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DECAY OF SUPERCONDUCTIVITY
AWAY FROM THE MAGNETIC ZERO SET

BERNARD HELFFER AND AYMAN KACHMAR

Abstract. We establish exponential bounds on the Ginzburg-Landau order parameter away
from the curve where the applied magnetic field vanishes. In the units used in this paper,
the estimates are valid when the parameter measuring the strength of the applied magnetic
field is comparable with the Ginzburg-Landau parameter. This completes a previous work by
the authors analyzing the case when this strength was much higher. Our results display the
distribution of surface and bulk superconductivity and are valid under the assumption that the
magnetic field is Hölder continuous.

1. Introduction

1.1. The functional. In non-dimensional units, the Ginzburg-Landau functional is defined as
follows,

E(ψ,A) =

∫
Ω

(
|(∇− iκHA)ψ|2 − κ2|ψ|2 +

κ2

2
|ψ|4 + (κH)2| curlA−B0|2

)
dx , (1.1)

where:
• Ω ⊂ R2 is an open, bounded and simply connected set with a C∞ boundary ;
• (ψ,A) ∈ H1(Ω;C)×H1(Ω;R2) ;
• κ > 0 and H > 0 are two parameters ;
• B0 is a real-valued function in L2(Ω) .

The superconducting sample is supposed to occupy a long cylinder with vertical axis and hor-
izontal cross section Ω. The parameter κ is the Ginzburg-Landau parameter that expresses
the properties of the superconducting material. The applied magnetic field is κHB0~e, where
~e = (0, 0, 1). The configuration pair (ψ,A) describes the state of superconductivity as follows:
|ψ|2 measures the density of the superconducting Cooper pairs, curlAmeasures the induced mag-
netic field in the sample and j := (iψ,∇ψ − iκHAψ) measures the induced super-current. Here
(·, ·) denotes the inner product in C defined as follows, (u, v) = u1v1 + u2v2 where u = u1 + iu2

and v = v1 + iv2 .
At equilibrium, the state of the superconductor is described by the (minimizing) configurations

(ψ,A) that realize the following ground state energy

Egs(κ,H) = inf{E(ψ,A) : (ψ,A) ∈ H1(Ω;C)×H1(Ω;R2)} . (1.2)

Such configurations are critical points of the functional introduced in (1.1), that is they solve the
following system of Euler-Lagrange equations (ν is the unit inward normal on the boundary)

−
(
∇− iκHA

)2
ψ = κ2(1− |ψ|2)ψ in Ω ,

−∇⊥
(

curlA−B0

)
= (κH)−1Im

(
ψ (∇− iκHA)ψ

)
in Ω ,

ν · (∇− iκHA)ψ = 0 on ∂Ω ,
curlA = B0 on ∂Ω .

(1.3)

Once a choice of (κ,H) is fixed, the notation (ψ,A)κ,H stands for a solution of (1.3). When
B0 belongs to C0(Ω), we introduce two constants β0 and β1 that will play a central role in this
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paper:
β0 := sup

x∈Ω

|B0(x)| and β1 := sup
x∈∂Ω

|B0(x)| . (1.4)

1.2. The case with a constant magnetic. A huge mathematical literature is devoted to the
analysis of the functional in (1.1) when the magnetic field is constant. This corresponds to taking
B0 = 1 in (1.1). The two monographs [15, 39] and the references therein are mainly devoted to
this subject. One important situation is the transition from bulk to surface superconductivity.
This happens when the parameter H increases between two critical values HC2 and HC3 called
the second and third critical fields respectively.

In this analysis the deGennes constant plays a central role. This constant is universal and
defined as follows

Θ0 = inf
ξ∈R

{
inf
‖u‖2=1

(∫ ∞
0

(
|u′(t)|2 + (t− ξ)2|u(t)|2

)
dt
)}

. (1.5)

Furthermore, it is known (cf. [15]) that
1

2
< Θ0 < 1 . (1.6)

The deGennes constant appears indeed in the asymptotics of HC3 for κ large

HC3 ∼ Θ−1
0 κ ,

while we have for the second critical field

HC2 ∼ κ .
To be more specific, if b > 0 is a constant and (ψ,A)κ,H is a minimizer of the functional in (1.1)
for H = bκ (and B0 = 1), the concentration of ψ in the limit κ→∞ depends strongly on b .

If 0 < b < 1, then ψ is uniformly distributed in the domain Ω (cf. [28, 40]) . If 1 < b < Θ−1
0 ,

then ψ is concentrated on the surface and decays exponentially in the bulk (cf. [12, 34]) . If
b > Θ−1

0 , then ψ = 0 (cf. [25, 31]). The critical cases when b is close to 1 or Θ−1
0 are thoroughly

analyzed in [16, 14].

1.3. The case with a non-vanishing magnetic field. The case of a non-constant magnetic
field B0 satisfying the assumptions

B0 ∈ C0(Ω) and inf
x∈Ω

B0(x) > 0 ,

is qualitatively similar to the constant magnetic field case. This situation is reviewed in [22,
Sec. 2.2]. Surface superconductivity is studied in [15], while the transition to the normal solution
is discussed in [36].

1.4. The case with a vanishing magnetic field. The results in this paper are valid for
a large class of applied magnetic fields, see Assumption 1.2 below. However, one interesting
situation covered by our results is the case where the applied magnetic field has a non-trivial
zero set. In the presence of such an applied magnetic field, we will study the concentration of the
minimizers (ψ,A)κ,H of (1.1) in the asymptotic limit κ → +∞ and H ≈ κ . Unlike the results
in [15, 36] that only investigate surface superconductivity, the situation discussed here includes
bulk superconductivity as well.

