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Abstract

This article is devoted to shape optimisation of contact problems in linearised elasticity, thanks

to the level set method. We circumvent the shape non-di�erentiability, due to the contact boundary

conditions, by using penalised and regularised versions of the mechanical problem. This approach is

applied to �ve di�erent contact models: the frictionless model, the Tresca model, the Coulomb model,

the normal compliance model and the Norton-Ho� model. We consider two types of optimisation

problems in our applications: �rst, we minimise volume under a compliance constraint, second, we

optimise the normal force, with a volume constraint, which is useful to design compliant mechanisms.

To illustrate the validity of the method, 2D and 3D examples are performed, the 3D examples being

computed with an industrial software.

1 Introduction

We study the shape optimisation of a structure, the behaviour of which is modeled by the equations of
the linearised elasticity with unilateral contact boundary conditions and friction conditions. From an
industrial point of view, these kinds of boundary conditions are of great interest, as they enable a more
detailed and accurate modelisation of boundary conditions, compared to clamped or Dirichlet boundary
conditions. From a mathematical point of view, they tend to make the whole optimisation more intricate.
Indeed the mechanical problem takes the form of a variational inequation and, thus, is highly nonlinear.
The study of the existence and uniqueness of a solution for frictionless contact and its regularity were
performed, for instance, in [14], [8], more recently in [4] and, thanks to the use of pseudo-di�erential
operators, in [50]. Similar results on frictionless auto-contact and auto-contact with Tresca friction can
also be found in [37]. However, as soon as a more realistic friction model is taken into consideration,
results on existence and uniqueness become harder to obtain [15], [35].

On the other hand, the shape optimisation of such problems presents the same di�culties as en-
countered in control theory of variational inequalities. As pointed out in [41] and [54], the frictionless
contact solution can be written under the form of a projection onto a convex set, which is not di�er-
entiable in the usual sense but merely admits a so-called conical derivative [41]. Nevertheless, Mignot
[41] managed to derive optimality conditions, thanks to this weak notion of di�erentiability. Using the
conical derivative and writing the problem under a discretised form, Kocvara and al. [46] used a bundle
algorithm to perform shape optimisation. Another way to get optimality conditions, see [5] and [3], is
to introduce a regularised problem, depending on a small regularisation parameter, study its optimality
conditions and pass to the limit when the regularisation parameter tends to zero. This approach, called
penalisation, was used in numerical shape optimisation, for example in [12] using SIMP method, [48] and
[32], using splines to parameterise the shape. Its convergence to the exact solution was proved in [13].
Another similar approach is the regularisation of the unilateral boundary conditions which was used in
[56] and [55] in the context of SIMP method. Some authors, as in [58] and [29], write a saddle point
formulation of the problem and use the so-called Lagrangian method, ignoring the non di�erentiability
of the Lagrange multipliers arising in this formulation. Of course, it is possible to perform optimisation
without derivatives, as in [10], using genetic algorithms, but the price to pay is the very large number
of required iterations. As far as theoretical results are concerned, we refer to [24], [25], [21], [23] where,
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for a particular optimisation problem, existence of an optimum is proved under assumptions of uniform
Lipschitz regularity of the boundary, �rst proving the result for a discretisation, then passing to the
continuous limit.

When friction comes into play, the shape di�erentiation becomes even more di�cult. In [54], for
the Tresca model (also called the prescribed friction model), a conical derivative is found out, merely in
two-space dimensions and for speci�c directions of di�erentiation. Once again, penalised and regularised
formulations can be used as in [31], [3] and [57]. Theoretical results are also given for normal compliance
model in [35] and [36] and for Coulomb friction model in [22]. For this last model of friction, the
uniqueness of the contact solution is not ensured for the continuous model and examples of non uniqueness
can be built. Consequently, in [6] and [7], the authors analyse the derivation of the discretised problem,
which admits a unique solution for small friction coe�cients, by using subgradient calculus. Eventually,
a thorough review of other results in shape optimisation for contact problems can be found in [28].

In this paper, we are interested in applying the levelset method for shape optimisation [2] to contact
problems, possibly including friction. To the best of our knowledge, this is the �rst time that this method
is used for shape optimisation of contact problems. We investigate four types of friction, one of them
being the Norton Ho� model which has not been previously used in shape optimisation. The general and
classical idea adopted here is to use the penalised and regularised formulations to compute derivatives,
which avoids us to deal with intricate conical derivatives. We also tackle the issue of optimising some
objectives depending on the normal force, a goal which was at the center of [34] and [10] but treated in
a completely di�erent way. This type of objective functions is useful to design compliant mechanisms,
for example.

Section 2 presents the frictionless contact model and gives four di�erent friction conditions depending
on the chosen model: Tresca, Coulomb, Norton Ho� and normal compliance model. For each of them,
we recall an existence result for its solution. Section 3 focuses on how to regularise these problems in
order to easily compute derivatives of their solution with respect to the shape. We choose to penalise the
normal condition and to regularise the tangential ones which will enable us to compute shape derivatives.
The section ends with a short analysis of existence results of these new formulations. In Section 4, a
general shape optimisation problem is introduced and shape derivatives are calculated using the adjoint
method. Criteria used in the numerical examples are also proposed, especially criteria depending on the
normal force. Section 5 brie�y recalls the main ideas of the level set method for shape optimisation. Our
numerical results are collected in Section 6. A large range of examples show the good performances of
our approach and we did not observe a high sensitivity of the optimised solutions to the regularisation
and penalisation parameters. The 2D cases are performed with the Scilab free software [51], while the
3D examples are computed using the �nite element software SYSTUS from ESI-Group [16]. Eventually
we conclude and give some perspectives in Section 7.

2 Contact models in linearised elasticity

In this paper Ω denotes an open bounded subset of Rd where d = 2 or 3 and represents the shape of the
structure we want to optimise. Its boundary is divided into �ve disjoint parts meaning that:

∂Ω = Γ0 ∪ ΓN ∪ Γc ∪ Γ ∪ S.

The structure Ω is full of a linear isotropic elastic material with a Hooke's law charaterised by A, for any
τ symmetric matrix, as:

Aτ = 2µτ + λTr(τ)Id

where µ and λ are the Lamé moduli. On Γ0, the structure is clamped and on ΓN a force is applied.
The free part of the boundary is Γ and the parts where contact conditions are enforced are S and Γc.
Γc modelises a contact with an undeformable body, whereas S is an auto-contact part (as for instance a
crack could be). So S lies in the interior of Ω, see Figure 1. We assume that Ω ∪ S is smooth.

The displacement �eld u is then solution of the linearised elasticity system:
− div(Ae(u)) = f in Ω

u = 0 on Γ0

Ae(u)n = g on ΓN

Ae(u)n = 0 on Γ,

(1)
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Figure 1: The open set Ω and its boundaries.

complemented with contact boundary conditions on Γc and S, which depend on the type of contact
model we use. In (1), n denotes the exterior unit normal. To specify the contact boundary conditions,
we �rst introduce some notations. For a vector v ∈ Rd, we denote by vt its tangential part:

vt = v − (v · n)n.

We also note the jump through S of v, noting S− and S+ the two sides of S:

[v] = v|S− − v|S+
.

2.1 Sliding Contact

Sliding contact assumes there is no friction, which means that (Ae(u)n)t = 0 on Γc and (Ae(u)n)t = 0
on S− and S+. For the normal part on Γc, three conditions are needed:

u · n ≤ 0 (2)

which prevents the penetration,
Ae(u)n · n ≤ 0 (3)

meaning that the normal force on the contact surface is always in the sense opposite to the outward
normal and the complementarity condition

(u · n)(Ae(u)n · n) = 0 (4)

imposes either a contact: (u · n) = 0 either, when there is no contact, a no force condition on Γc:
(Ae(u)n · n) = 0.

