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Abstract—On-line supervised spotting and classification of
subsequences can be performed by comparing some dis-
tance between the stream and previously learnt time series.
However, learning a few incorrect time series can trigger
disproportionately many false alarms. In this paper, we
propose a fast technique to prune bad instances away and
automatically select appropriate distance thresholds. Our
main contribution is to turn the ill-defined spotting problem
into a collection of single well-defined binary classification
problems, by segmenting the stream and by ranking subsets
of instances on those segments very quickly. We further
demonstrate our technique’s effectiveness on a gesture recog-
nition application.

1. Introduction

In the big data context, stream processing has raised
recent gain of interest in the research community, although
indeed some of the questions it raises have been addressed
decades ago. This paper deals with the supervised mon-
itoring of data streams in general. However we illustrate
our presentation using streams generated by sensors for
monitoring users activity or action. We focus essentially
on instance based machine learning approaches, where
instance means reference pattern that has to be detected
and recognized on the fly when it occurs in the stream
(”on-line”). More specifically, we address the problem
of instance selection with the objective of maximizing
the accuracy of the detection and recognition process.
Identifying and rejecting ”bad” instances in the training
set appear to be of crucial importance. We first give
hereinafter a brief highlight of the related work, then
detail the main steps of the instance selection algorithm
we propose, dedicated to on-line pattern recognition in
stream. We finally assess this algorithm on a gesture
recognition experiment using a multi sensor data glove.

2. Related work and positioning

A lot of work has been tackled during the last decade
in the area of instance selection. In the big data paradigm,
instance selection has been addressed through the angle of
data reduction to maintain algorithmic scalability, but also
to reduce the noise in the training data (1) (2) (3). As the
instance selection problem is known to be NP-hard (4),
heuristic approaches have been developed, among them
evolutionary algorithms have been largely experimented
(5). It is quite noticeable that very few of those works, to
our knowledge, have specifically addressed the problem

of instance selection in a data stream recognition scheme.
Because the processing of streaming data is particularly
resource demanding, data reduction and in particular in-
stance selection, is a very pressing question. (6) have
addressed this issue as an active learning problem in a
streaming setting, while mainly considering the detection
of mislabeled instances. We also address in this paper
the noise reduction angle, although the reduction of the
redundancy in the training set is indeed an issue and can
be view as an extension of our work. Nevertheless, the
noise we tackle is much more located at the feature level
rather than at the class variable level.

3. The stream recognition problem

The problem we seek to solve can be formulated as
follows. Let (st) be a stream of points that can be infinite
in time. For example, this could be a stream of motion
values coming from a data glove. Our goal is twofold:

1) spotting: localize meaningful subsequences in this
stream, and

2) classifying: label those subsequences with a discrete
class label.

In our motion data example, those subsequences could
be gestures that we need to both spot and classify, such
as, say “hand waving” or “fingers opening”. Throughout
this paper, this dual task “spotting + classifying” will be
jointly referred to as “recognizing”.

This recognition is done in a supervised manner: be-
fore testing, the recognizer is given access to a training
stream in which subsequences are all marked with two
temporal bounds (for spotting) and a label (for classify-
ing), i.e. a tuple (tbeg, tend, `). F It is important to note that
most of the stream points will not be meaningful, in the
sense that there is no detection expected. In our gesture
example, resting, scratching one’s arm or moving naturally
because of walking are three kinds of data that could be
considered meaningless because they are not considered
explicitly as gestures (assuming they were not explicitly
labelled so in the training set). In a way, those meaningless
data points can be interpreted as some kind of “silence”
(or “noise”).

Another constraint is to design a system that is real
time and works on-line, or in a streaming fashion. That
is, at testing time, our recognizer must be able to read
the incoming data stream and label it continuously; it is
not allowed to read the whole stream first and output all
subsequences afterwards!
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Figure 1. Training and testing a threshold recognizer. All spotted sub-
sequences in blue are correct because they each overlap with a ground
truth subsequence with the same label.
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Figure 2. A threshold recognizer triggers detection when distance is
under the threshold. While a single instance analysis is shown here, in
practice all instances are considered.