The discussion in this subsection is focusing on magnetic fields that satisfy:

Assumption 1.1. [On the applied magnetic field]
(1) The function B0 is in C1(Ω) .
(2) The set Γ := {x ∈ Ω : B0(x) = 0} is non-empty and consists of a finite disjoint union

of simple smooth curves.
(3) Γ ∩ ∂Ω is either empty or a finite set.
(4) For all x ∈ Ω , |B0(x)|+ |∇B0(x)| 6= 0 .
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(5) The set Γ is allowed to intersect ∂Ω transversely. More precisely, if Γ∩ ∂Ω 6= ∅ , then on
this set, ν ×∇B0 6= 0 , where ν is the normal vector field along ∂Ω .

A much weaker assumption will be described later (cf. Assumption 1.2). Under Assump-
tion 1.1, we may introduce the following two non-empty open sets

Ω+ = {x ∈ Ω : B0(x) > 0} and Ω− = {x ∈ Ω : B0(x) < 0} . (1.7)

The boundaries of Ω± are given as follows

∂Ω± = Γ ∪ (Ω± ∩ ∂Ω) .

Magnetic fields satisfying Assumption 1.1 are discussed in many contexts:
• In geometry, this appears in [32] under the appealing question: can we hear the zero locus
of a magnetic field ?
• In the semi-classical analysis of the spectrum of Schrödinger operators with magnetic
fields satisfying Assumption 1.1 (and Γ ⊂ Ω). These operators are extensively studied in
[13, 20, 24].
• In the study of the time-dependent Ginzburg-Landau equations [4, 5], applied magnetic
fields as in Assumption 1.1 naturally appear in the presence of applied electric currents.
• For superconducting surfaces submitted to constant magnetic fields [11], the constant
magnetic field may induce a smooth sign-changing magnetic field on the surface.
• In the transition from normal to superconducting configurations [35], one meets the
problem of determining H such that the ground state energy in (1.2) vanishes on a curve
meeting transversally the boundary. The results in [35] are sharpened in [9, 33].
• The asymptotics of the ground state energy in (1.2) and the concentration of the corre-
sponding minimizers for large values of κ and H is analyzed in [7, 8, 22, 23].

Of particular importance to us are the results of K. Attar in [7]. These results hold under
Assumption 1.1, for H = bκ with b > 0 constant. One of the results in [7] is that the ground
state energy in (1.2) satisfies, as κ→ +∞ ,

Egs(κ,H) = κ2

∫
Ω
g(b|B0(x)|) dx+ o(κ2) . (1.8)

Here the function g(·), which was introduced by Sandier-Serfaty in [40], is a continuous non-
decreasing function defined on [0,∞) and vanishes on [1,∞) (cf. (2.5) for more details).

K. Attar also obtained an interesting formula displaying the local distribution of the minimiz-
ing order parameter ψ. If (ψ,A)κ,H is a minimizer of the functional in (1.1) for

H = bκ ,

and if D is an open set in Ω with a smooth boundary, then, as κ→ +∞ ,∫
D
|ψ(x)|4 dx = −2

∫
D
g(b|B0(x)|) dx+ o(1) . (1.9)

The interest for an L4 control of the order parameter comes back to Y. Almog (see [2] and the
discussion in the book [15, Ch. 12, Sec. 12.6]).

The formula in (1.9) shows that ψ is weakly localized in the neighborhood of Γ, V
(

1
b

)
, where:

V (ε) :=
{
x ∈ Ω , |B0(x)| ≤ ε

}
. (1.10)

For taking account of the boundary effects (the surface superconductivity should play a role
like in the constant magnetic field case) we also introduce in ∂Ω the subset

Vbnd (ε) :=
{
x ∈ ∂Ω , Θ0|B0(x)| ≤ ε

}
. (1.11)

We would like to measure the strength of the (exponential) decay of the minimizing order
parameter ψ in the domains

ω

(
1

b

)
:= Ω \ V

(
1

b

)
. (1.12)
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Figure 1. Illustration of Regime I for H = bκ and b = 1/ε : Superconductivity
is destroyed in the dark regions and survived on the entire boundary.

Figure 2. Illustration of Regime II for H = bκ and b = 1/ε : Superconductivity
is also destroyed on the boundary parts {Θ0|B0(x)| > ε} ∩ ∂Ω .

Note the role played by the two constants introduced in (1.4). If 1
b ≥ β0 , then V(1

b ) = Ω . For
this reason we will focus on the values of b above β−1

0 . We also observe that, if 1
b ≥ Θ0β1 , then

Vbnd(1
b ) = ∂Ω . Hence, boundary effects are expected to appear when b < 1

Θ0β1
.

Loosely speaking, we would like to prove that, for all values of b ≥ β−1
0 , the density |ψ|2 is

exponentially small (in the L2-sense) outside the set V(1
b ) ∪ V

bnd(1
b ). This will lead us to two

distinct regimes:

Regime I: For β−1
0 < b ≤ (Θ0β1)−1, Vbnd(1

b ) = ∂Ω and ∂Ω carries surface superconductivity
everywhere. This is illustrated in Figure 1.
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Figure 3. Illustration of Regime II when {B0 = 0} ∩ ∂Ω = ∅ , H = bκ , b = 1/ε
and ε is small: Superconductivity is destroyed on the entire boundary and is
concentrated in the set {|B0| < ε}.