Concerning the normal part on S, the conditions are similar in terms of jumps:
[u] · n− ≤ 0

Ae(u|S−)n− · n− = Ae(u|S+
)n− · n− ≤ 0

([u] · n−)(Ae(u|S−)n− · n−) = 0,

(5)

where n− is the normal to S− pointing toward S+.
Coupling these boundary conditions with (1), the sliding contact problem can be written as:

−div(Ae(u)) = f in Ω
u = 0 on Γ0

Ae(u)n = g on ΓN
Ae(u)n = 0 on Γ
u · n ≤ 0 on Γc

Ae(u)n · n ≤ 0 on Γc
(u · n)(Ae(u)n · n) = 0 on Γc

[u] · n− ≤ 0 on S
Ae(u|S−)n− · n− = Ae(u|S+

)n− · n− ≤ 0 on S
([u] · n−)(Ae(u|S−)n− · n−) = 0 on S

(Ae(u)n)t = 0 on Γc ∪ S

(6)
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Problem (6) can also be written as a variational inequation [14], where

K(Ω) =
{
v ∈ H1

Γ0
(Ω)d, v · n ≤ 0 on Γc, [v] · n− ≤ 0 on S

}
is a closed convex set and H1

Γ0
(Ω)d =

{
v ∈ (H1(Ω))d, v = 0 on Γ0

}
:

�nd u ∈ K(Ω) such that∫
Ω

Ae(u) : e(v − u) dx ≥
∫

Ω

f · (v − u) dx+

∫
ΓN

g · (v − u) ds ∀v ∈ K(Ω) (7)

with f ∈ L2(Ω)d and g ∈ L2(ΓN )d.
From (7) it follows that (6) is the Euler-Lagrange optimality condition of the minimisation problem:

u = argmin
v∈K(Ω)

1

2

∫
Ω

Ae(v) : e(v) dx−
∫

Ω

f · v dx−
∫

ΓN

g · v ds (8)

which will be useful in the next section to penalise the problem.
The proof of existence and uniqueness of the solution u to (8) or (6) is a direct consequence of theorem

2.1 in [33] and Korn inequality (theorem 1.2.1 in [15] and theorem 3.1 in chapter 3 of [14]). It relies on
the convexity of both K(Ω) and the quadratic energy functional.

2.2 Contact with friction

To add some friction conditions, it is necessary to change the tangential condition (Ae(u)n)t = 0 on Γc
and S. The most popular friction model is the Coulomb one, but we �rst state a simpler model derived
from it and then present the di�erent models which will be used in the shape optimisation part.

2.2.1 Tresca model

The Tresca friction model, also known as the model of given friction, was introduced in [14]. Even if it
does not represent a realistic mechanical model, it can be used numerically to obtain the solution of the
Coulomb friction model in a �xed point method and is mathematically well-posed. For the normal part
(2), (3), (4) and (5) are kept. For the tangential part on Γc it is stated as:

‖(Ae(u)n)t‖ ≤ σtr on Γc

‖(Ae(u)n)t‖ < σtr ⇒ ut = 0 on Γc

‖(Ae(u)n)t‖ = σtr ⇒ ∃λ ≥ 0, ut = −λ(Ae(u)n)t on Γc

(9)

and on S:
(Ae(u)n)t = (Ae(u|S−)n−)t = −(Ae(u|S+

)n+)t on S

‖(Ae(u)n)t‖ ≤ σtr on S

‖(Ae(u)n)t‖ < σtr ⇒ [ut] = 0 on S

‖(Ae(u)n)t‖ = σtr ⇒ ∃λ ≥ 0, [ut] = −λ(Ae(u|S−)n−)t on S

where ‖ · ‖ denotes the classical euclidian norm on Rd and s is a smooth function representing the
coe�cient of friction. While the tangential force is smaller than the coe�cient of friction, there is no
sliding. If the tangential force reaches the threshold s, sliding can appear. This model is not well-suited
to modelise real phenomena, since the tangential force does not take into account the normal force.
Yet, like the problem (6), (9) can be written as a variational inequation and a minimisation problem of
respectively the form: �nd u ∈ K(Ω) such that∫

Ω

Ae(u) : e(v − u) dx+ jtr(v)− jtr(u) ≥
∫

Ω

f · (v − u) dx+

∫
ΓN

g · (v − u) ds ∀v ∈ K(Ω) (10)

and

u = argmin
v∈K(Ω)

1

2

∫
Ω

Ae(v) : e(v) dx−
∫

Ω

f · v dx−
∫

ΓN

g · v ds+ jtr(v) (11)
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with

jtr(v) =

∫
Γc

σtr ‖vt‖ ds+

∫
S

σtr ‖[v]t‖ ds.

The proof of existence and uniqueness of the solution u of (11) is given in theorem 1.5.2 of [15]. Once
again it relies on the convexity of the minimized functional.

2.2.2 Coulomb friction

The model of Coulomb friction is similar to the Tresca one, changing s into µ, a friction coe�cient, times
the norm of the normal force. For Γc:

‖(Ae(u)n)t‖ ≤ µ|(Ae(u)n · n)| on Γc

‖(Ae(u)n)t‖ < µ|(Ae(u)n · n)| ⇒ ut = 0 on Γc

‖(Ae(u)n)t‖ = µ|(Ae(u)n · n)| ⇒ ∃λ ≥ 0, ut = −λ(Ae(u)n)t on Γc

and for S:
(Ae(u)n)t = (Ae(u|S−)n−)t = −(Ae(u|S+

)n+)t on S

‖(Ae(u)n)t‖ ≤ µ|(Ae(u)n · n)| on S

‖(Ae(u)n)t‖ < µ|(Ae(u)n · n)| ⇒ [ut] = 0 on S

‖(Ae(u)n)t‖ = µ|(Ae(u)n · n)| ⇒ ∃λ ≥ 0, [ut] = −λ(Ae(u|S−)n−)t on S

For the normal part there is no change in the boundary conditions: (2), (3), (4) and (5). This can be
written as the following variational inequation: �nd u ∈ K(Ω) such that∫

Ω

Ae(u) : e(v − u) dx+ jco(u, v)− jco(u, u) ≥
∫

Ω

f · (v − u) dx+

∫
ΓN

g · (v − u) ds ∀v ∈ K(Ω) (12)

with

jco(u, v) =

∫
Γc

µ|(Ae(u)n · n)| ‖vt‖ ds+

∫
S

µ|(Ae(u)n · n)| ‖[v]t‖ ds.

which is a function of two variables.
This model is studied in chapters 1 and 3 of [15]. It is not equivalent to a minimisation problem. To

our knowledge, there is no uniqueness results for this problem and the existence is only ensured for small
friction coe�cients. Yet the uniqueness was proven for the discretised problem in [20]. It is interesting,
both for numerical [38] and theoretical [15] reasons, to note that this problem can be seen as the solution
of a �xed point problem involving the solution of the Tresca model.

2.2.3 Norton-Ho� model

The Norton-Ho� model [42] is a variation of the previous friction model. The boundary condition is
now a one-to-one relation between the tangential force and the tangential jump of the displacement
(notwithstanding the normal force). It can be written as:

(Ae(u)n)t = µ|(Ae(u)n · n)| ‖ut‖ρ−1
ut on Γc

(Ae(u|S−)n)t = −(Ae(u|S+
)n)t = −µ|(Ae(u)n · n)| ‖[ut]‖ρ−1

[ut] on S
(13)

where 0 < ρ < 1. Adding the other boundary conditions (2), (3), (4) and (5), we obtain the following
variational inequality. Find u ∈ K(Ω) such that∫

Ω

Ae(u) : e(v − u) dx+ jnh(u, v − u) ≥
∫

Ω

f · (v − u) dx+

∫
ΓN

g · (v − u) ds ∀v ∈ K(Ω) (14)

where jnh is a function of two variables, de�ned by

jnh(u, v) =

∫
Γc

µ|(Ae(u)n · n)| ‖ut‖ρ−1
ut · vt ds+

∫
S

µ|(Ae(u)n · n)| ‖[u]t‖ρ−1
[u]t · [v]t ds.