The task of the recognizer is, given input points of
the un-labelled stream, to emit a START bound when it
detects a subsequence (along with the classified label) and
a STOP bound when it believes the subsequence is over.
Of course, it is difficult to detect a subsequence before it
has even started. Hence we do not expect the recognizer
to emit the exact ground truth boundaries of the spotted
subsequences. We simply say that recognition is correct
iff recognized and ground truth subsequences overlap and
have the same label, as illustrated in Fig. 1. This is
the multiclass recognition problem; unfortunately, notions
such as True Negative are not well defined because there
is no proper delimitation of the objects to be classified.

4. Threshold recognizer

One simple yet surprisingly effective technique to
solve this general recognition problem, that consists in
emitting START and STOP bounds, is what we call a
threshold-based recognizer. Let’s assume that we have
some way of measuring dissimilarity between one learnt
time series and the stream at a given point. For example,
a well known distance between time series (though not
mathematically a distance, it can be intuitively considered
as such) exists: Dynamic Time Warping, or DTW (7). It
can be easily extended to work in a streaming fashion (8).
It has long been known that DTW is very robust for this
kind of application, especially when associated to a 1-NN
classifier.

Thanks to the continuous distance information describ-
ing dissimilarity, we can choose to trigger detection only
when an instance gets close enough to the stream. Or, in
other words, when one instance’s distance goes under a
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Figure 3. Misrecording a single instance can lead to dramatic conse-
quences during recognition.

certain threshold. This very simple rule is the essence of
what we call the threshold recognizer.

More precisely, the threshold recognizer relies on three
internal components. First, a dissimilarity measure (infor-
mally referred to as “distance”) between one time series
and the stream (for example, a streaming implementation
of DTW (8)). Second, a training set of labelled subse-
quences (the “instances”). Third, one threshold per class.

A threshold recognizer’s behaviour is as follows:
• for each incoming stream point, compute/update dis-

tances between each instance and the stream
• emit START when at least an instance goes under

its label’s threshold and emit STOP when no more
instance is below threshold

• (advanced: in the case where more than one label
is detected, a disambiguation rule such as “pick the
label having the closest instance to the stream”)

In order to cope with possibly different variances
between classes, we pick one threshold per class and not
an unique threshold for all classes. To carry on with our
gesture detection example, one gesture class could happen
to be described by few or no movement (such as “point
straightahead”), while another could be very jittery (such
as “wave hand”). Time series of the former class will be
somewhat static, leading to similar intra-class instances;
however, the latter class will have more dissimilar time
series because of the high motion.

5. Handling an imperfect training set

Unfortunately, this kind of threshold recognizer has
a major drawback. As mentioned above, it takes only
one instance to trigger a START bound. What if one
instance in the dataset is particularly ”bad”? It might have
drastically bad consequences for the whole recognition.
Imagine if the user were to record an instance of “wave
hand” but accidentally did not wave the hand at the right
time: now the dataset would be ”polluted” by an instance
labelled “wave hand” whose time series describes the hand
resting instead. That would imply that label “wave hand”
would be triggered all times where the user rests the hand
afterwards! This is an unacceptable price to pay for a
single misrecorded instance.

In the following, we describe a procedure to fix this
issue, so that a few incorrect instances in the training set



are pruned to avoid harming recognition rates. We wish
to jointly discover:

1) subset: which instances should be kept in the dataset
(or alternatively: which instances should be removed)

2) thresholds: which thresholds should be given, for
each class.

Those two problems of selecting a subset and setting
thresholds might seem to be independent at a first glance,
but they are actually highly correlated. Indeed, it might be
better to have a low threshold if low-quality instances are
going to match too often; or have a high threshold if we
know examples will match only when they are expected
to. Hence, subsets and thresholds must be analyzed jointly
when seeking for optimal recognition rates.

In order to do this, a naive, brute force, strategy would
prepare all different subsets and different threshold values,
then run the whole recognition procedure for each (subset,
thresholds) pair. However, the full recognition procedure:
computing all streaming distances, comparing distances
and thresholds at each point... is too slow to be run many
times. Furthermore, the space or pairs (subsets, thresholds)
is enormous; combinations of subsets grow exponentially
in the number of instances; and thresholds take continuous
values, which already makes exploring their spaces dis-
jointly untractable (proved NP-hard (4)), let alone jointly.
Rather than analyzing the parameter space naively, we
hereby describe a strategy that is much faster and allows
for many runs of subset selection in a short period of time.

