
HAL Id: hal-01435264
https://hal.science/hal-01435264

Submitted on 13 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rings of h-deformed differential operators
B Herlemont, O Ogievetsky

To cite this version:
B Herlemont, O Ogievetsky. Rings of h-deformed differential operators. Theoretical and Mathematical
Physics, 2017, 192 (2), pp.1218-1229. �10.1134/S0040577917080104�. �hal-01435264�

https://hal.science/hal-01435264
https://hal.archives-ouvertes.fr
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∗Kazan Federal University, Kremlevskaya 17, Kazan 420008, Russia

In memory of Petr Kulish

Abstract

We describe the center of the ring Diffh(n) of h-deformed differential operators of type
A. We establish an isomorphism between certain localizations of Diffh(n) and the Weyl
algebra Wn extended by n indeterminates.

1 Introduction

The ring Diffh(n) of h-deformed differential operators of type A appears in the theory of
reduction algebras. A reduction algebra RAg provides a tool to study decompositions of repre-
sentations of an associative algebra A with respect to its subalgebra in the situation when this
subalgebra is the universal enveloping algebra of a reductive Lie algebra g [M, AST]. We refer
to [T, Zh] for the general theory and uses of reduction algebras.

Decompositions of tensor products of representations of a reductive Lie algebra g is a
particular case of a restriction problem, associated to the diagonal embedding of U(g) into
U(g)⊗U(g). The corresponding reduction algebra, denoted D(g), is called “diagonal reduction
algebra” [KO2]. A description of the diagonal reduction algebra D(gln) in terms of generators
and (ordering) defining relations was given in [KO2, KO3].

The diagonal reduction algebra D(gln) admits an analogue of the “oscillator realization”,
in the rings Diffh(n,N), N = 1, 2, 3, . . . , of h-deformed differential operators, see [KO5]. The
ring Diffh(n,N) can be obtained by the reduction of the ring of differential operators in nN
variables (that is, of the Weyl algebra WnN = W⊗N

n ) with respect to the natural action of gln.
Similarly to the ring of q-differential operators [WZ], the algebra Diffh(n,N) can be described
in the R-matrix formalism. The R-matrix, needed here, is a solution of the so-called dynamical
Yang–Baxter equation (we refer to [F, GV, ES] for different aspects of the dynamical Yang–
Baxter equation and its solutions).

The ring Diffh(n,N) is formed by N copies of the ring Diffh(n) = Diffh(n, 1). The aim of
the present article is to investigate the structure of the ring Diffh(n). Our first result is the
description of the center of Diffh(n): it is a ring of polynomials in n generators.

1On leave of absence from P. N. Lebedev Physical Institute, Leninsky Pr. 53, 117924 Moscow, Russia
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As follows from the results of [KO4], the ring Diffh(n) is a noetherian Ore domain. It
is therefore natural to investigate its field of fractions and test the validity of the Gelfand–
Kirillov-like conjecture [GK]. For the ring of q-differential operators, the isomorphism (up to
a certain localization and completion) with the Weyl algebra was given in [O]. The second
result of the present article consists in a construction of an isomorphism between certain local-
izations of Diffh(n) and the Weyl algebra Wn extended by n indeterminates. In particular, our
isomorphism implies the isomorphism of the corresponding fields of fractions.

According to the general theory of reduction algebras, the ring Diffh(n) admits the action
of Zhelobenko operators [Zh, KO1] by automorphisms. The Zhelobenko operators generate the
action of the braid group Bn. However the Weyl algebra Wn admits the action of the symmetric
group Sn by automorphisms. As a by-product of our construction we define the action of the
symmetric group by automorphisms on the ring Diffh(n). Moreover these formulas can be
generalized to produce the action of the symmetric group by automorphisms on the rings
Diffh(n,N) for any N , and on the diagonal reduction algebra D(gln). We conjecture that the
general reduction algebra RAg admits an action, by automorphisms, of the Weyl group of g.