The one-to-one relation mentionned in (13) makes the model numerically simpler to solve than the
Coulomb one. Let us remark that (14) is not equivalent to a minimisation problem.
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2.2.4 Normal compliance model

The last friction model considered is the normal compliance model presented in [40] and studied in
[35]. It is pretty similar to a problem where the normal inequality constraint is penalised with a small
penalisation coe�cient. On Γc it takes the following form:

(Ae(u)n · n)n = −CN (u · n)mN
+ n on Γc

‖(Ae(u)n)t‖ ≤ CT (u · n)mT
+ on Γc

‖(Ae(u)n)t‖ < CT (u · n)mT
+ ⇒ ut = 0 on Γc

‖(Ae(u)n)t‖ = CT (u · n)mT
+ ⇒ ∃λ ≥ 0, ut = −λ(Ae(u)n)t on Γc

(15)

and on S:
(Ae(u|S−)n · n)n− = −(Ae(u|S+

)n · n)n− = −CN ([u] · n−)mN
+ n on S

(Ae(u)n)t = (Ae(u|S−)n−)t = −(Ae(u|S+
)n+)t on S

‖(Ae(u)n)t‖ ≤ CT ([u] · n−)mT
+ on S

‖(Ae(u)n)t‖ < CT ([u] · n−)mT
+ ⇒ [ut] = 0 on S

‖(Ae(u)n)t‖ = CT ([u] · n−)mT
+ ⇒ ∃λ ≥ 0, [ut] = −λ(Ae(u|S−)n−)t on S

where (·)+ = max(0, ·), CN and CT are material coe�cients and mN and mT are typically equal to 1 or
2 (see [35] for the possible value depending on the dimension d). Contrary to the other friction models,
the normal part is di�erent from the case of sliding contact. Again, it is possible to write a variational
inequation equivalent to (15). Find u ∈ K(Ω) such that, for any v ∈ H1

Γ0
(Ω)d,∫

Ω

Ae(u) : e(v−u) dx+jN,Nc(u, v−u)+jT,Nc(u, v)−jT,Nc(u, u) ≥
∫

Ω

f ·(v−u) dx+

∫
ΓN

g·(v−u) ds , (16)

where

jN,nc(u, v) =

∫
Γc

CN (u · n)mN
+ v · nds+

∫
S

CN ([u] · n−)mN
+ [v] · nds ,

jT,nc(u, v) =

∫
Γc

CT (u · n)mT
+ ‖vt‖ ds+

∫
S

CT ([u] · n−)mT
+ ‖[v]t‖ ds.

This model allows interpenetration, which can represent a material loss at the surface of the material
in contact. Existence and uniqueness results are given and discussed in [35] and [27] under smallness
conditions on the coe�cients CN and CT . Here again (16) is not equivalent to a minimisation problem.

3 Penalised and regularised formulations

As our goal is to optimise, thanks to a gradient algorithm, and therefore to compute the derivative of
some functions depending on the displacement u, we need to investigate the di�erential properties of u
with respect to the shape. Based on the work of [41], the authors of [54] have shown that the solution u
of (7) admits at most a conical derivative because of the non di�erentiability of the projection map on
closed convex sets in Hilbert spaces. We shall not de�ne precisely what is a conical derivative (a type
of "weak" multi-valued directional derivative). Let us simply say that it is quite di�cult to use it in
numerical practice since it requires a subgradient optimisation algorithm (see [46], for example, in �nite
dimension).

To avoid such intricate optimisation techniques, let us quickly investigate the di�erent ways to nu-
merically compute the solutions of problems described in Section 2. According to [17], there exist two
main methods: the Lagrangian method and the penalisation method. The Lagrangian method intro-
duces a Lagrange multiplier for the contact constraint, which will not be di�erentiable (basically for the
same reasons preventing the solution u from being di�erentiable). The penalisation method has the nice
property to transform inequations into equations and thus changes projection on closed convex sets into
projection on linear spaces (in our cases H1

Γ0
(Ω)). In particular, for this penalisation approach, it is

possible to di�erentiate these new equations. Consequently, we choose to study and use these penalised
formulations.
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In the di�erent contact problems presented, there are two kinds of reasons which trigger the appear-
ance of inequations. The �rst one, concerning the normal component of u on the boundary, is that u
belongs to a convex set. This constraint will be penalised. The second one is the singularity in the
tangential friction formulation due to the presence of the norm ‖ · ‖ which is not di�erentiable at zero.
This term will be regularised, thanks to a regularisation of the norm ‖ · ‖.

3.1 Penalisation for the convex set

We now present the penalisation used to get rid of the constraint stating that the solution u is required
to belong to K(Ω). This penalisation will be used for every model but the normal compliance one, and
we explain how to add it to change the inequations into equations or other inequations. As a matter
of fact, for problems involving friction, to get equations we also need to regularise the friction term (as
said before). This is the reason why we only write the penalised equation associated with (11) in this
subsection. For other models, they can be found in the next one.

To add the penalisation, the procedure di�ers whether the initial problem can be written as a min-
imisation problem, (11) and (8), or not, (12) and (14).

For (11) and (8), we change the functional to be minimised and the set of admissible solutions.
Instead of minimising on K(Ω), we minimise on H1

Γ0
(Ω)d. To approximate the condition v · n ≤ 0 on Γc

and [v] · n− ≤ 0 on S, we add to the functional a term of the form:

jN,ε(u) =
1

ε

(∫
Γc

∫ u.n

0

φη(t) dt ds+

∫
S

∫ [u].n

0

φη(t) dt ds

)
(17)

where φη is a smooth function (at least C1) meant to regularise t→ tH(t) with H the Heaviside function.
For instance, taking a small parameter η > 0:

φη(x) =


0 for x ∈ (−∞;−η]

1

4η
x2 +

1

2
x+

η

4
for x ∈ [−η; η]

x for x ∈ [η; +∞).

(18)

We can then deduce a penalised variational formulation associated to (8):∫
Ω

Ae(u) : e(v) dx+ j′N,ε(u, v) =

∫
Ω

f · v dx+

∫
ΓN

g · v ds. ∀v ∈ H1
Γ0

(Ω)d, (19)

where the directional derivative of (17) is

j′N,ε(u, v) =
1

ε

∫
Γc

φη(u · n)v · nds+
1

ε

∫
S

φη([u] · n−)[v] · n− ds,

and an equivalent minimisation problem:

u = argmin
v∈H1

Γ0
(Ω)d

1

2

∫
Ω

Ae(v) : e(v) dx−
∫

Ω

f · v dx−
∫

ΓN

g · v ds+ jN,ε(v).

Problems (12) and (14) cannot be written as minimisation problems, therefore we need to work
directly on the variational inequation. The idea is to add a term j′N,ε(u, v− u) on the left hand side and
change the spaces of the solutions as done in [15], chapter 3, keeping in mind that to get an equation we
still need to regularise the friction term.

3.2 Regularisation of the friction term

In the friction models (10), (12), (14) and (16) we also need to regularise the norm ‖ · ‖ to transform
inequations into equations. Let Nη be a smooth function (at least twice di�erentiable) approximating
the norm. For instance, following [15]:

Nη(x) =


‖x‖ for ‖x‖ ≥ η,

− 1

8η3
‖x‖4 +

3

4η
‖x‖2 +

3

8
η for ‖x‖ ≤ η.
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The new penalised and regularised equations are then given as follows.

• For the Tresca model:∫
Ω

Ae(u) : e(v) dx+ j′tr,η(u, v) + j′N,ε(u, v) =

∫
Ω

f · v dx+

∫
ΓN

g · v ds ∀v ∈ H1
Γ0

(Ω)d (20)

where j′tr,η(u, v) denotes the derivative of jtr,η at u in the direction v with

jtr,η(v) =

∫
Γc

σtrNη(vt) ds+

∫
S

σtrNη([v]t) ds

The penalised and regularised Tresca problem can be written as a minimisation problem:

u = argmin
v∈H1

Γ0
(Ω)d

1

2

∫
Ω

Ae(v) : e(v) dx−
∫

Ω

f · v dx−
∫

ΓN

g · v ds+ jN,ε(v) + jtr,η(v)

It is not the case for the other friction models described in the sequel.

• For the Coulomb model:∫
Ω

Ae(u) : e(v) dx+ j′co,ε,η(u, v) + j′N,ε(u, v) =

∫
Ω

f · u dx+

∫
ΓN

g · u ds ∀v ∈ H1
Γ0

(Ω)d. (21)

where

j′co,ε,η(u, v) =

∫
Γc

µ

ε
φη(u · n)N ′η(ut) · vt ds+

∫
S

µ

ε
φη([u] · n−)N ′η([u]t) · [v]t ds

and N ′η is the derivative of Nη.

• For the Norton-Ho� model:∫
Ω

Ae(u) : e(v) dx+ jnh,ε,η(u, v) + j′N,ε(u, v) =

∫
Ω

f · v dx+

∫
ΓN

g · v ds ∀v ∈ H1
Γ0

(Ω)d. (22)

where

jnh,ε,η(u, v) =

∫
Γc

µ

ε
φη(u · n)Nη(ut)

ρ−1ut · vt ds+

∫
S

µ

ε
φη([u] · n−)Nη([u]t)

ρ−1[u]t · [v]t ds

• For the normal compliance model:∫
Ω

Ae(u) : e(v) dx+ jN,r,Nc(u, v) + j′T,η,Nc(u, v) =

∫
Ω

f · v dx+

∫
ΓN

g · v ds ∀v ∈ H1
Γ0

(Ω)d (23)

with

jN,nc,r(u, v) =

∫
Γc

CNφη(u · n)mN v · nds+

∫
S

CNφη([u] · n−)mN [v] · nds,

j′T,nc,η(u, v) =

∫
Γc

CTφη(u · n)mTN ′η(ut) · vt ds+

∫
S

CTφη([u] · n−)mTN ′η([u]t) · [v]t ds.