Regime II: For b > (Θ0β1)−1, we will get that ψ is exponentially small outside the set
Vbnd(1

b ). Here we have two cases:
• As b increases, surface superconductivity shrinks to the points of {x ∈ ∂Ω, B0(x) = 0},
provided that this set is non-empty (cf. Figure 2).
• If {B0(x) = 0} ∩ ∂Ω = ∅ , then, for sufficiently large values of b, no surface superconduc-
tivity is left (cf. Figure 3).

Regime II is consistent with the results of [22, Thm. 3.6] devoted to the complementary regime
where b� 1 as κ→ +∞ .
The results in this paper confirm the behavior described in these two regimes and are valid under
a much weaker assumption than Assumption 1.1 (cf. Assumption 1.2 below).

The transition to the normal state is studied in [9, 33, 35]. This happens, when κ is large, for
H ∼ c∗κ

2 (equivalently b ∼ c∗κ), where c∗ > 0 is a constant explicitly defined by the domain Ω
and the function B0 .

1.5. Main results.
In this paper, we will first work under the following assumption:

Assumption 1.2.
• The function B0 is in C0,α(Ω) for some α ∈ (0, 1) ;
• The constants β0 and β1 in (1.4) satisfy β1 ≥ β0 > 0 .

Note that this assumption is much weaker than Assumption 1.1. With the previous notation
our main theorem is:

Theorem 1.3. [Exponential decay outside the superconductivity region]
Suppose that Assumption 1.2 holds, that b > β−1

0 and let O be an open set such that O ⊂ ω
(

1
b

)
,

where ω(1
b ) is the domain introduced in (1.12)

There exist κ0 > 0, C > 0 and α0 > 0 such that, if κ ≥ κ0 and (ψ,A)κ,H is a solution of
(1.3) for H = bκ , then the following inequality holds

‖ψ‖H1(O) ≤ C e−α0κ . (1.13)

Furthermore, if b > (Θ0β1)−1, then the estimate in (1.13) holds when the open set O satisfies

O ⊂
{
x ∈ ∂Ω, Θ0|B0(x)| > 1

b

}
∪ ω

(
1

b

)
.
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The proof of Theorem 1.3 follows from the stronger conclusion of Theorem 3.1, establishing
Agmon like estimates.

Remark 1.4. [Sign-changing magnetic fields]
In addition to Assumption 1.2, suppose that Ω+ and Ω− are non-empty. The constant β0 in
(1.4) can be expressed as follows

β0 = max(β+
0 , β

−
0 ) where β±0 = sup

x∈Ω±

|B0(x)| .

We will discuss the conclusion of Theorem 1.3 when β+
0 < β−0 . We have:

• If (β0)−1 < b < (β+
0 )−1, then ω(1

b )∩Ω+ = ∅ . Consequently, the exponential decay occurs
in ω(1

b ) ∩ Ω− .
• If (β+

0 )−1 ≤ b , then the exponential decay occurs in both ω(1
b ) ∩ Ω+ and ω(1

b ) ∩ Ω− .
The situation when β−0 < β+

0 can be discussed similarly. Next, we suppose that the two sets

(∂Ω)+ := {x ∈ ∂Ω , B0(x) > 0} and (∂Ω)− := {x ∈ ∂Ω , B0(x) < 0}
are non-empty, and we express the constant β1 in (1.4) as follows

β1 = max(β+
1 , β

−
1 ) where β±1 = sup

x∈(∂Ω)±

|B0(x)| .

According to Theorem 1.3, when β+
1 < β−1 and (β1)−1 < b < (β+

1 )−1 , then the exponential decay
occurs on {x ∈ ∂Ω, Θ0b|B0(x)| > 1} ∩ (∂Ω)− , since {x ∈ ∂Ω, Θ0b|B0(x)| > 1} ∩ (∂Ω)+ = ∅ .

Our next result discusses the optimality of Theorem 1.3. This theorem determines a part of the
boundary where the order parameter (the first component ψ of the minimizer) is exponentially
small. Outside this part of the boundary, we will prove that the L4 norm of the order parameter
is not exponentially small. In physical terms, superconductivity is present there.

The statement of Theorem 1.5 involves the following notation:
• For all t > 0, Ω̃(t) = {x ∈ R2 : dist(x, ∂Ω) < t} .
• By smoothness of ∂Ω , there exists a geometric constant t0 such that, for all x ∈ Ω̃(t0) ,
we may assign a unique point p(x) ∈ ∂Ω such that dist(p(x), x) = dist(x, ∂Ω).
• If b > 0, we define the open subset in R2

Ω̃(t0, b) = {x ∈ Ω̃(t0) : 1 < b|B0(p(x))| < Θ−1
0 } . (1.14)

• Esurf : [1,Θ−1
0 ) → (−∞, 0) is the surface energy function which will be defined in (4.5)

later. This function is continuous and non-decreasing.
• If Ω̃(t0, b) 6= ∅ , we define the following distribution in D′

(
Ω̃(t0, b)

)
:

C∞c
(
Ω̃(t0, b)

)
3 ϕ 7→ Tb(ϕ) = −2

∫
Ω̃(t0,b)∩∂Ω

√
1

b|B0(x)|
Esurf

(
b|B0(x)|

)
ϕ(x) ds(x) , (1.15)

where ds is the surface measure on ∂Ω.
• If D ⊂ Ω , we introduce the local Ginzburg-Landau energy in D as follows

E(ψ,A;D) =

∫
D

(
|(∇− iκHA)ψ|2 − κ2|ψ|2 +

κ2

2
|ψ(x)|4

)
dx . (1.16)

• 1Ω denotes the characteristic function of the set Ω .