Section 2 contains the definition of the ring of h-deformed differential operators and some
of their properties used in the sequel. In Section 3 we present a family of n quadratic central
elements. We then describe an n-parametric family of “highest weight” representations of
Diffh(n) and calculate values of the quadratic central elements in these representations. In
Section 4 we introduce the necessary localizations of Diffh(n) and of the Weyl algebra, check
the Ore conditions and establish the above mentioned isomorphism of the localized rings. In
Section 5 we prove the completeness of the family of central elements constructed in Section 3.
Then we describe the action of the symmetric group on Diffh(n,N) and D(gln) as well as the
action of the braid group, generated by Zhelobenko operators, on a localization of the Weyl
algebra. Also, we present a 2n-parametric family of representations of the algebra Diffh(n)
implied by our construction.

Notation

Throughout the paper, k denotes the ground ring of characteristic zero.

The symbol si stands for the transposition (i, i+ 1).

We denote by U(h) the free commutative k-algebra in generators h̃i, i = 1, . . . , n. Set
h̃ij = h̃i − h̃j ∈ h. We define Ū(h) to be the ring of fractions of U(h) with respect to the
multiplicative set of denominators, generated by the elements (hij + k)−1, k ∈ Z. Let

ψi :=
∏
k:k>i

h̃ik , ψ
′
i :=

∏
k:k<i

h̃ik and χi := ψiψ
′
i , i = 1, . . . , n . (1)

Let εj, j = 1, . . . , n, be the elementary translations of the generators of U(h), εj : h̃i 7→ h̃i + δji .
For an element p ∈ Ū(h) we denote εj(p) by p[εj].
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2 Definition and properties of rings of h-deformed dif-

ferential operators

Let R̂ = {R̂
kl

ij}ni,j,k,l=1 be a matrix of elements of Ū(h), with nonzero entries

R̂
ij

ij =
1

h̃ij
, i 6= j , and R̂

ij

ji =


h̃2
ij − 1

h̃2
ij

, i < j,

1 , i ≥ j .

(2)

The matrix R̂ is the standard solution of the dynamical Yang–Baxter equation∑
a,b,u

R̂
ij

abR̂
bk

ur[−εa]R̂
au

mn =
∑
a,b,u

R̂
jk

ab[−εi]R̂
ia

muR̂
ub

nr[−εm] (3)

of type A.

The ring Diffh(n) of h-deformed differential operators of type A is a Ū(h)-bimodule with
the generators xj and ∂̄j, j = 1, . . . , n. The ring Diffh(n) is free as a one-sided Ū(h)-module;
the left and right Ū(h)-module structures are related by

h̃ix
j = xj(h̃i + δji ) , h̃i∂̄j = ∂̄j(h̃i − δji ) . (4)

The defining relations for the generators xj and ∂̄j, j = 1, . . . , n, read (see [KO5])

xixj =
∑
k,l

R̂
ij

klx
kxl , ∂̄i∂̄j =

∑
k,l

R̂
lk

ji ∂̄k∂̄l , xi∂̄j =
∑
k,l

R̂
ki

lj [εk]∂̄kx
l − δij , (5)

or, in components,

xixj =
h̃ij + 1

h̃ij
xjxi , i < j , (6)

∂̄i∂̄j =
h̃ij − 1

h̃ij
∂̄j ∂̄i , i < j , (7)

xi∂̄j =


∂̄jx

i , i < j ,

h̃ij(h̃ij − 2)

(h̃ij − 1)2
∂̄jx

i , i > j ,
(8)

xi∂̄i =
∑
j

1

1− h̃ij
∂̄jx

j − 1 . (9)
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The ring Diffh(n) admits Zhelobenko automorphisms q̌i, i = 1, . . . , n− 1, given by (see [KO5])

q̌i(x
i) = −xi+1 h̃i,i+1

h̃i,i+1 − 1
, q̌i(x

i+1) = xi, q̌i(x
j) = xj, j 6= i, i+ 1 ,

q̌i(∂̄i) = − h̃i,i+1 − 1

h̃i,i+1

∂̄i+1, q̌i(∂̄i+1) = ∂̄i, q̌i(∂̄j) = ∂̄j, j 6= i, i+ 1 ,

q̌i(h̃j) = h̃si(j) .

(10)

The operators q̌i, i = 1, . . . , n− 1, generate the action of the braid group, see [Zh, KO1].