For this last model, both the normal and tangential terms were regularised but no penalisation is
needed as the original equation is already posed in the whole space H1

Γ0
(Ω)d.

We �nally conclude that all regularised and penalised formulations (19), (20), (21), (22) and (23) can
be written in full generality as nonlinear variational formulation: ind u ∈ H1

Γ0
(Ω)d such that,∫

Ω

Ae(u) : e(u) dx+

∫
S∪Γc

j(u, v, n) ds =

∫
Ω

f · v dx+

∫
ΓN

g · v ds ∀v ∈ H1
Γ0

(Ω)d, (24)

where the integrand j(u, v, n) is nonlinear with respect to the solution u but linear with respect to the
test function v.
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3.3 Di�erentiability of the penalised and regularised terms

The fact that φη, de�ned by (18), is smooth does not imply it is Fréchet di�erentiable from L2(Γc)
to L2(Γc), see section 4.3 in [59]. It only implies the Gâteaux di�erentiability at each point x ∈ Γc.
Nevertheless we can state the following lemma.

Lemma 3.3.1. φη is di�erentiable from H
1
2 (Γc) ∩H

1
2 (S) into L2(Γc) ∩ L2(S).

Proof. This is an application of theorem 7 in [18]. We introduce the Nemytskij operator (associated with
φη) Φη : u → φη(u) where u ∈ Lp(Γc) ∩ Lp(S) with p �xed later on. This theorem ensures its Fréchet
di�erentiability from Lp(Γc) ∩ Lp(S) to L2(Γc) ∩ L2(S) if the following conditions are ful�lled:

• φη is a C1 function from R to R.

• The Nemytskij operator associated with φ′η is continuous from Lp(Γc) ∩ Lp(S) to Lr(Γc) ∩ Lr(S)
with r = 2p/(p− 2).

As u ∈ H 1
2 (Γc)∩H

1
2 (S), by Sobolev embeddings we deduce u ∈ Lp(Γc)∩Lp(S) with p = 2(d−1)/(d−3/2).

This means that r = 4(d−1). It is clear that that y → φ′η(y) exists and is continuous (φ′η is also globally
Lipschitz continuous). Due to the choice of the penalisation, φ′η is bounded (depending on the parameter
of penalisation). Remark 4 in [18] then implies the continuity from Lp(Γc) ∩ Lp(S) to Lr(Γc) ∩ Lr(S)
with r = 2p/(p− 2).

Remark 3.3.1. As u ∈ H1
Γ0

(Ω)d, it follows that u · n ∈ H 1
2 (Γc) ∩H

1
2 (S) for Ω smooth enough. Then

u→ φη(u · n) is Fréchet di�erentiable from H1
Γ0

(Ω)d into L2(Γc) ∩ L2(S).

Remark 3.3.2. The regularisation term Nη is twice di�erentiable from Rd to Rd. Moreover its derivative
is bounded, so, thanks to theorem 8 in [18], it is Gâteaux di�erentiable from L2(Γc)∩L2(S) into L2(Γc)∩
L2(S). As its second derivative is bounded by a linear function, it is also twice Fréchet di�erentiable from

H
1
2 (Γc) ∩H

1
2 (S) into L2(Γc) ∩ L2(S), thanks to theorem 7 in [18] applied two times. The proof is the

same as in Lemma 3.3.1.

3.4 Existence and uniqueness of the penalised/regularised formulation

For (19) and (20), existence and uniqueness results are easily proved by taking advantage of their re-
spective minimisation problem formulation.

Theorem 3.4.1. The problems (20) and (19) admit a unique solution u ∈ H1
Γ0

(Ω)d, when f ∈ L2(Ω)d,

g ∈ L2(ΓN )d, φη is positive increasing and Nη is convex positive.

Proof. We introduce the functional:

E(u) =
1

2
a(u, u) +

1

ε

(∫
Γc

∫ u.n

0

φη(t) dt ds+

∫
S

∫ [u].n

0

φη(t) dt ds

)
+ jη(u)−

∫
ΓN

g · u ds−
∫

Ω

f · u dx

with a(u, u) =

∫
Ω

Ae(u) : e(u) dx and jη(u) = 0 for (19) and jη(u) =

∫
Γc

σtrNη(ut) ds+

∫
S

σtrNη([u]t) ds

for (20). Thanks to Korn inequality, u → a(u, u) is strictly convex. We now prove that ψ : u →∫
Γc

1

ε

∫ u.n

0

φη(t) dt ds is convex. We compute the Hessian of ψ:

D2ψ(u)(h, h′) =

∫
Γc

1

ε
φ′η(u · n)h′ · n h · nds

which is positive as φ′η is positive. Moreover, since Nη is convex, jη is convex, lower semi-continuous. So

u → E(u) is strictly convex, lower semi-continuous on H1
Γ0

(Ω)d. It is also bounded below as φη is non
negative and an approximation of x → xH(x) (for instance φη([u] · n) vanishes when [u] · n is smaller
than −η). It ensures the existence of a unique minimiser of E on H1

Γ0
(Ω)d. To conclude we just need

to remark that the optimality criterion is exactly (19) or (20), therefore both admit one and only one
solution.
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We now turn to the other models. For (21) the existence is proved in chapter 3 of [15]. A proof
similar to that for (21) can be done for (22). For these two cases, the uniqueness is not ensured. For the
normal compliance model we refer to [19] for existence and uniqueness.

4 Optimisation problem

Our goal is to minimise a certain function J(Ω) depending on u, the displacement which solves one of
the contact formulations given in section 2 under constraints also depending on u noted C(Ω):

min J(Ω)

Ω ∈ Uad
u solution of (24)

C(Ω) ≤ 0

(25)

where Uad is the set of admissible shapes. These shapes should be included into a �xed domain D,
Ω ⊂ D, and the Dirichlet boundary Γ0 ⊂ ∂D is not allowed to change. In the following we denote Γm
the part of the boundary of Ω which is allowed to change.

4.1 Shape derivative

To minimise (25) we apply a gradient method, therefore we need to compute derivatives with respect to
Ω. We choose to use the notion introduced by Hadamard and then extensively studied, see for instance
[26], [43], [49], [53] or [54]. Starting from a smooth domain Ω0, the variation of the domain takes the
form:

Ωθ = (Id+ θ)(Ω0)

with θ ∈W 1,∞(Rd,Rd) and Id the identity map. When θ is su�ciently small, Id+θ is a di�eomorphism
in Rd, see [1]. Once the variation of the shape is de�ned, it is possible to de�ne the notion of Gâteaux
derivative for a function J depending on the shape.

De�nition 4.1. The shape derivative J ′(Ω)(θ) of J(Ω) at Ω in the direction θ is de�ned as the derivative
at 0 of the application t→ J((Id+ tθ)(Ω)) which means:

J((Id+ tθ)(Ω)) = J(Ω) + tJ ′(Ω)(θ) + o(t)

where J ′(Ω) is a continuous linear form on W 1,∞(Rd,Rd).

We recall the following classical theorem [1] which will be used in the next section.

Theorem 4.1.1. Let Ω ∈ Uad be a smooth open domain, φ a smooth function de�ned in Rd,

Jv(Ω) =

∫
Ω

φ(x) dx and Js(Ω) =

∫
∂Ω

φ(x) ds.

These two functions are shape di�erentiable at Ω in the direction θ ∈W 1,∞(R,R) and

J ′v(Ω)(θ) =

∫
∂Ω

θ · nφds and J ′s(Ω)(θ) =

∫
∂Ω

θ · n
(
∂φ

∂n
+Hφ

)
ds

where H = div(n) is the mean curvature of ∂Ω.

We also give the shape derivative of the normal (see proposition 5.4.14 in [26]).