More importantly, it is crucial to observe that our
algorithm is not only made for subset + threshold se-
lection, but even more: it actually provides the basis
for an extremely fast stream analysis in general, able to
evaluate the performance of a recognizer on a validation
stream and provide in turn accuracy metrics for multiple
classes. It does so by turning the ill-defined multiclass
stream analysis detection problem, into a collection of
binary classification problems, for which notions such as
false/true positive/negative measures, etc. are unambigu-
ous. This enabled the use of well established metrics and
tools that have been known for decades, such as the ROC
curve.

6. Overview of the procedure

Before diving into the details of the procedure, we will
outline a broad overview of the steps involved.

INPUT:
• Two streams (training and validation) with subse-

quence boundaries and labels
OUTPUT:
• high-quality subset of extracted instances
• threshold values
SIDE OUTPUT (optional but possibly useful):
• ranking (ordering) of instances from worst to best
• numerical measure indicating how a given subset per-

forms for one class, independently of any threshold
selection

STEPS:
1) Extract instances from the training stream.

2) Cut the validation stream into segments, and define
expectations for each segment.

3) Run the streaming distance on each instance.
4) Find out events between instances and segments, i.e.

when and where they can possibly trigger a recogni-
tion. Group events by label and per segment and sort
them.

5) Find out the worst candidates; prepare some promis-
ing subsets, from which the worst instances are re-
moved.

6) Analyze each promising subset on the segments to
get a score out of them (very fast). Select the best
subset. Select the optimal threshold on this subset.

7. In-depth description

Consider our input data is a labelled stream, that is, a
sequence of points st ∈ Rd, where d is the dimension of
the stream, and t = 0, 1, ...T − 1 is the time. Usually this
stream will represent sampled data acquired by sensors,
monitoring metrics, etc. at a regular sample rate.

The subsequences are given as a collection of tuples
(tbeg, tend, `), indicating the beginning and end bound-
aries of the subsequence along with its label. We assume
subsequences do not overlap.

7.1. Extraction of training instances

For all subsequences (tbeg, tend, `) in the training
stream, extract the timeseries between tbeg and tend, and
store them (see Fig. 1).

7.2. Segmenting the validation stream

The validation stream (vt) is also labelled with a col-
lection of tuples (tbeg, tend, `) representing subsequences.
This labelling represents the ground truth where the
trained recognizer is expected to spot and classify sub-
sequences.

In order to understand why we propose to cut the
stream into segments, let’s start by making an essential
remark:

An instance will trigger recognition on a segment
iff the minimum of its distances on the segment is under
the threshold.

It means that instead of analyzing point after point,
we can cut the stream into segments, store the minimum
for each instance, and then check whether the minimum
is under the threshold for the segment! This eliminates an
enormous amount of work (Fig. 5).

Each segment comes with one “expectation” and a set
of tolerated labels (or simply “tolerances”). An expecta-
tion is a label `, possibly ∅. If ` 6= ∅, then ` should be
triggered by at least one instance (labelled `) under the
threshold. On the other hand, if ` = ∅, no class should
be detected, hence all instances should be above their
threshold. (Caution: ∅ is just a notation for “no label”
and should not be the label of any actual instance.)

Tolerances serve to locally relax recognition con-
straints. If a segment tolerates `, then it doesn’t matter
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Figure 4. Segments delimit labelled subsequences and pieces of unla-
belled points (”silence” or ”noise”). Each segment expects a label (or no
label) and can optionally tolerate some neighboring labels.

whether ` is triggered on this segment: it will never count
as a mistake.

With those definitions in mind, let us now describe the
segmentation procedure. In order to create the segments,
we will simply make cuts. Segments are those portions of
time series between cuts:

1) During “silence” (no labelled subsequences), make a
cut every Tsegment. Set expectation to ∅ i.e. no label
expected.

2) During meaningful subsequences with (tbeg, tend, `),
make cuts at tbeg and tend (do not sub-cut inside even
if longer than Tsegment). Set expectation to label `.

Furthermore, for each segment that was created due
to a subsequence with label ` 6= ∅ (rule 2.), we “spread”
` onto neighbouring segments tolerance:

3) If segment s expects ` 6= ∅, add ` to tolerances for
segments (s− 1), (s+ 1), and (s+ 2).

The motivation for spreading tolerances 1 segment on
the left and 2 segments on the right is that the streaming
distance will usually be sharp to decrease, but will take a
bit longer to increase again after recognition and to leave
the triggering zone below the threshold. In our experience
1 and 2 have been a good choice, and we believe they
should be acceptable for most applications; it is up to the
implementer to decide whether to tune those values for
their particular task. Also, their effectiveness will depend
on the choice of Tsegment.