The ring Diffh(n) admits an involutive anti-automorphism ε, defined by

ε(h̃i) = h̃i, ε(∂̄i) = ϕix
i, ε(xi) = ∂̄iϕ

−1
i , where ϕi :=

ψi
ψi[−εi]

=
∏
k:k>i

h̃ik

h̃ik − 1
, i = 1, . . . , n, (11)

The proof reduces to the formula

ϕi[−εj]
ϕi

=
h̃2
ij − 1

h̃2
ij

for 1 ≤ i < j ≤ n .

The construction of central elements in the next Section uses the elements

Γi := ∂̄ix
i for i = 1, . . . , n . (12)

We collect some properties of these elements.

Lemma 1. We have

(i) Γix
j =

h̃ij + 1

h̃ij
xjΓi and Γi∂̄j =

h̃ij − 1

h̃ij
∂̄jΓi for i 6= j, i, j = 1, . . . , n.

(ii) q̌i(Γj) = Γsi(j) for i = 1, . . . , n− 1 and j = 1, . . . , n.

(iii) ΓiΓj = ΓjΓi for i, j = 1, . . . , n.

Proof. Formulas (i) and (ii) are obtained by a direct calculation; (iii) follows from (i). �

We will use the following technical Lemma.

Lemma 2. Let A be an associative algebra. Assume that elements h̆i, Z̆i, Z̆i ∈ A, i = 1, . . . , n,
satisfy

h̆ih̆j = h̆jh̆i , h̆iZ̆
j = Z̆j(h̆i + δji ) , h̆iZ̆j = Z̆j(h̆i − δji ) , i, j = 1, . . . , n .
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Let h̆ij := h̆i − h̆j and

ψ̆i :=
∏
k:k>i

h̆ik , ψ̆
′
i :=

∏
k:k<i

h̆ik , i = 1, . . . , n .

Assume that the elements h̆ij are invertible. Then

(i) the elements Z̆i satisfy

Z̆iZ̆j =
h̆ij + 1

h̆ij
Z̆jZ̆i for i < j , i, j = 1, . . . , n

if and only if any of the two families {Z̆◦i}ni=1 or {Z̆ ′◦i}ni=1 where

Z̆◦i := ψiZ̆
i , Z̆ ′◦i := Z̆iψ′i (13)

is commutative;

(ii) the elements Z̆i satisfy

Z̆iZ̆j =
h̆ij − 1

h̆ij
Z̆jZ̆i for i < j , i, j = 1, . . . , n

if and only if any of the two families {Z̆◦i }ni=1 or {Z̆ ′◦i }ni=1 where

Z̆◦i := ψiZ̆i , Z̆
′◦
i := Z̆iψ

′
i (14)

is commutative.

Proof. A direct calculation. �

3 Quadratic central elements

Let ek :=
∑

i1<···<ik h̃i1 . . . h̃ik , k = 0, . . . , n, be the elementary symmetric functions in the

variables h̃1, . . . , h̃n. Set

ck :=
∑
j

∂ek

∂h̃j
Γj − ek ,

where Γj, j = 1, . . . , n, are the elements defined in (12).

It follows from Lemma 1 that q̌j(ck) = ck for all j = 1, . . . , n− 1 and k = 1, . . . , n.

Proposition 3. The elements ck, k = 1, . . . , n, belong to the center of the ring Diffh(n).
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Proof. We shall use the generating functions

e(t) :=
n∑
k=0

ekt
k =

∏
i

(1 + h̃it)

and

c(t) :=
n∑
k=1

ckt
k = u(t)e(t) + 1 with u(t) := t

∑
i

1

1 + h̃it
Γi − 1 .

The expression u(t) is introduced for convenience; the denominator 1+ h̃it, which is not defined
in the ring Diffh(n), vanishes in the combination u(t)e(t).

We shall check that the polynomial c(t) is central. We have

xje(t) =
1 + (h̃j − 1)t

1 + h̃jt
e(t)xj . (15)

Next, it follows from Lemma 1 that

xju(t) =

(∑
k:k 6=j

t

1 + h̃kt

h̃kj

h̃kj + 1
Γk +

t

1 + (h̃j − 1)t

(∑
k

1

1− h̃jk
Γk − 1

)
− 1

)
xj .