Theorem 1.5. [Existence of surface superconductivity]
Suppose that Assumption 1.2 holds, that b > β−1

0 and that Ω̃(t0, b) 6= ∅, where β0 is the constant
introduced in (1.4). If (ψ,A)κ,H is a minimizer of the functional in (1.1) for H = bκ , then as
κ→∞ , we have the following weak convergence

κ1Ω|ψκ,H |4 ⇀ Tb in D′
(
Ω̃(t0, b)

)
. (1.17)
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Remark 1.6. Theorem 1.5 demonstrates the existence of surface superconductivity. We can
interpret the assumption in Theorem 4.8 in two different ways.

• If H = bκ, b > 0 is fixed and x0 ∈ ∂Ω, then to find superconductivity near x0, this point
should satisfy 1 < b|B0(x0)| < Θ−1

0 .
• If x0 ∈ ∂Ω is fixed and |B0(x0)| is small, then to find superconductivity near x0, the
intensity of the applied magnetic field should be increased in such a manner that H = bκ
and 1 < b|B0(x0)| < Θ−1

0 .

Our last result confirms that the region {B0(x) < κ
H } carries superconductivity everywhere.

To state it, we will use the following notation:
• If p, q ∈ ∂Ω, dist∂Ω(p, q) denotes the (arc-length) distance in ∂Ω between p and q .
• For x0 ∈ R2 and r > 0 , we denote by Qr(x0) = x0 + (−r/2, r/2)2 the interior of the
square of center x0 and side r. When x0 = 0, we write Qr = Qr(0).
• For (x, `) ∈ Ω× (0, t0/2), we will use the following notation:

W(x0, `) =

{
{x ∈ Ω : dist∂Ω(p(x), x0) < ` and dist(x, ∂Ω) < 2`} if x0 ∈ ∂Ω ,

Q2`(x0) if x0 ∈ Ω .
(1.18)

Theorem 1.7. [The superconductivity region]
Suppose that Assumption 1.2 holds for some α ∈ (0, 1), b > 0 and 2

2+α < ρ < 1 be two
constants. Let x0 ∈ Ω such that |B0(x0)| < 1

b .
There exist κ0 > 0, a function r : [κ0,+∞) → R+ such that limκ→+∞ r(κ) = 0 and, for all

κ ≥ κ0 and for all critical point (ψ,A)κ,H of the functional in (1.1) with H = bκ , the following
two inequalities hold,∣∣∣∣∣ 1

|W(x0, κ−ρ)|

∫
Wx0 (κ−ρ)

|ψ(x)|4 dx+ 2g
(
b|B0(x0)|

)∣∣∣∣∣ ≤ r(κ)

and ∣∣∣E(ψ,A;W(x0, κ
−ρ)
)
− κ2g

(
b|B0(x0)|

)∣∣∣ ≤ κ2r(κ) .

Here g(·) is the continuous function appearing in (1.8) and (1.9) (see Subsection 2.1 for its
definition and properties).

The result in Theorem 1.7 is a variant of the formula in (1.9) valid for applied magnetic fields
which are only Hölder continuous, thereby generalizing the results by Attar [7] and Sandier-
Serfaty [40]. This will be clarified further in Remark 1.9.

Remark 1.8. Let us choose fixed constants γ and ρ such that 2
2+α < ρ < 1 and 0 < γ < 1 − ρ.

Our proof of Theorem 1.7 yields that the constant κ0 and the function r(κ) in Theorem 1.7 can
be selected independently of the point x0 provided that

• κ−2γ ≤ b|B0(x0)| < 1 ;
• x0 ∈ ∂Ω or dist(x0, ∂Ω) ≥ 4κ−ρ .

The condition dist(x0, ∂Ω) ≥ 4κ−ρ ensures that Qx0(2κ−ρ) ⊂ Ω, which is needed in the proof of
Theorem 1.7.

Remark 1.9. Let γ ∈ (0, α
2+α). If we assume furthermore the following geometric condition∣∣{x ∈ Ω , |B0(x)| ≤ κ−2γ}

∣∣ = o(1) (κ→∞) , (1.19)

then Theorem 1.7 implies the weak convergence

|ψκ,H(·)|4 ⇀ −2g
(
b|B0(·)|

)
in D′(Ω) .

In (1.19), we used the following notation. If E ⊂ R2, |E| denotes the Lebesgue (area) measure
of E. Note that the condition in (1.19) holds under Assumption 1.1 considered in [7].
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The rest of the paper is organized as follows. In Section 2, we collect various results that will
be used throughout the paper. Section 3 is devoted to the proof of Theorem 1.3. In Section 4,
we present the proof of Theorem 1.5. Finally, we prove Theorem 1.7 in Section 5.

In the proofs, we avoid the use of the a priori elliptic L∞-estimates, whose derivation is quite
complicated (cf. [15, Ch. 11]), thereby providing new proofs for the results in [34, 40]. To our
knowledge, these L∞-estimates have not been established when the magnetic field B0 is only
Hölder continuous.

