρb
ρg

) λ̂0j

r+λ̂0
j

(
vbj (̂bj)−

µj

λ̂0
j

)

(
ρb
ρg

) λ̂SH
j

r+λ̂0
j

(
b̂j(r+λ̂0

j )

λ̂SH
j

) λ̂SH
j

r+λ̂SH
j

, C2 =

(
vbj (̂bj)−

µj

λ̂0j

)(
b̂j
r + λ̂0j

λ̂0j

)−
λ̂0j

r+λ̂SH
j

.
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It follows from the properties of the map vbj , that the resulting function V̂j is a concave map with slope

greater than − 1
ρb

and therefore the family {V̂j}1≤j≤I is a solution of the system of HJB equations

(G.2). It can be proved similarly as in the proof of Theorem 4.1 (see also Theorem 3.15 in [42]), that

the verification result holds for this family of functions. We therefore omit the proof of this result. ⊔⊓

H Extension: unbounded relationship between utilities of the banks

One possible extension of our model could rely on a further differentiation between the work of the two

banks, i.e. when both banks work, the good one would be more efficient in the sense that the associated

default intensity is strictly smaller than that of the bad bank. We can do this by introducing an extra

type variable with values mg and mb, with mg < mb and modelling the hazard rate of a non-defaulted

loan i at time t, when it is monitored by a bank of type j as αi,j
t = αI−Nt(1 + ei,jt mj + (1 − ei,jt )ε).

Then, if the banks fails to monitor k loans, the default intensity will be

λk,jt = αI−Nt((I −Nt)(1 +mj) + (ε−mj)kt).

We did not consider such a situation because it creates a degeneracy, in the sense that the credible set

no longer has an upper boundary. Indeed, consider for simplicity the case j = 1 and take any ub0 ≥ bj1,

t⋆ ≥ 0 and choose the corresponding payment

c(t⋆) := ub0
e(r+λ̂0,b

1 )t⋆(r + λ̂0,b1 )

ρb
≥
bb1(r + λ̂0,b1 )

ρb
≥
bg1(r + λ̂0,g1 )

ρg
.

Then, under the contract with delay and constant payments given by dDs = c(t⋆)1{s>t⋆}ds the bad

bank will always work and her value function will be equal to ub0 (see section D.1). Notice that the

optimal strategy for the good bank will be also to work at every time. Then, her value function is

equal to

ug0 := ub0
ρg(r + λ̂0,b1 )

ρb(r + λ̂0,g1 )
e(λ̂

0,b
1 −λ̂0,g

1 )t⋆ .

We see that by increasing t⋆, it is possible to make ug0 as big as we want and keep fixed the value of

the bad bank. This means that the credible set will have no upper boundary in the interval [bb1,∞).

Moving to any j > 1 and considering short-term contracts with delay, with θ = 0 and the analogous

payments, we observe the same degeneracy and the credible set will have no upper boundary in the

interval [bbj ,∞).

One way out of this problem would be to consider different discount rates for the banks, rb and rg,

and assume that the default intensities are such that λ0,bt + rb ≤ λ0,gt + rg. However, this complicates

things a lot because simple statements that we expect to be true are very difficult to prove or need

assumptions on the parameters of the problem. For example the inequality Ug
t (D, θ) ≥ U b

t (D, θ) is

no longer clear at all. We therefore refrained from going into that direction, and leave it for potential

future research.
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