7.3. Minima computation

Distance computation is the most computing power
demanding part of the algorithm. Therefore, we do it as
early as possible, only once, and collapse dense distance
information into economical representations based on seg-
ments and minima.

Let p be an instance of the dataset. The streaming
distance is evaluated as discussed in Section 4 (e.g. a
streaming implementation of DTW), in order to map each
point of the stream vt into a positive real describing the
distance between p and the stream.

However, we do not need to store all distance values.
As noted earlier, in order to know if p will trigger on
segment s, we just need to compare the threshold to the
minimum distance on this segment’s points. Hence, when
sliding through the stream vt to compute the distance,
taking note when a segment ends, we only store the
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Figure 5. Minima of distances are sufficient to determine whether an
instance will be triggered during an segment.

minimum since it began, and forget other non-minimal
values which are useless from now on.

This should yield a sequence mp (“minima”) of pos-
itive numbers where each index s is a segment and each
element mp[s] is the minimum. In terms of memory oc-
cupation, it is way more economical to store just minima
(as many values as segments) compared to all distances
for each time t (as many values as stream points).

All sequences mp = (mp[s])s should be computed for
each instance p.

7.4. Event computation

As seen in Section 5, threshold adjustment is a matter
of compromise between too tolerant (high threshold) and
too strict (low threshold) situations. Therefore, in order to
set the threshold accordingly, we propose to list events,
that is, the segment and threshold at which instances will
be triggered (i.e. the minimum of each instance on each
segment).

Therefore, an event is a tuple (τ, p, s, g) representing
the assertion “On segment s, instance p will trigger its
label `(p) at threshold τ , which is g”. The “goodness”
g takes one of two values, GOOD if those labels are
the same and BAD otherwise. Also, in the following,
we will ensure that if a label ` is tolerated on segment
s, then there are no event linking ` and s, because it is
inherently neither good or bad to trigger, or not trigger, a
label where it is not expected but tolerated. Note that the
trigger threshold for each (p, s) pair is just the minimum
of p on s: τ = mp[s].

In order to find out those events, we need to iterate
on all instances p and all segments s:

1) if s tolerates current label `(p), skip this segment.
2) if “labels don’t match”, i.e. (s expects ∅) or (s

expects `s 6= ∅ and `(p) 6= `s), then register a BAD
event with threshold mp[s].

3) if “labels match”, i.e. s expects `s 6= ∅ and `(p) =
`s, then register a GOOD event with threshold mp[s].

While looping through p and s to find out those events,
we store them in two data structures:
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Figure 6. Events E[`, s] for a fixed label ` = A and segments s = 1, 4.
We look for an optimal threshold, where there would be at least one
GOOD event for segments expecting A, and no BAD event elsewhere.
The first situation admits no optimal threshold; however, after removing
p2, such a threshold appears.

• Events per label and per segment: let E[`, s] be a
vector storing all events whose segment is s and
whose instance has label `.

• Bad events per label: let B[`] be a vector storing all
BAD events related to instances with label `.

An event can be stored duplicated in both E[`, s] and
B[`].

It is required that each of those individual vectors are
sorted by increasing τ value. Intuitively, it provides a way
to “slide” from lowest to highest threshold and discover,
in order, which kind of event will happen as we increase
the threshold. See Fig. 6.

7.5. Promising subsets identification

Identification of promising subsets must be performed
independently for all labels. Here, let us focus on a fixed
label `, and denote P` the set of all instances with this
label.

The vector of bad events B[`], after sorting with
respect to increasing threshold, represents a ranking of
worst instances of the set P [`]. Indeed, the first ele-
ment of B[`] describes which instance will generate the
first false positive, as we start from threshold = 0 and
increase progressively. This happens precisely because
B[`] is sorted. Therefore, when we want to find which
instances are worth removing, looking at B[`] provides
us with an ordering of candidates that should be preferred
for removal. When a candidate p is removed, it will no
more generate a false positive, which in turn allows us
to increase the threshold. However, it could turn out to
generate a false negative at some other place where this
instance p was needed for the detection. We will take care
of this issue in the next section by globally analyzing the
performance, on a given class, of removing one or several
candidates.