The coefficient of Γk in this expression is equal to
1+h̃j

1+(h̃j−1)t
for both k 6= j and k = j. Therefore,

xju(t) =
1 + h̃jt

1 + (h̃j − 1)t
u(t)xj . (16)

Combining (15) and (16) we find that c(t) commutes with xj, j = 1, . . . , n. For ∂̄j one can
either make a parallel calculation or use the anti-automorphism (11). �

Lemma 4. (i) The matrix V , defined by V k
j :=

∂ej

∂h̃k
, is invertible. Its inverse is

(V −1)ji =
(−1)j−1h̃n−ji

χi
,

where the elements χi are defined in (1).

(ii) We have
χjΓj = h̃nj − h̃nj c(−h̃−1

j ) . (17)

Proof. (i) See, e.g. [OP], Proposition 4.

(ii) Rewrite the equality ck =
∑

j V
j
k Γj − ek in the form

Γj =
∑
k

(V −1)kj (ck + ek) =
1

χj

∑
k

(−1)k−1h̃n−kj (ck + ek) = −
h̃nj
χj

(c(−h̃−1
j ) + e(−h̃−1

j )− 1) .

Since e(−h̃−1
j ) = 0, we obtain (17). �
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Highest weight representations. The ring Diffh(n) admits an n-parametric family of
“highest weight” representations. To define them, let Dn be an Ū(h)-subring of Diffh(n) gen-

erated by {∂̄i}ni=1. Let ~λ := {λ1, . . . , λn} be a sequence of length n of complex numbers such
that λi−λj /∈ Z for all i, j = 1, . . . , n, i 6= j. Denote by M~λ the one-dimensional k-vector space

with the basis vector | 〉. Under the specified conditions on ~λ the formulas

h̃i : | 〉 7→ λi| 〉 , ∂̄i : | 〉 7→ 0 , i = 1, . . . , n ,

define the Dn-module structure on M~λ. We shall call the induced representation Ind
Diffh(n)
Dn

M~λ

the “highest weight representation” of highest weight ~λ.

Lemma 5. The central operator ck, k = 1, . . . , n, acts on the module Ind
Diffh(n)
Dn

M~λ by scalar
multiplication on −ek|h̃i 7→λi−1, the evaluation of the symmetric function −ek on the shifted
vector {λ1 − 1, . . . , λn − 1}.

Proof. It is sufficient to calculate the value of ck on the highest weight vector | 〉. In terms of
generating functions we have to check that

e(t)u(t) : | 〉 7→ −
∏
i

(1 + (λi − 1)t) | 〉 .

It follows from [KO5], section 3.3, that

Γj | 〉 =
χj[εj]

χj
| 〉 , j = 1, . . . , n .

Therefore we have to check that

e(t)

(
t
∑
i

1

1 + h̃it

χj[εj]

χj
− 1

)
: | 〉 7→ −

∏
i

(1 + (λi − 1)t) | 〉 . (18)

We use another formula from [KO5] (Note 3 after the proof of Proposition 4.3 in Section 4.2)

∏
l

h̃0 − h̃l − 1

h̃0 − h̃l
+
∑
j

1

h̃0 − h̃j
χj[−εj]
χj

= 1 ,

where h̃0 is an indeterminate. After the replacements h̃0 → t−1 and h̃j → −h̃j, j = 1, . . . , n,
this formula becomes

e(t)[−ε]
e(t)

+ t
∑
j

1

1 + h̃jt

χj[εj]

χj
= 1 ,

where ε = ε1 + · · ·+ εn, which implies (18). �
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4 Isomorphism between rings of fractions

It follows from the results of [KO4] that the ring Diffh(n) has no zero divisors. Let Sx be the
multiplicative set generated by xj, j = 1, . . . , n. The set Sx satisfies both left and right Ore
conditions (see, e.g., [A] for definitions): say, for the left Ore conditions we have to check only
that for any xk and a monomial m = ∂̄i1 . . . ∂̄iAx

j1 . . . xjB there exist s̃ ∈ Sx and m̃ ∈ Diffh(n)
such that s̃m = m̃xk. The structure of the commutation relations (6-9) shows that one can
choose s̃ = (xk)ν with sufficiently large ν. Denote by S−1

x Diffh(n) the localization of the ring
Diffh(n) with respect to the set Sx.