2. Preliminaries

2.1. The bulk energy function. The energy function g(·) , hereafter called the bulk energy,
has been constructed in [40]. We will recall its construction here. It plays a central role in the
study of ‘bulk’ superconductivity, both for two and three dimensional problems (cf. [19, 17]).
Furthermore, it is related to the periodic solutions of (1.3) and the Abrikosov energy (cf. [1, 16]).

For b ∈ (0,+∞) , r > 0 , and Qr = (−r/2, r/2) × (−r/2, r/2) , we define the functional,

Fb,Qr(u) =

∫
Qr

(
b|(∇− iA0)u|2 − |u|2 +

1

2
|u|4
)
dx , for u ∈ H1(Qr) . (2.1)

Here, A0 is the magnetic potential,

A0(x) =
1

2
(−x2, x1) , for x = (x1, x2) ∈ R2 . (2.2)

We define the Dirichlet and Neumann ground state energies by

eD(b, r) = inf{Fb,Qr(u) : u ∈ H1
0 (Qr)} , (2.3)

eN (b, r) = inf{Fb,Qr(u) : u ∈ H1(Qr)} . (2.4)

We can define g(·) as follows (cf. [7, 17, 40])

∀ b > 0 , g(b) = lim
r→∞

eD(b, r)

|Qr|
= lim

r→∞

eN (b, r)

|Qr|
, (2.5)

where |Qr| = r2 denotes the area of Qr .
Furthermore, there exists a universal constant C > 0 such that

∀ b > 0 , ∀ r > 1 , g(b) ≤ eD(b, r)

|Qr|
≤ eN (b, r)

|Qr|
+
C

r
≤ g(b) +

2C

r
. (2.6)

One can show that the function g(·) is a non decreasing continuous function such that

g(0) = −1

2
, g(b) < 0 when b < 1 , and g(b) = 0 when b ≥ 1 . (2.7)

2.2. The magnetic Laplacian. We need two results about the magnetic Laplacian. The first
result concerns the Dirichlet magnetic Laplace operator in a bounded set Ω with a strong constant
magnetic field B, that is

−(∇− iBA0)2 in L2(Ω) ,

with the Dirichlet condition
u = 0 on ∂Ω .

Here A0 is the vector field introduced in (2.2), with curlA0 = 1. It is based on the elementary
spectral inequality:

Lemma 2.1. For all B ∈ R and φ ∈ H1
0 (Ω), it holds∫

Ω
|(∇− iBA0)φ|2 dx ≥ |B|

∫
Ω
|φ(x)|2 dx .
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The second result concerns the Neumann magnetic Laplace operator in a bounded set Ω with
a strong constant magnetic field B, that is

−(∇− iBA0)2 in L2(Ω) ,

with the (magnetic) Neumann condition

ν · (∇− iBA0)u = 0 on ∂Ω .

Here ν is the unit inward normal vector on ∂Ω. The asymptotic behavior of the groundstate
energy as |B| → ∞ is well known (cf. [21, 30] and [15, Prop. 8.2.2]):

Lemma 2.2. There exist β̂0 > 0 and C > 0 such that, if |B| ≥ β̂0 and φ ∈ H1(Ω) ,∫
Ω
|(∇− iBA0)φ|2 dx ≥

(
Θ0|B| − C|B|3/4

)∫
Ω
|φ|2 dx .

2.3. Universal bound on the order parameter. If (ψ,A) is a solution of (1.3), then ψ
satisfies in Ω (cf. [15, Prop. 10.3.1])

|ψ(x)| ≤ 1 . (2.8)

2.4. The magnetic energy. Let us introduce the space of vector fields

H1
div(Ω) = {A ∈ H1(Ω;R2) : divA = 0 in Ω and ν ·A = 0 on ∂Ω} . (2.9)

The functional in (1.1) is invariant under the gauge transformations (ψ,A) 7→ (eiφψ,A +∇φ).
Consequently, if (ψ,A) solves (1.3), we may apply a gauge transformation such that the new
configuration (ψ̃ = eiφψ, Ã = A+∇φ) is a solution of (1.3) and furthermore Ã ∈ H1

div(Ω). Having
this in hand, we always assume that every critical/minimizing configuration (ψ,A) satisfies
A ∈ H1

div(Ω) which simply amounts to a gauge transformation.
For given B0 ∈ L2(Ω), there exists a unique vector field satisfying

F ∈ H1
div(Ω) and curlF = B0 . (2.10)

Actually, F = ∇⊥f where f ∈ H2(Ω) ∩H1
0 (Ω) is the unique solution of −∆f = B0 .

Remark 2.3. By the elliptic Schauder Hölder estimates (see for example Appendix E.3 in [15]),
if in addition B0 ∈ C0,α(Ω) for some α > 0 , then the vector field F is smooth of class C1,α(Ω) .

We recall the following result from [7]:

Proposition 2.4. Let γ ∈ (0, 1) and 0 < c1 < c2 be fixed constants. Suppose that B0 ∈ L2(Ω).
There exist κ0 > 0 and C > 0 such that, if κ ≥ κ0, c1 κ ≤ H ≤ c2 κ and if (ψ,A)κ,H ∈
H1(Ω)×H1

div(Ω) is a minimizer of (1.2), then

‖A− F‖C0,γ(Ω) ≤
C

κ
.

The proof of Proposition 2.4 given in [7] is made under the assumption B0 ∈ C∞(Ω), but it
still holds under the weaker assumption B0 ∈ L2(Ω).