Proposition 4.1.1. Let Ω be a C2 domain and n ∈ C1(Rd,Rd) an extension of the unit normal to ∂Ω.
Denote Ωtθ = Φ(t)Ω0 with Φ(t) = (Id+ tθ). Then:

t→ nt =
w(t)

‖w(t)‖
with w(t) = (∇TΦ(t)−1n) ◦ Φ(t)−1

is an extension to the normal of ∂Ωtθ, is di�erentiable in 0 and its derivative is:

n′(θ) = −∇t(θ · n) on ∂Ω

where ∇tζ = ∇ζ − (∇ζ · n)n is the tangential gradient of a function ζ.
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4.1.1 General case

We proceed to the computation of the gradient of a general criterion:

J(Ω) =

∫
Ω

m(u) dx+

∫
Γm

l(u) ds (26)

where Γm will be the part of ∂Ω allowed to move during the optimisation process, m and l are smooth
functions verifying

|m(u)| ≤ C
(

1 + ‖u‖2
)

|m′(u) · h| ≤ C ′ ‖u‖ ‖h‖

and
|l(u)| ≤ C

(
1 + ‖u‖2

)
|l′(u) · h| ≤ C ′ ‖u‖ ‖h‖

for every h ∈ L2(Ω)d and u ∈ L2(Ω)d, and with C > 0 and C ′ > 0.
In the next theorem, we shall consider the solution u of the nonlinear variational equation (24) which

involves the function j(u, p, n) (the precise form of which di�ers according to the considered penalised
and regularised contact model). In order to distinguish the normal derivative (∂j)/(∂n) from the partial
derivative of j(u, p, n) with respect to its third argument, we now consider j as a function of three
arguments (u, p, λ) ∈ Rd × Rd × Rd → R and the derivative with respect to n of j(u, p, n) is denoted:

∂j

∂λ
(u, p, n).

Theorem 4.1.2. Assume that Γm∩Γ0 = ∅, that f ∈ H1(Rd)d and g ∈ H2(Rd)d, and that u ∈ H1
Γ0

(Ω)d

is solution of (24) (supposing it exists and is unique). If we denote J ′(Ω)(θ) the Gâteaux derivative of
J(Ω) with respect to Ω in the direction θ ∈W 1,∞(Rd,Rd), we have:

J ′(Ω)(θ) =

∫
Γm

(θ · n)(m(u) +Ae(u) : e(p)− f · p) ds

+

∫
Γm

(θ · n)

(
Hl(u) +

∂l(u)

∂n

)
−
∫

ΓN∩Γm

(θ · n)

(
Hp · g +

∂(p · g)

∂n

)
ds

+

∫
S∪Γc

(θ · n)

(
Hj(u, p, n) +

∂j(u, p, n)

∂n

)
ds

+

∫
S∪Γc

∂j

∂λ
(u, p, n) · n′(θ) ds

(27)

where n′(θ) is the shape derivative of the normal (on S it is the shape derivative of n−) and p is de�ned
as the solution of the following adjoint problem:∫

Ω

Ae(p) : e(ψ) dx+

∫
Ω

m′(u) · ψ dx+

∫
Γm

l′(u) · ψ ds

+

∫
S∪Γc

∂j

∂u
(u, p, n) · ψ ds = 0 ∀ψ ∈ H1

Γ0
(Ω)d.

(28)

Proof. The proof relies on Céa's method [9] or [1]. A rigorous proof would require to prove that u
is Gâteaux di�erentiable with respect to the shape. This could be done by making in the nonlinear
regularised formulation (24) a change of variable to transport integrals on the reference domain Ω0 such
that Ω = (Id + tθ)(Ω0). This leads to an equation of the type: F (u, t) = 0 with F di�erentiable with
respect to t, thanks to Remark 3.3.2 and Lemma 3.3.1. Applying the implicit function theorem at t = 0
yields the desired result. Assuming this point proved, we give a (formal) proof of the theorem by means
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of the Lagrangian method, noting u′(θ) the shape derivative of u. Let us introduce the Lagrangian L
with v and q in H1

Γ0
(Rd)d:

L(v, q, n(Ω),Ω) =

∫
Ω

m(v) dx+

∫
Γm

l(v) ds+

∫
Ω

Ae(v) : e(q) dx

+

∫
S∪Γc

j(v, q, n) ds−
∫

Ω

f · q dx−
∫

ΓN

g · q ds.

Recall that j(v, q, n), de�ned in (24), is a linear function of q. Thus, the Lagrangian L is linear with
respect to the adjoint variable q too, as it should be. Since Γ0 is �xed, there is no need of a Lagrange
multiplier for the Dirichlet condition in the Lagrangian: Γ0 ⊂ ∂Ω for every Ω ∈ Uad. Moreover the
functions q and v are in spaces independent of Ω ∈ Uad. We note (u, p) a stationarity point of L. The
state equation (24) can be retrieved by di�erentiating L with respect to q in the direction ψ ∈ H1

Γ0
(Rd)d:

〈∂L
∂q

(u, q, n,Ω), ψ〉 = 0 ∀ψ ∈ H1
Γ0

(Rd)d .

Similarly, the adjoint equation (28), solved by p, is found by di�erentiating L with respect to v in the
direction ψ ∈ H1

Γ0
(Rd)d:

〈∂L
∂v

(u, p, n,Ω), ψ〉 =

∫
Ω

Ae(v) : e(ψ) dx+

∫
Ω

m′(u) · ψ dx+

∫
Γm

l′(u) · ψ ds +

∫
S∪Γc

∂j

∂u
(u, p, n) · ψ ds

and the adjoint variational formulation is deduced by making the above term zero.
To �nd the shape derivative of J(Ω), we remark that:

J(Ω) = L(u(Ω), q, n(Ω),Ω)

and di�erentiate L with respect to the shape in the direction θ which gives:

J ′(Ω, θ) = L′(Ω, uΩ, q, nΩ; θ)

= ∂ΩL(Ω, uΩ, q, nΩ; θ) + 〈∂L
∂v

(Ω, uΩ, q, nΩ), u′(θ)〉+ 〈∂L
∂λ

(Ω, uΩ, q, nΩ), n′(θ)〉.

But, as u′(θ) ∈ H1
Γ0

(Ω)d, taking q = p(Ω) leads to:

〈∂L
∂v

(Ω, uΩ, p(Ω), nΩ), u′(θ)〉 = 0.

Consequently:

J ′(Ω, θ) = L′(Ω, uΩ, pΩ, nΩ; θ) = ∂ΩL(Ω, uΩ, pΩ, nΩ; θ) + 〈∂L
∂λ

(Ω, uΩ, pΩ, nΩ), n′(θ)〉.

By using the formulae of Theorem 4.1.1, we recover (27).

Remark 4.1.1. The derivative found here is correct only if the solution u exists and is unique. Never-
theless, we will use Theorem 4.1.2 even for models where no uniqueness results are known.

4.2 Criteria

4.2.1 Compliance and volume

In some numerical examples we will use these two classical criteria which can be written under the form
of (26). For the compliance:

mComp(u) = f · u

lComp(u) = g · u

For the volume:
mvol(u) = 1

lvol(u) = 0
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4.2.2 Normal force

The normal force, which is always non-positive (see (6)), is the force which is applied on the structure
at the contact surface. It takes the following form: Ae(u)n · n on Γc and Ae(u|S−)n− · n− on S. In the
penalised and regularised formulations the normal force PN is now given by a di�erent formula:

PN =


− 1

ε
φη(u · n) on Γc

− 1

ε
φη([u] · n−) on S

(29)

where φη(x) was de�ned in (18) as a smooth approximation of max(0, x) and ε is the penalisation
parameter de�ned in (17).

The various criteria we consider, depending on the normal force, are of the form:

l(u) = li(PN (u), c)1S∪Γc

where 1S∪Γc is the characteristic function of S∪Γc and li will be de�ned according to which characteristic
of the normal force we want to control.

Uniformisation: If we want to make the force uniform on the contact zone around a constant c, we
will use the following function:

l1(PN , c) = (PN − c)2 (30)

with c < 0.

Minimising the maximum of the normal force: We want PN to be under a certain threshold
c < 0. The �rst natural criterion which arises is of the type:

l2(PN , c) = max(PN − c, 0)2.

However, this could lead to a null gradient during the optimisation process due, for example, to a null
adjoint p when there is no point in contact. This could be a big hurdle when the initial shape in the
optimisation process is such that there is no contact. Indeed the gradient does not indicate that contact
is possible and how to reach a shape where there is an e�ective contact. So we change the de�nition of
PN by introducing the following function:

φthη (x) =

{
φη(x)− φη(0) if x ≥ 0

φ′η(0)x otherwise.