Let Wn be the Weyl algebra, the algebra with the generators Xj, Dj, j = 1, . . . , n, and the
defining relations

X iXj = XjX i , DiDj = DjDi , DiX
j = δji +XjDi , i, j = 1, . . . , n .

Let T be the multiplicative set generated by XjDj −XkDk + `, 1 ≤ j < k ≤ n, ` ∈ Z, and Xj,
j = 1, . . . , n. The set T satisfies left and right Ore conditions (see [KO4], Appendix). Denote
by T−1Wn the localization of Wn relative to the set T.

Let a1, . . . , an be a family of commuting variables. We shall use the following notation:

Hj := DjX
j , Hjk := Hj −Hk ,

Ψ′j :=
∏
k:k<j

Hjk , Ψj :=
∏
k:k>j

Hjk ,

C(t) :=
n∑
k=1

akt
k , Υi := Hn

i

(
1−C(−H−1

i )
)
.

The polynomial C has degree n so the element Υi is a polynomial in Hi, i = 1, . . . , n.

Theorem 6. The ring S−1
x Diffh(n) is isomorphic to the ring k[a1, . . . , an]⊗ T−1Wn.

Proof. The knowledge of the central elements (Proposition 3) allows to exhibit a generating set
of the ring S−1

x Diffh(n) in which the required isomorphism is quite transparent.

In the localized ring S−1
x Diffh(n) we can use the set of generators {h̃i, xi,Γi}ni=1 instead

of {h̃i, xi, ∂̄i}ni=1. By Lemma 4 (ii), {h̃i, xi, ci}ni=1 is also a generating set. Finally, BD :=
{h̃i, x◦i, ci}ni=1, where x′◦i := xiψ′i , i = 1, . . . , n, is a generating set of the localized ring
S−1
x Diffh(n) as well. It follows from Lemma 2 that the family {x′◦i}ni=1 is commutative. The

complete set of the defining relations for the generators from the set BD reads

h̃ih̃j = h̃jh̃i , h̃ix
′◦j = x′◦j(h̃i + δji ) , x

′◦ix′◦j = x′◦jx′◦i , i, j = 1, . . . , n ,

ci are central , i = 1, . . . , n .
(19)
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In the localized ring k[a1, . . . , an] ⊗ T−1Wn we can pass to the set of generators BW :=
{Hi, X

i, ai}ni=1 with the defining relations

HiHj = HjHi , HiX
j = Xj(Hi + δji ) , X

iXj = XjX i , i, j = 1, . . . , n ,

ai are central , i = 1, . . . , n .
(20)

The comparison of (19) and (20) shows that we have the isomorphism

µ : k[a1, . . . , an]⊗ T−1Wn → S−1
x Diffh(n)

given on our generating sets BD and BW by

µ : X i 7→ x′◦i , Hi 7→ h̃i , ai 7→ ci , i = 1, . . . , n . (21)

The proof is completed. �

We shall now rewrite the formulas for the isomorphism µ in terms of the original generators of
the rings S−1

x Diffh(n) and k[a1, . . . , an]⊗ T−1Wn.

Lemma 7. We have

µ : X i 7→ xiψ′i , Di 7→ (ψ′i)
−1h̃i(x

i)−1 , ai 7→ ci , i = 1, . . . , n . (22)

and

µ−1 : h̃i 7→ Hi , x
i 7→ X i 1

Ψ′i
, ∂̄i 7→

Υi

Ψi

(X i)−1 , i = 1, . . . , n . (23)

Proof. We shall comment only on the last formula in (23). Lemma 4 part (ii) implies that
µ−1(χiΓi) = Υi and the formula for µ−1(∂̄i) follows since ∂̄i = Γi(x

i)−1. �

5 Comments

We shall now establish several corollaries of our construction.

1. We can now give the description of the center of the ring Diffh(n).

Lemma 8. The center of the ring Diffh(n) is formed by polynomials in the elements {ci}ni=1.

Proof. This is a direct consequence of the defining relations (19) for the generating set BD.
Indeed, any central element ζ must have h-weight zero, so it belongs to a subring generated by
ci and h̃i, i = 1, . . . , n. Interpret ζ as a rational function in h̃i, i = 1, . . . , n. Since ζ commutes
with x′◦i, i = 1, . . . , n, this rational function is periodic, with period 1, with respect to any h̃i,
i = 1, . . . , n. Therefore ζ belongs to the subring generated by ci, i = 1, . . . , n, as stated.