The next result gives the existence of a useful gauge transformation that allows us to approx-
imate the vector field F by a vector field generating a constant magnetic field. It is similar to
the result in [7, Lem. A.3], but the difference here is that we only assume F ∈ C1,α(Ω) instead
of C2.

Lemma 2.5. Let α ∈ (0, 1), r0 > 0 and B0 ∈ C0,α(Ω). There exists C > 0 and for any a ∈ Ω a
function ϕa ∈ C2,α(R2) such that, if r ∈ (0, r0] and B(a, r) ∩ Ω 6= ∅ , then

∀ x ∈ B(a, r) ∩ Ω , |F(x)−B0(a)A0(x− a)−∇ϕa(x)| ≤ C r1+α .

Here F is the vector field satisfying (2.10).
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Proof of Lemma 2.5. Since the boundary of Ω is smooth and F ∈ C1,α(Ω;R2), the vector field
F admits an extension F̂ in C1,α(R2;R2). We get in this way an extension B̂0 = curl F̂ of B0 in
C0,α(R2). We now define in R2, the two vector fields

F̃(y) = F̂(a+ y) , Ã(y) =

(∫ 1

0
sB̂0(a+ sy) ds

)
(−y2, y1) .

Clearly, curl F̃ = curl Ã = B̂0(a+y). Consequently, by integrating the closed 1-form associated
with F̃ − Ã, there exists a function ϕ̃ ∈ C2,α(R2) such that

F̃−∇ϕ̃ = Ã , φ̃(0) = 0 .

Since B̂0 ∈ C0,α(R2), Ã(y) = B0(a)(−y2, y1) +O(r1+α) in B(0, r). We then define the function
ϕa by ϕa(x) = ϕ̃(x− a) +B0(a)

(
a2x1 − a1x2

)
. This implies

∀ x ∈ B(a, r) , |F̂(x)−B0(a)A0(x− a)−∇ϕa(x)| ≤ C r1+α ,

and the lemma by restriction to Ω. �

2.5. Lower bound of the kinetic energy term. The main result in this subsection is:

Proposition 2.6. Let 0 < c1 < c2 be fixed constants. Suppose that α ∈ (0, 1] and B0 ∈ C0,α(Ω).
There exist κ0 > 0 and C > 0 such that the following is true, with

σ(α) =
2α

3 + α
. (2.11)

(1) For
• κ ≥ κ0, c1 κ ≤ H ≤ c2 κ ;
• (ψ,A)κ,H a solution of (1.3) ;
• φ ∈ H1(Ω) satisfies suppφ ⊂ {x ∈ Ω, |B0(x)| > 0} ,

we have∫
Ω
|(∇− iκHA)φ (x)|2 dx ≥ Θ0κH

∫
Ω

(
|B0(x)| − Cκ−σ(α)

)
|φ(x)|2 dx .

(2) If in addition φ = 0 on ∂Ω, then∫
Ω
|(∇− iκHA)φ (x)|2 dx ≥ κH

∫
Ω

(
|B0(x)| − Cκ−σ(α)

)
|φ(x)|2 dx .

The estimates in Items (1) and (2) in this proposition are known when the vector field A is
C2, independent of (κ,H), curlA 6= 0 and B0 is replaced by curlA (cf. Lemma 2.2 and [20]).

For α = 1 (i.e. B0 is Lipschitz) the errors in Proposition 2.6 and Lemma 2.2 are of the same
order.

Proof of Proposition 2.6. Let us choose an arbitrary φ ∈ H1(Ω). All constants below are in-
dependent of φ. For the sake of simplicity, we will work under the additional assumption that
supp φ ⊂ {B0 > 0}.

Step 1. Decomposition of the energy via a partition of unity.
For ` > 0 we consider the partition of unity in R2∑

j

χ2
j = 1 ,

∑
j

|∇χj |2 ≤ C `−2 in R2 , and suppχj ⊂ B(a`j , `) .

Here the construction is first done for ` = 1 and then for general ` > 0 by dilation. Hence
the constant C is independent of `. Although the points (a`j) depend on `, we omit below the
reference to ` and write aj for a`j .
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In what follows, we will use this partition of unity with

` = κ−ρ , 0 < ρ < 1 and κ large enough.

Using this partition of unity, we may estimate from below the kinetic energy term as follows∫
Ω
|(∇− iκHA)φ|2 dx ≥

∑
j

(∫
Ω
|(∇− iκHA)(χjφ)|2 dx− C`−2

∫
Ω
|χjφ|2 dx

)
. (2.12)

Let αj(x) = (x − aj) ·
(
A(aj) − F(aj)

)
, where F is the vector field in (2.10). Note the useful

decomposition

A(x)−∇αj = F(x) +
(
A(x)− F(x)

)
−
(
A(aj)− F(aj)

)
.

By Proposition 2.4, we have in B(aj , `) ∩ Ω,

|(∇− iκHA)(χjφ)|2 = |(∇− iκH(A−∇αj))(e−iκHαjχjφ)|2

≥ (1− `δ)|(∇− iκHF)e−iκHαjχjφ|2 − `−δκ2H2`2γ ‖A− F‖2
C0,γ(Ω)

|χjφ|2

≥ (1− `δ)|(∇− iκHF)(e−iκHαjχjφ)|2 − CH2`(2γ−δ)|χjφ|2 .
(2.13)

Here δ > 0 and γ ∈ (0, 1) are two parameters to be chosen later.
By Lemma 2.5, we may define a smooth function ϕj in B(aj , `) ∩ Ω such that,

|F(x)−∇ϕj(x)− |B0(aj)|A0(x− aj)| ≤ C `1+α ,

where C > 0 is independent of j.
Consequently, there exists C > 0 such that, for all j,

|(∇− iκHF)(e−iκHαjχjφ)|2 ≥ (1− `δ)|(∇− iκH|B0(aj)|A0(x− aj))e−iκHϕje−iκHαjχjφ|2

− Cκ2H2`2+2α−δ|χjφ|2 . (2.14)

Step 2. The case suppφ ⊂ {x ∈ Ω, B0(x) > 0} and φ = 0 on ∂Ω .