We plot the corresponding functions φη and φthη on Figure 2. Then we de�ne:

P thN =


− 1

ε
φthη (u · n) on Γc

− 1

ε
φthη ([u] · n−) on S

Now when u · n = 0, the normal force is set to 0 and when u · n < 0, the force is nonnegative and
decreases linearly, giving a sense to an opposite normal force when there is no contact. Making the most
of this new normal force formulation, we de�ne the following criterion:

l3(P thN , c) =


1− P thN

c
if P thN ≤ 0

e−
Pth
N
c if P thN > 0.

(31)

The bigger
P thN
c

, the smaller is l3(P thN , c). Other formulas for l3 are also possible and give results similar

to those obtained with (31).
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Figure 2: The functions φη (continuous curve) and φthη (dashed curve).

5 Numerical implementation

5.1 The level set method

As we choose to de�ne the shape thanks to a level set, we recall the framework of this method introduced
by Osher and Sethian in [45], [44] and [52]. Let D ⊂ Rd be a bounded domain in which all admissible
shapes Ω are included. The boundary of Ω is located thanks to the level set function ψ, de�ned in D by

ψ(x) = 0 if x ∈ ∂Ω ∩D
ψ(x) < 0 if x ∈ Ω

ψ(x) > 0 otherwise

The normal n and the mean curvature H of the shape Ω are respectively given by
∇ψ
‖ψ‖

and div

(
∇ψ
‖ψ‖

)
.

These quantities are computed throughout the whole domain D which naturally de�nes extensions of
their �rst de�nition on ∂Ω.

5.2 Optimisation algorithm

The optimisation process produces a sequence (Ωi)i∈N of shapes. We start with an initial shape Ω0 and
compute iteratively the sequence. To make the level set evolve from Ωi to Ωi+1, the Hamilton Jacobi
transport equation [45] is solved for t ∈ [0, tf ]:

∂ψ

∂t
+ V ‖∇ψ‖ = 0 in D (32)

where V (x) is the normal velocity of the shape's boundary. The equation (32) is obtained by di�erentiat-
ing: ψ(t, x(t)) = Cst and replacing ẋ(t) by V n. Thanks to ψ(x, t) we can de�ne Ωi(t) for every t ∈ [0, tf ]
and choose Ωi+1 = Ωi(tf ) for an appropriate tf which corresponds to the descent step. The speed V ,
de�ned everywhere in D to be able to solve (32), is chosen, through a SLP type algorithm, thanks to
the criteria's gradients calculated on Ωi using theorem 4.1.2 and plays the role of a descent direction.

The Hamilton-Jacobi equation (32) is solved by an explicit second order upwind scheme on a cartesian
grid meshing D with Neumann boundary conditions. Since the scheme is explicit in time, the time
stepping has to satisfy a CFL condition and, in order to regularise the level set which can become
too �at or too steep during the successive optimisation iterations, periodic reinitialisations, thanks to
an Hamilton Jacobi equation admitting the signed distance to the shape as stationnary solution, are
performed. We refer to [2] for numerical implementation details.
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5.3 Finite element method

Using the same cartesian grid, we choose to solve the contact and adjoint equations on the whole domain
D using the �ersatz material� approach, thanks to the quadrangular �nite elements. It is tantamount to
�ll D \ Ω with a weak material mimicking void but preventing the sti�ness matrix from being singular.
This technique is commonly used in topology optimisation with level sets [2], [60].

Concerning the nonlinear penalised equations, they are usually solved by a damped Newton method,
see [11] chapter 6, or a �xed point method. The Newton method has the advantage to be faster but it
needs a good choice for the damping. On the other hand, the �xed point method despite its relative
slowness is easier to implement. The robustness of the algorithm which solves the contact equations is
crucial in the optimisation process. First because the optimisation can produce structures for which the
�nite element matrices are nearly singular. Secondly because we are solving problems whose solution
is not always unique. This leads to di�culties which can be seen in examples 11 and 12 below. The
contact problems are solved (thanks to the �nite element method) by discretising the contact region
and applying node to node contact conditions for the auto-contact part. We choose to use a �xed point
method for the computation of the nonlinear problems solutions considered, which converges in, at most,
300 iterations with an average of 100.

6 Numerical examples

This section is divided into two subsections corresponding respectively to 2D and 3D examples. In all
the examples of this section, the contact zone is �xed (non-optimisable) but the structure can choose to
use it or not. In each subsection, di�erent models are used depending on the mechanical case. In 2D,
except for examples 5, 11 and 12, the domain D is a square of size 2 × 2 discretised with 6400 square
elements. For the other examples, D is a square of size 2 × 2 discretised with 2500 square elements.
For the 3D examples, only the sliding contact problem and Tresca friction contact problem are tested.
Except in example 14 where D is a cylinder of radius 1 and of height equal to 1, the domain D is a
rectangular parallelepiped of dimension 1 × 2 × 1 meshed with tetrahedra. In every 2D example, the
Young modulus is set to E = 1 and Poisson ratio to ν = 0.3, there is no volume force and only unit
surface forces are applied (point loads for all cases, except for example 3 where it is a constant line
load). In 3D examples, we take E = 210000 and ν = 0.3. In 2D and 3D, the penalisation coe�cient
ε is set to 10−7. During the optimisation process, some shapes are rejected either because they do not
full�ll the constraints or because they do not decrease the objective function. Due to this fact, for each
example, both the number of iterations (shapes which were accepted) and the number of evaluations (all
the shapes which were evaluated) are given.

6.1 Examples in 2D

6.1.1 Sliding contact

We present �ve examples (labeled from 1 to 5) where the volume is minimised under a compliance
constraint (the value of this constraint is given in Table 1). The potential contact zone is drawn in green,
the arrows represent the forces and black zones the part of the boundary where Dirichlet conditions are
prescribed, in all the directions (otherwise mentioned). The results are collected in Table 1.

• Example 1, Dirichlet conditions are enforced on the whole left side and a downward unit force is
applied at the point (2, 1.5). Results are shown in Figure 3.

• Example 2, Dirichlet conditions are enforced on the whole left side and a unit downward force is
applied at the point (2, 1.5). Example 1-2bis is the same example as 1 and 2 without the contact
zone. Results are presented in Figures 4 and 5.

• Example 3, Dirichlet conditions are enforced on the whole left side and a rightward unit constant
force is applied on the segment from (2, 0.8) to (2, 1.2). Example 3bis is similar without the contact
area. Results are given in Figures 6 and 7.
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(a) Load case for Example 1 (b) Final design for Example 1

Figure 3: Example 1

(a) Load case for Example 2 (b) Final design for Example 2

Figure 4: Example 2

Figure 5: Final design for Example 1-2bis

(a) Load case for Example 3 (b) Final design for Example
3

Figure 6: Example 3

• Example 4, Dirichlet conditions are enforced on the whole left side and a unit upward force is
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Figure 7: Final design for Example 3bis

applied at (2, 1.5). Example 4bis is similar without the contact boundary conditions. Results can
be seen in Figures 8 and 9.

(a) Load case for Example 4 (b) Final design for Example 4

Figure 8: Example 4

Figure 9: Final design for Example 4bis

• Example 5, Dirichlet conditions are enforced on the top boundary of the L-shape and a unit
downward force is applied at (2, 1.6). Example 5bis corresponds to the same problem without the
contact part. Results are shown in Figures 10 and 11.

In examples 1, 2, and 3, the optimisation algorithm tends to avoid the contact zone which is not the
case when this zone is removed. Indeed, due to the direction of the forces, this zone opens and no point
is in contact. Including it in the structure would increase the compliance, which is not possible by virtue
of the constraint on the compliance. In example 4, the points of the contact zone are in contact and
including them in the structure does not imply a too big increase of the compliance, despite the sliding
occuring. In example 5, the contribution of the contact boundary conditions is underlined by the fact
that, for the same optimisation problem without contact (example 5bis), even the full-domain solution
is not admissible (its compliance is about 118). We need to weaken the compliance constraint to have a
feasible starting solution for the optimisation algorithm in the case of example 5bis.
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(a) Load case for Example 5 (b) Final design for Example 5

Figure 10: Example 5

Figure 11: Final design for Example 5bis

In the next four examples (labeled from 6 to 9), the normal force criteria (30) and (31) are used to
obtain di�erent kinds of clamps or gripping mechanisms. Apart from example 6, in which the normal
force criterion is minimised under volume and compliance constraints, we minimise the volume under
compliance and normal force constraints (the precise values of these constraints are given in Table 2 and
3). The results are presented in Tables 2 and 3.