Another proof consists in using the isomorphism µ and the triviality of the center of the
Weyl algebra. �
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2. The symmetric group Sn acts by automorphisms on the algebra Wn,

π(Xj) = Xπ(j) , π(Dj) = Dπ(j) for π ∈ Sn .

The isomorphism µ translates this action to the action of Sn on the ring S−1
x Diffh(n). It turns

out that the subring Diffh(n) is preserved by this action. We present the formulas for the action
of the generators si of Sn.

si(x
i) = −xi+1h̃i,i+1 , si(x

i+1) = xi
1

h̃i,i+1

, si(x
j) = xj for j 6= i, i+ 1 ,

si(∂̄i) = − 1

h̃i,i+1

∂̄i+1 , si(∂̄i+1) = h̃i,i+1∂̄i , si(∂̄j) = ∂̄j for j 6= i, i+ 1 ,

si(h̃j) = h̃si(j) .

(24)

3a. For the R-matrix description of the diagonal reduction algebra D(gln) in [KO5] we used
the ring Diffh(n,N) formed by N copies of the ring Diffh(n). We do not know an analogue of
the isomorphism µ for the ring Diffh(n,N). However a straightforward analogue of the formulas
(24) provides an action of Sn by automorphisms on the ring Diffh(n,N).

We recall that the ring Diffh(n,N) is a Ū(h)-bimodule with the generators xj,α and ∂̄j,α,
j = 1, . . . , n, α = 1, . . . , N . The ring Diffh(n,N) is free as a one-sided Ū(h)-module; the left
and right Ū(h)-module structures are related by

h̃ix
j,α = xj,α(h̃i + δji ) , h̃i∂̄j,α = ∂̄j,α(h̃i − δji ) . (25)

The defining relations for the generators xj,α and ∂̄j,α, j = 1, . . . , n, α = 1, . . . , N , read

xi,αxj,β =
∑
k,l

R̂
ij

klx
k,βxl,α , ∂̄i,α∂̄j,β =

∑
k,l

R̂
lk

ji ∂̄k,β∂̄l,α , x
i,α∂̄j,β =

∑
k,l

R̂
ki

lj [εk]∂̄k,βx
l,α−δαβ δij , (26)

or, in components,

xi,αxj,β =
1

h̃ij
xi,βxj,α+

h̃2
ij − 1

h̃2
ij

xj,βxi,α , xj,αxi,β = − 1

h̃ij
xj,βxi,α+xi,βxj,α , 1 ≤ i < j ≤ n , (27)

∂̄i,α∂̄j,β = − 1

h̃ij
∂̄i,β∂̄j,α +

h̃2
ij − 1

h̃2
ij

∂̄j,β∂̄i,α , ∂̄j,α∂̄i,β =
1

h̃ij
∂̄j,β∂̄i,α + ∂̄i,β∂̄j,α , 1 ≤ i < j ≤ n , (28)

xi,α∂̄j,β = ∂̄j,βx
i,α , xj,α∂̄i,β =

h̃ij(h̃ij + 2)

(h̃ij + 1)2
∂̄i,βx

j,α , 1 ≤ i < j ≤ n , (29)

xi,α∂̄i,β =
n∑
k=1

1

1− h̃ik
∂̄k,βx

k,α − δαβ , 1 ≤ i ≤ n. (30)
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Lemma 9. The maps si, i = 1, . . . , n− 1, defined on the generators of Diffh(n,N) by

si(x
i,α) = −xi+1,αh̃i,i+1 , si(x

i+1,α) = xi,α
1

h̃i,i+1

, si(x
j,α) = xj,α for j 6= i, i+ 1 ,

si(∂̄i,α) = − 1

h̃i,i+1

∂̄i+1,α , si(∂̄i+1,α) = h̃i,i+1∂̄i,α , si(∂̄j,α) = ∂̄j,α for j 6= i, i+ 1 ,

si(h̃j) = h̃si(j) ,

(31)

extend to automorphisms of the ring Diffh(n,N). Moreover, these automorphisms satisfy the
Artin relations and therefore give the action of the symmetric group Sn by automorphisms.