The goal here is to select a good subset P ′` ⊆ P`. In-
stead of brute forcing through all 2|P`| subsets, we propose
an efficient strategy (although not theoretically optimal)
to prune bad instances. It works in linear O(|P`|) time
and thus is tractable even in presence of many instances.
The idea is to extract, in order, instances from BAD
events in B[`]: say the candidates are, in order, p1, p2, . . .
the subsets we propose are P 0

` = {p1, p2, p3, ...}, P 1
` =

{p2, p3, ...}, P 2
` = {p3, ...}, ..., i.e. P k

` is the full set P`

without the k worst instances p1, ..., pk. These are what we
call “promising subsets” and they will be analyzed quickly
during the next pass to select the best subset among them.

7.6. Subsets scoring

For a given label `, we consider the binary classifi-
cation problem of assigning either label ` or ∅ to each
segment, which expects either ` or ∅ (we turn non-` labels
into ∅ to focus on ` only). Furthermore we consider that
we are given a subset P ′` of instances. In order to compare
those subsets without having to set a manual threshold
value, our solution is to compute the ROC (Receiver
Operator Characteristic) curve of this binary classification
problem and use the AUC (Area Under the Curve) as a
quantitative measure to compare subset quality.

In order to compute this ROC curve, the fastest so-
lution is to list when each segment will turn from True
Negative (TN) to False Positive (FP), or from False Neg-
ative (FN) to True Positive (TP). We call those sub-events
“switches”. This is easily done: for each segment, E[`, s]
lists the events in order of thresholds; hence the switch
event is the event with the lowest threshold (i.e. the first to
happen). Thus, it is the first element of E[`, s] for which
the instance p is included in our subset P ′` . That gives
one switch per segment, except for segments tolerating
the current label, which do not participate in the binary
classification and are simply ignored.

Now that all switches are established, computing the
ROC curve and its AUC is as easy as reading the switches
in increasing threshold order. A GOOD switch turns FN
to TP (up on the ROC curve); a BAD switch turns TN to
FP (right on the ROC curve).

Finally, the best subset is the one with the highest
AUC. The optimal threshold is selected by finding an
optimal point on the ROC curve, but how we define
“optimal” does not have a definite answer, so we leave
to the implementer the task of choosing their preferred
optimal ROC point selection procedure. For example, a
simple rule could be selecting a threshold for which the
TP rate is higher than some percentage value, say, 95%.

8. Results

We ran our instance selection algorithm on a real-
world scenario. It consists of an on-line gesture recog-
nition task, captured by a data glove. After some feature
engineering, the stream has 13 dimensions related to po-
sition, motion, and finger flexion. There are 8 classes of
gestures repeated around 4 to 8 times per person. Ges-
ture boundaries were added by manual post-processing.
Training is composed of 100 Hz streams recorded by two
people, totalling 6m40s; testing is composed of 3m04s by
a third person.

Some weak instances appear on their own, but in order
to better display our algorithm’s value, we further injected
“fake” time series in the database, taken by reading a
random piece of the training stream and giving it a random
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Figure 8. Evolution of AUC as low-quality instances are removed. For
all classes (including those not shown here due to lack of space), we are
able to significantly increase AUC (maximum at red point) compared to
the original dataset (leftmost point).

existing label. This makes the task more difficult by
lowering the overall dataset quality.

In Fig. 7, we show on a single class that our technique
is successful in detecting all bad instances and removing
them, attaining here an ideal AUC of 1 (which is an
objective that is not always reachable). Plotting the AUC
of each ROC curve as we progressively remove instances
gives Fig. 8, in which we note that all classes also end up
attaining AUC = 1.

Analyzing the dataset on the 3 minute testing stream
took only 6.15s on a regular CPU, including extraction,
streaming DTW calculation, segmentation, events com-
putation and ROC scoring for 215 identified promising
subsets.

9. Conclusion

In this work, we have shown that it is advantageous
to tackle the multiclass streaming recognition problem
as a collection of binary classification problems, one for
each class. This interpretation enabled us to derive an
original algorithm for proposing jointly efficient (although

sub-optimal) solution to the NP-hard instance selection
problem and the threshold tuning. Finally, it allows for
the use of ROC analysis in order to detect low-quality
instances, and set the distance threshold by selecting the
optimal ROC point. The effectiveness of this solution was
demonstrated on a real-world recognition task based on
glove motion sensors. Finally, running the analysis on
segments rather that full stream turns out to be so fast
that it opens up the possibility to prune instances in real-
time while learning the gestures.
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