The assumption on the support of φ yields that χjφ ∈ H1
0 (Ω). Collecting (2.13), (2.14) and

the spectral inequality in Lemma 2.1, we get the existence of C > 0 such that for all j∫
Ω
|(∇− iκHA)(χjφ)|2 dx ≥ (1− 2`δ)κH

∫
Ω
|B0(aj)| |χjφ|2 dx

− CH2(`2γ−δ + κ2`2+2α−δ)

∫
Ω
|χjφ|2 dx .

Since B0 is in C0,α(Ω), we have B0(x) = B0(aj) +O(`α) in B(aj , `) . Thus∫
Ω
|(∇− iκHA)(χjφ)|2 dx ≥ κH

∫
Ω
|B0(x)| |χjφ(x)|2 dx

− CH2(`α + `δ + `2γ−δ + κ2`2+2α−δ)

∫
Ω
|χjφ(x)|2 dx .

After summation and using that
∑

j χ
2
j = 1 , we get∫

Ω
|(∇− iκHA)φ|2 dx

≥ κH
(∫

Ω
|B0(x)| |φ(x)|2 dx− C(`α + `δ + `2γ−δ + κ2`2+2α−δ + κ−2`−2)

∫
Ω
|φ|2 dx

)
.

Hence the goal is to choose, when κ→ +∞ and with ` = κ−ρ , the parameters ρ , δ , γ and α in
order to minimize the sum

Σ0(κ, `) := `α + `δ + `2γ−δ + κ2`2+2α−δ + κ−2`−2. (2.15)
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If we take δ = γ, which corresponds to give the same order for the second and the third terms
in Σ0 , we obtain with ` = κ−ρ∫

Ω
|(∇− iκHA)φ|2 dx ≥ κH

∫
Ω

(
|B0(x)| − C(κ−ρα + κ−ργ + κ2−(2+2α−γ)ρ + κ2ρ−2

)
|φ(x)|2 dx.

In the remainder, to minimize the error for the two last terms, we select ρ such that

2− (2 + 2α− γ)ρ = 2ρ− 2 ,

i.e.
ρ = 4/(4 + 2α− γ) .

Getting the condition 0 < ρ < 1 satisfied leads to the condition α > γ/2 . We select γ = 2
3α .

This choice is optimal since

σ(α) := max
0<γ<2α

σ0(α, γ) = σ0

(
α,

2α

3

)
=

2α

3 + α
,

where

σ0(α, γ) = min

(
4α

4 + 2α− γ
,

4γ

4 + 2α− γ
,

2(2α− γ)

4 + 2α− γ

)
.

This finishes the proof of Item (2) in Proposition 2.6 .

Step 3. The case supp φ ⊂ {x ∈ Ω , B0(x) > 0}.
We continue with the choice δ = γ = 2

3α and ρ = 4/(4 + 2α− γ). We collect the inequalities in
(2.13), (2.14) and Lemma 2.2 and write∫

Ω
|(∇− iκHA)(χjφ)|2 dx ≥ (1− 2`2α/3)κH

∫
Ω

(
Θ0|B0(aj)| − C(κH)−1/4

)
|χjφ|2 dx

− CH2κ−σ(α)

∫
Ω
|χjφ|2 dx .

Since B0 ∈ C0,α(Ω), we can replace B0(aj) by B0(x) on the support of χj modulo an error O(`α).
We insert the resulting estimate into (2.12) and use that

∑
j χ

2
j = 1 to get,∫

Ω
|(∇− iκHA)φ|2 dx ≥ κH

∫
Ω

(
Θ0|B0(x)| − C(κ−σ(α) + κ−1/2)

)
|φ(x)|2 dx .

Observing that σ(α) ≤ 1
2 , we have achieved the proof of Item (1) in Proposition 2.6 . �

3. Exponential decay

3.1. Main statements. We recall the definition of the deGennes constant Θ0 in (1.5), and the
two constants β0, β1 in (1.4). For all λ ∈ (0, β0), we introduce the two functions on ω(λ):

tλ(x) = dist
(
x, ∂ω(λ)

)
and ζλ(x) = dist

(
x,Ω ∩ ∂ω(λ)

)
, (3.1)

where ω(·) is the domain introduced in (1.12).

Theorem 3.1. [Exponential decay outside the superconductivity region]
Let c1 and c2 be two constants such that β−1

0 < c1 < c2 . Suppose that Assumption 1.2 holds for
some α ∈ (0, 1). There exists µ0 > 0 and for all µ ∈ (0, µ0), there exist κ0 > 0 , C > 0 and
α̂ > 0 such that, if

κ ≥ κ0, c1κ ≤ H ≤ c2κ ,

and (ψ,A)κ,H is a solution of (1.3) , then the following inequalities hold:
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(1) Decay in the interior:∫
ω(λ)∩{tλ(x)≥ 1√

κH
}

(
|ψ(x)|2 +

1

κH
|(∇− iκHA)ψ (x)|2

)
exp

(
2α̂
√
κH tλ(x)

)
dx ≤ C

κ
,

where λ =
κ

H
+ µ ;

(2) Decay up to the boundary:∫
ω(β)∩{ζβ(x)≥ 1√

κH
}

(
|ψ(x)|2 +

1

κH
|(∇− iκHA)ψ (x)|2

)
exp

(
2α̂
√
κH ζβ(x)

)
dx ≤ C

κ
,

where β = Θ−1
0

( κ
H

+ µ
)
.