Proof. After the formulas (31) are written down, the verification is a direct calculation. �

3b. The operators s′i := εsiε, where ε is the anti-automorphism (11), generate the action
of the symmetric group Sn by automorphisms as well. The action of the automorphism s′i,
i = 1, . . . , n− 1, involves only the element h̃i,i+1 (as the action of the automorphism si) and is
given by

s′i(x
i,α) = − 1

h̃i,i+1

xi+1,α , s′i(x
i+1,α) = h̃i,i+1x

i,α , s′i(x
j,α) = xj,α for j 6= i, i+ 1 ,

s′i(∂̄i,α) = −∂̄i+1,αh̃i,i+1 , s
′
i(∂̄i+1,α) = ∂̄i,α

1

h̃i,i+1

, s′i(∂̄j,α) = ∂̄j,α for j 6= i, i+ 1 ,

si(h̃j) = h̃si(j) .

(32)

4. The diagonal reduction algebra D(gln) is a Ū(h)-bimodule with the generators Lji , i, j =
1, . . . , n. The defining relations of D(gln) are given by the reflection equation, see [KO5]

R̂12 L1 R̂12 L1−L1 R̂12 L1 R̂12 = R̂12 L1−L1 R̂12 ,

where L = {Lji}ni,j=1 is the matrix of generators (we refer to [C, S, RS, KS, IO, IOP, IMO1,
IMO2] for various aspects and applications of the reflection equation).

For each N there is a homomorphism ([KO5], Section 4.1)

τN : D(gln)→ Diffh(n,N) defined by τN(Lji ) =
∑
α

xj,α∂̄i,α .

Moreover τN is an embedding for N ≥ n.

The formulas (31) show that the image of τN is preserved by the automorphisms si.

The element si(τN(Ljk)) can be written by the same formula for all N . Since τN is injective
for N ≥ n we conclude that the formulas (31) induce the action of the symmetric group Sn on
the diagonal reduction algebra D(gln) by automorphisms.
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The resulting formulas for the action of the automorphisms si, i = 1, . . . , n − 1, on the
generators Lkj , j, k = 1, . . . , n, read

si(L
i
j) = −Li+1

j h̃i,i+1 , si(L
i+1
j ) = Lij

1

h̃i,i+1

, j 6= i, i+ 1 ,

si(L
j
i ) = − 1

h̃i,i+1

Lji+1 , si(L
j
i+1) = h̃i,i+1 Lij , j 6= i, i+ 1 ,

si(L
i
i) = Li+1

i+1 , si(L
i
i+1) = −Li+1

i (h̃i,i+1 − 1)2 ,

si(L
i+1
i ) = −Lii+1

1

(h̃i,i+1 + 1)2
, si(L

i+1
i+1) = Lii ,

si(L
k
j ) = Lkj , k 6= i, i+ 1 and j 6= i, i+ 1 .

5. The isomorphism µ can be also used to translate the action (10) of the braid group
by Zhelobenko operators to the action of the braid group by automorphisms on the ring
k[a1, . . . , an] ⊗ T−1Wn. It turns out that this action preserves the subring T−1Wn. More-
over, let T0 be the multiplicative set of T generated by XjDj − XkDk + `, 1 ≤ j < k ≤ n,
` ∈ Z. Then the action of the operators q̌i, i = 1, . . . , n− 1, preserves the subring T−1

0 Wn. We
present the formulas for the action of the operators q̌i, i = 1, . . . , n− 1:

q̌i(X
i) =

1

Hi,i+1

X i+1 , q̌i(X
i+1) = X iHi,i+1 , q̌i(X

j) = Xj for j 6= i, i+ 1 ,

q̌i(Di) = Di+1Hi,i+1 , q̌i(Di+1) =
1

Hi,i+1

Di , q̌i(Dj) = Dj for j 6= i, i+ 1 .

6. The isomorphism (23) allows to construct a 2n-parametric family of Diffh(n)-modules dif-
ferent from the highest weight representations. Let ~γ := {γ1, . . . , γn} be a sequence of length
n of complex numbers such that γi − γj /∈ Z for all i, j = 1, . . . , n, i 6= j. Let V~γ be the vector
space with the basis

v~j := (X1)j1+γ1(X2)j2+γ2 . . . (Xn)jn+γn , where ~j := {j1, . . . , jn} , j1, . . . , jn ∈ Z .