• Example 6, here the Dirichlet conditions at (1.9, 0) and (1.9, 2) are put only for the x (horizontal)
part of the displacement and two unit forces are applied at (1.8, 2) and (1.8, 0). The normal force
criterion used is l3 with c = −1.5. See Figure 12 for the results.

The shape of a clamp is found, which manages to bring the forces from the right side to the left
side, keeping their direction. We remark that we do not manage to reach the value of the threshold
c. In the next example, we will use the same criterion as a constraint and see that the results are
far better on this particular point.

• Example 7, two unit forces are applied at (1.8, 2) and (1.8, 0) and the structure is �xed from (2, 0.9)

Cases Volume Compliance Compliance Constraint Iterations Evaluations
1 1.6403 19.9999 20 66 92
2 1.45211 19.9998 20 67 95

1-2bis 1.41650 19.9997 20 22 38
3 0.35078 0.499995 0.5 82 110

3bis 0.248584 0.499993 0.5 31 47
4 1.69044 29.9999 30 64 95

4bis 0.928932 29.9841 30 28 46
5 1.15278 94.9829 95 18 36

5bis 1.64209 139.906 140 18 35

Table 1: Results for sliding contact examples and examples 1-2bis, 3bis, 4bis and 5bis.
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(a) Load case for Example 6 (b) Final design for Example 6 (c) Final normal force (in blue) for Example 6

Figure 12: Example 6

to (2, 1.1). The normal force criterion used is l3 with c = −1.1. We refer to Figure 13 for the results.

(a) Load case for Example 7 (b) Final design for Example
7

(c) Final normal force (in blue) and the threshold c (in
red) for Example 6bis

Figure 13: Example 7

The Dirichlet part on the right side is used at the beginning of the optimisation process and is
�nally found to be useless.

• Example 8, two unit forces are applied at (1.5, 2) and (1.5, 0). Dirichlet conditions are enforced on
the whole left side. The normal force criterion used is l3 with c = −0.9. Figure 14 presents the
results.

(a) Load case for Ex-
ample 8

(b) Final design for Example 8 (c) Final normal force (in blue) and the threshold c (in
red) for Example 8

Figure 14: Example 8

On the contrary, this example shows a mechanism which transforms the vertical forces into hori-
zontal ones.
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Cases Norm. force Compl. Compl. Constr. Vol. Vol. constr. Iterations Evaluations
6 3.03302 8.32621 8.4 2.27271 2.7 16 23

Table 2: Results for the Example 6.

Cases Vol. Compl. Compl. Constr. Norm. force Norm. force Constr. Iterations Evaluations
7 1.34868 10.9603 11 1.99976 2 251 275
8 0.971308 5.99801 6 1.49998 1.5 178 206
9 1.62217 14.9941 15 0.148007 0.15 24 40

Table 3: Results for Examples 7, 8 and 9

• Example 9, the downside is �xed and two unit forces are applied at (0.2, 0) and (1.8, 0). The normal
force criterion used is l1 with c = −2. Figure 15 gives the results.

(a) Load case for Ex-
ample 9

(b) Final design for Example
9

(c) Final normal force (in blue) and the threshold c (in
red) for Example 8

Figure 15: Example 9

Finally Example 9 produces pilars that are not perpendicular to the Dirichlet zone to put weight
on the contact zone.

For theses examples (6 to 9), it has to be noted that the computation of the normal force, thanks to
the penalisation formula (29), is not very accurate since the displacement u is multiplied by the large
penalisation factor 1/ε. Therefore, if one requires a precision of the order of unity for the normal force,
the displacement u should be solved with a precision smaller than ε, which is not the case here. Moreover,
it appears that the criteria used are quite sensitive to small changes in the shape. This forbids the use
of too tight normal force constraints, which explains that pointwise constraints are most of the time not
exactly full�lled. These examples are however interesting as they give a good hint of the possible optimal
shape for pointwise constraints.

6.1.2 Contact with friction

We give four examples (labeled from 10 to 13) of contact optimisation with friction. For each of these
examples, the results are displayed for all contact models: sliding (no friction), Tresca, Norton Ho�,
normal compliance and Coulomb. The friction coe�cient is σtr for the Tresca model and µ for all other
models. For the normal compliance model, we have CN = 1, mN = 1 and mT = 1. For the Norton Ho�
model, we recall that ρ denotes the exponent parameter de�ned in (13). We minimise the volume under
a compliance constraint.

• Example 10, a unit force is applied at (2, 1), the left side of the structure is �xed. The friction
coe�cient is 0.5 and for the Norton Ho� model ρ = 0.1. Example 10bis corresponds to the same
problem without the two contact areas. Results can be found in Table 4 and Figures 16 and 17.

In all the cases, the algorithm tends to avoid the upper contact zone which opens and keep the
lower one. However, in sliding contact, the lower leg has to be hooked up to a part of the structure
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(a) Load case for Example 10 (b) Final design for frictionless
contact

(c) Final design for the Tresca
model

(d) Final design for the
Norton-Ho� model

(e) Final design for the normal
compliance model

(f) Final design for the
Coulomb model

Figure 16: Example 10

Figure 17: Final design for Example 10bis (without contact).

which is not in the contact zone. It is not the case in the friction cases as the friction keeps the lower
leg connected to the structure (see the zone circled in red on the �nal design for frictionless contact
and the equivalent zone on the models with friction). The Example 9bis is meant to underline the
impact of the contact on the optimised structure.
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Cases Volume Compliance Compliance Constraint Iterations Evaluations
Sliding contact 1.87253 19.9998 20 47 73

Tresca 1.76836 19.9999 20 47 73
Norton Ho� 1.76906 19.9999 20 41 67

Normal compliance 1.97197 19.9999 20 49 65
Coulomb 1.76948 19.9998 20 45 70
10bis 1.34787 19.9978 20 33 50

Table 4: Comparison results of friction models for Examples 10 and 10bis.

• Example 11, a unit force is applied at (1, 2). The friction coe�cient is 1.3 and for the Norton Ho�
model ρ = 0.5. The results are delivered in Table 5 and in Figure 18.

(a) Load case for Example
11

(b) Final design for frictionless
contact

(c) Final design for the Tresca
model

(d) Final design for the
Norton-Ho� model

(e) Final design for the normal
compliance model

(f) Final design for the
Coulomb model

Figure 18: Example 11

In sliding contact the legs of the bridge have to be vertical to the contact zone to prevent sliding.
Whereas in other cases, the friction stabilises the structure and enables the legs to incline.

• Example 12, Dirichlet conditions are enforced on the left up part of the L-shape and a downward
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Cases Volume Compliance Compliance Constraint Iterations Evaluations
Sliding contact 0.422235 21.9991 22 44 71

Tresca 0.302352 21.9957 22 45 71
Norton Ho� 0.309498 21.9995 22 44 65

Normal compliance 0.336178 21.9996 22 37 63
Coulomb 0.286532 21.9995 22 35 61

Table 5: Comparison results of friction models for Example 11.

unit force is applied at (2, 1.6). The friction coe�cient is 1.2 and for the Norton Ho� model ρ = 0.6.
Results are given in Table 6 and Figure 19.

(a) Load case for Example 12 (b) Final design for friction-
less contact

(c) Final design for the Tresca
model

(d) Final design for the
Norton-Ho� model

(e) Final design for the normal
compliance model

(f) Final design for the
Coulomb model

Figure 19: Example 12

The result in sliding contact can be compared with example 5. Here the algorithm makes use of the
second contact zone and, for the Norton-Ho� model, manages to use it to stabilise the structure
without being connected to the Dirichlet boundary. In the case of Coulomb model, there is trouble
in solving the contact problem (for several shapes, the nonlinear algorithm does not converge and

23



Cases Volume Compliance Compliance Constraint Iterations Evaluations
Sliding contact 0.593907 94.9994 95 22 40

Tresca 0.59725 94.9014 95 18 34
Norton Ho� 0.550918 94.5404 95 18 34

Normal compliance 0.917105 94.1346 95 13 30
Coulomb 0.907396 94.9978 95 48 67

Table 6: Comparison results of friction models for Example 12.

the displacement used for computing the shape gradients and the criteria are not accurate enough)
which leads to a bad optimised result in terms of volume compared to the other models.

• Example 13, Dirichlet conditions are enforced from (1.2, 0) to (2, 0) and a downward unit force is
applied at (2, 1.6). The friction coe�cient is 0.8 and, for the Norton Ho� model, ρ = 0.6. For
example 13bis, we only remove the contact zone. Results are shown in Table 7 and Figures 20 and
21.