Under the conditions on ~γ, V~γ is naturally a T−1Wn-module. Define the action of the elements

ak on the space V~γ by ak : v~j 7→ Akv~j where ~A := {A1, . . . , An} is another sequence of length n of

complex numbers. Then V~γ becomes an k[a1, . . . , an]⊗ T−1Wn-module and therefore Diffh(n)-
module which we denote by V~γ, ~A. The central operator ck acts on V~γ, ~A by scalar multiplication
on Ak.
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de Lie; Inst. Hautes Études Sci. Publ. Math. 31 (1966) 5–19.

[GV] J.-L. Gervais and A. Neveu, Novel triangle relation and absence of tachyons in Liouville
string field theory; Nuclear Physics B 238 (1) (1984) 125–141.

[IO] A .P. Isaev and O.V. Ogievetsky, On Baxterized solutions of reflection equation and inte-
grable chain models; Nuclear Physics B 760(3) (2007) 167-183.

[IOP] A. Isaev, O. Ogievetsky and P. Pyatov, Generalized Cayley-Hamilton-Newton identities;
Czechoslovak journal of physics 48 (11) (1998) 1369–1374.

[IMO1] A. P. Isaev, A. I. Molev and O. V. Ogievetsky, A new fusion procedure for the Brauer
algebra and evaluation homomorphisms; International Mathematics Research Notices 11
(2012) 2571–2606.

[IMO2] A. P. Isaev, A. I. Molev and O. V. Ogievetsky, Idempotents for Birman–Murakami–
Wenzl algebras and reflection equation; Advances in Theoretical and Mathematical Physics
bf18 (1) (2014) 1–25.

[KO1] S. Khoroshkin and O. Ogievetsky, Mickelsson algebras and Zhelobenko operators; Journal
of Algebra 319 (2008) 2113–2165.

[KO2] S. Khoroshkin and O. Ogievetsky, Diagonal reduction algebras of gl type; Functional
Analysis and Its Applications 44 (3) (2010) 182–198.

[KO3] S. Khoroshkin and O. Ogievetsky, Structure constants of diagonal reduction algebras of
gl type; SIGMA 7 (2011), 064, 34 pp. doi:10.3842/SIGMA.2011.06.

13



[KO4] S. Khoroshkin and O. Ogievetsky, Rings of fractions of reduction algebras; Algebras and
Representation Theory 17(1) (2014) 265–274.

[KO5] S. Khoroshkin and O. Ogievetsky, Diagonal reduction algebra and reflection equation;
arXiv preprint arXiv:1510.05258 (2015).

[M] J. Mickelsson, Step algebras of semisimple subalgebras of Lie algebras; Rep. Math. Phys.
4:4 (1973) 303–318.

[KS] P. P. Kulish and E. K. Sklyanin, Algebraic structures related to the reflection equations;
J. Phys. A 25 (1992) 5963–5975.

[O] O. Ogievetsky, Differential operators on quantum spaces for GLq(n) and SOq(n); Letters
in Mathematical Physics 24(3) (1992) 245–255.

[OP] O. Ogievetsky and T. Popov, R-matrices in rime; Advances in Theoretical and Mathe-
matical Physics 14(2) (2010) 439–505.

[S] E. K. Sklyanin, Boundary conditions for integrable quantum systems; Journal of Physics
A: Mathematical and General 21(10) (1988) 2375–2389

[RS] N. Yu. Reshetikhin and M. A. Semenov-Tian-Shansky, Central extensions of quantum
current groups; Lett. Math. Phys. 19 (1990) 133–142.

[T] V. N. Tolstoy, Fortieth anniversary of extremal projector method; in Noncommutative
geometry and representation theory in mathematical physics, Contemp. Math. 391 371–
384, Amer. Math. Soc., Providence, RI, 2005.

[WZ] J. Wess and B. Zumino, Covariant Differential Calculus on the Quantum Hyperplane;
Nucl. Phys. B (Proc. Suppl.) 18 (1990) 302–312.

[Zh] D. Zhelobenko, Representations of reductive Lie algebras; Nauka, Moscow (1994).

14