(a) Load case for Example 13 (b) Final design for frictionless
contact

(c) Final design for the Tresca
model

(d) Final design for the
Norton-Ho� model

(e) Final design for the normal
compliance model

(f) Final design for the
Coulomb model

Figure 20: Example 13
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Figure 21: Final design for Example 13bis

Cases Volume Compliance Compliance Constraint Iterations Evaluations
Sliding contact 2.15435 149.999 150 16 32

Tresca 1.95836 149.989 150 14 29
Norton Ho� 1.87089 149.881 150 25 40

Normal compliance 1.94898 149.994 150 13 28
Coulomb 1.83706 149.997 150 20 39
13bis 2.39942 149.962 150 20 36

Table 7: Comparison results of friction models for Examples 13 and 13bis.

The contact area enables the structure to be only connected with the Dirichlet part by its left edge
and to use less material. The friction allows to slightly decrease the volume.

6.2 Examples in 3D

The following examples (labeled from 14 to 18) were computed thanks to the �nite element software
SYSTUS of ESI-Group [16]. The nonlinear problems are solved thanks to a Newton algorithm. In all
cases, the volume is minimised under a compliance constraint. The friction coe�cient is set to 0.01. In
examples 15 to 18 we impose a small non-optimisable zone, �lled with material, near the boundaries
where the Dirichlet condition and and the surface force are applied. In example 14 this is done only for
the force zone. To be sure that the models of sliding contact and Tresca were the same as in 2D, we
choose to use node to node elements (string elements) for which we implement the penalisations adapted
to the frictionless contact and the Tresca model.

• Example 14, for 97289 elements and 17290 nodes. A constant downward surface force equal to
10000 is applied on a square of side 0.2 in the middle of the right face. Dirichlet conditions are
enforced on the left face (see Figure 22). The results are gathered in Table 8 and in Figures 22, 23
and 24.

This example is the equivalent of 2D example 10, but in 3D. The same remark as in frictionless
contact applies: the lower leg needs to be hooked up to a part of the structure not containing the
contact. This is not the case when friction is possible.

• Example 15, for 156417 elements and 27312 nodes. See Table 9 and Figures 25, 26 and 27 for the
results.

Here there are three circular potential contact zones and the forces are applied on two small
cylinders in the middle. Two constant downward surface forces of magnitude 200000 are applied

Cases Volume Compliance Compliance Constraint Iterations Evaluations
Sliding contact 2.521889e-01 9.994017e+03 10000 15 23

Tresca 2.555368e-01 9.999298e+03 10000 17 25

Table 8: Comparison results of friction models for Example 14.

25



Figure 22: Load case for Example 14.

Cases Volume Compliance Compliance Constraint Iterations Evaluations
Sliding contact 2.078838e-01 9.987082e+03 10000 29 40

Tresca 1.920865e-01 9.987843e+03 10000 36 45

Table 9: Comparison results of friction models for Example 15.

on a disk of 0.1 radius at the center of each circular face. Dirichlet conditions are enforced on the
bottom face on a ring of thickness 0.1 surrounding the structure (see Figure 25). In both cases the
contact zones are enough to stabilise the structure and the Dirichlet zone is not used. Between
frictionless and friction contact, slight changes appear in the shape of the three feet of the structure.

• Example 16, for 89475 elements and 15895 nodes. Table 10 and Figures 28 and 29 show the results.

The cylinder in the center and the bottom left side are completely �xed. A constant downward
force of magnitude 50000 is applied on a rectangular part of the bottom face of dimension 0.1× 1
on the far right (see Figure 28). As the cylinder in the center is �xed, the algorithm uses it to
stabilise the structure. In the frictionless case it needs to turn around the cylinder as sliding is
possible. In the friction case this is not needed anymore, but we remark that a small part of
material remains under the cylinder, going to it from the base. This part is not in contact but the
tangential displacements are such that friction occurs (which is one of the problems of the Tresca
model making it non mechanically correct).

• Example 17, for 89475 elements and 15895 nodes. Table 11 and Figures 30, 31 and 32 gather the
results.

A constant downward force of magnitude 50000 is applied on the whole cylinder axis and on the left
and right bottom parts, a rectangular part of dimension 0.1× 1 is �xed. The cylinder is encircled
by material to be supported (see Figure 30). The di�erences between the sliding and the friction
case come from the fact that in the friction case the optimisation algorithm stopped prematurely
due to convergence problems in the contact solver.

Cases Volume Compliance Compliance Constraint Iterations Evaluations
Sliding contact 7.082515e-01 9.990895e+03 10000 14 23

Tresca 6.915364e-01 9.979266e+03 10000 14 22

Table 10: Comparison results of friction models for Example 16.

26



(a) Final design for frictionless contact

(b) Final design for the Tresca model

Figure 23: Example 14

• Example 18, for 90205 elements and 16010 nodes.Table 12 and Figures 33 and 34 present the
results.

The cylinder is �xed only in the y and x directions. A constant downward force of magnitude
20000 is applied on the whole cylinder axis and two constant downward forces of magnitude 50000
are applied on two rectangular parts of the downside face of dimension 0.1 × 1 on the far right
and the far left. Finally we �x two parts on the bottom. The structure only needs to support the
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Figure 24: Comparison between without (left) and with (right) friction. We remark the small amount
of matter needed only in the sliding case.

Figure 25: Load case for Example 15.

cylinder and the forces on the left and right side (see Figure 33 for details). To perform that, it
uses archways in order to lead to the middle of the structure forces on the sides, changing their
direction in the opposite one and, this way, using them to support the force of the cylinder. Due to
the Dirichlet conditions put on the cylinder, the fact that the results are the same with or without
friction is not a surprise.

7 Conclusion

Through all the numerical examples shown in this article, the regularised and penalised formulations
are proved to be good ways to cope with the non di�erentiability of problems having a unique solution.
Despite the possible non uniqueness of its solution, the Norton Ho� model behaves well in this framework.
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(a) Final design for frictionless contact

(b) Final design for the Tresca model

Figure 26: Example 15

On the contrary, the Coulomb model presents some di�culties due to a bad convergence in the contact
solver. It then appears that the crucial point is the robustness of the contact solver which has to converge
in every situation for the optimisation process to succeed. In 3D we used a Newton method to solve
the contact problem. It is a good practice (compared to a �xed point algorithm) since it furnishes the
tangent matrix M which is precisely the transpose of the sti�ness matrix for the adjoint problem. This
was of great help for our implementation in the ESI group software.

Concerning the criteria depending on the normal force, we have to be cautious with our numerical
results, as the approximations made (Finite element method with penalisation) may not allow a su�-
ciently correct accuracy on the computed force. However, these criteria can be used to create compliant
mechanisms such as in Examples 6, 6bis and 7 or in [39], or, as in Example 8, to get a shape which tends
to uniformise the normal force.

To go one step beyond our approach, we could eliminate the regularisation and work in the context
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Figure 27: Comparison between with (left) and without (right) friction. We remark that the shape of
the foot is larger when friction is present.

Figure 28: Load case for Example 16.

of non-smooth optimisation. In such a case, one has to use subgradients algorithms. Subgradients were
computed for the problems written as variational inequalities in [30] and [47]. It yields a better accuracy
on the normal force and gives good results for optimisation with Coulomb friction [6]. Note that [6], [30]
and [47], focus on the optimisation of the discrete problem. Finally contact time-dependent problems
could also be studied.
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Cases Volume Compliance Compliance Constraint Iterations Evaluations
Sliding contact 3.293794e-01 9.997417e+03 10000 78 87

Tresca 3.322390e-01 9.860692e+03 10000 22 33

Table 11: Comparison results of friction models for Example 17.
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(a) Final design for frictionless contact

(b) Final design for the Tresca model

Figure 29: Example 16

Cases Volume Compliance Compliance Constraint Iterations Evaluations
Sliding contact 2.349350e-01 1.981722e+04 20000 81 89

Tresca 2.299134e-01 1.986286e+04 10000 100 111

Table 12: Comparison results of friction models for Example 18.
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Figure 30: Load case for Example 17.
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(a) Final design for frictionless contact

(b) Final design for the Tresca model

Figure 31: Example 17
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Figure 32: Comparison between without (left) and with (right) friction from below for Example 17

Figure 33: Load case for Example 18.
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(a) Final design for frictionless contact

(b) Final design for the Tresca model

Figure 34: Example 18
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