Remark 3.2. Theorem 3.1 says that, for µ > 0 sufficiently small, bulk superconductivity breaks
down in the region {x ∈ Ω, |B0(x)| ≥ κ

H + µ} and that surface superconductivity breaks down
in the region {x ∈ ∂Ω, Θ0|B0(x)| ≥ κ

H + µ} . This is illustrated in Figures 1 and 2 .

Remark 3.3. In the constant magnetic field case, B0 = 1 , Theorem 3.1 is proved by Pan [34], in
response to a conjecture by Rubinstein [37, p. 182]. Our proof of Theorem 3.1 is simpler than
the one in [34] since we do not use the a priori elliptic L∞-estimates, whose derivation is not
easy (cf. [15, Ch. 11]).

Remark 3.4. On a technical level, one can still avoid to use the L∞-elliptic estimates in the proof
of Theorem 3.1 when the magnetic field is constant, by establishing a weak decay estimate on
the order parameter (namely ‖ψ‖2 = O(κ−1/4)). This has been done by Bonnaillie-Noël and
Fournais in [10] and then generalized by Fournais-Helffer to non-vanishing continuous magnetic
fields in [15, Cor. 12.3.2]. However, in the sign-changing field case and the regime considered in
Theorem 3.1, the weak decay estimate as in [10] does not hold.

The substitute of the weak decay estimate in our proof is the use of a (local) gauge transfor-
mation. This has been used earlier to estimate the Ginzburg-Landau energy (cf. [29, 9]), and
the exponential decay of the order parameter for non-smooth magnetic fields (cf. [6]). We will
extend this method for obtaining local estimates in Theorems 4.7 and 4.8.

Remark 3.5. The conclusion in Theorem 1.3 is a simple consequence of Theorem 3.1 and the
estimate in Proposition 2.4. Actually, if O is an open set independent of κ such that O ⊂ ω(κ/H),
then

O ⊂ ω
( κ
H

+ µ
)

for µ sufficiently small, and

dist
(
x, ∂ω

( κ
H

+ µ
))
≥ cµ in O ,

for a constant cµ > 0 .
Similarly, when O is an open set independent of κ and

O ⊂ ω(κ/H) ∪ {x ∈ ∂Ω, Θ0|B0(x)| < κ/H} ,

then
O ⊂ ω

(
Θ−1

0

( κ
H

+ µ
))

for µ sufficiently small, and

dist

(
x, ∂ω

(
Θ−1

0

( κ
H

+ µ
)))

≥ ĉµ in O ,

for a constant ĉµ > 0 .
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The rest of this section is devoted to the proof of Theorem 3.1, which follows the scheme of
the proof of the semi-classical Agmon estimates (cf. [15, Ch. 12] and references therein).

Suppose that the parameters κ and H have the same order, i.e.

κ ≥ κ0 and c1κ ≤ H ≤ c2κ ,

where κ0 ≥ 1 is supposed sufficiently large (this condition will appear in the proof below).
Suppose also that

c2 > c1 > β−1
0 ,

where c1, c2 are fixed constants and β0 was introduced in (1.4).

3.2. Useful inequalities. For all γ > 0 , we extend to Ω the definitions of tγ and ζγ given in
(3.1) as follows

tγ(x) =

{
dist

(
x, ∂ω(γ)

)
if x ∈ ω(γ)

0 if x ∈ Ω \ ω(γ))
(3.2)

and

ζγ(x) =

{
dist

(
x,Ω ∩ ∂ω(γ)

)
if x ∈ ω(γ)

0 if x ∈ Ω \ ω(γ)
. (3.3)

In the sequel, we will add conditions on γ to ensure that ω(γ) 6= ∅ .
Let χ̃ ∈ C∞(R) be a non negative function satisfying

χ̃ = 0 on (−∞, 1

2
] , χ̃ = 1 on [1,∞) .

Define the functions χγ , ηγ , fγ and gγ on Ω as follows:

χγ(x) = χ̃
(√
κHtγ(x)

)
, ηγ(x) = χ̃

(√
κHζγ(x)

)
,

fγ(x) = χγ(x) exp
(
α̂
√
κH tγ(x)

)
and gγ(x) = ηγ(x) exp

(
α̂
√
κH ζγ(x)

)
, (3.4)

where α̂ is a positive number whose value will be fixed later.
Let h ∈ {fγ , gγ}. We multiply both sides of the first equation in (1.3) by h2ψ and then

integrate by parts over ω(γ). We get∫
ω(γ)

(∣∣(∇− iκHA)(hψ)
∣∣2 − κ2h2|ψ|2 − |∇h|2|ψ|2

)
dx ≤ 0 . (3.5)

In the computations below, the constant C is independent of α̂, γ, κ and H. We estimate the
term involving ∇h as follows∫

ω(γ)
|∇h|2|ψ|2 dx ≤ 2α̂2κH ‖hψ‖2L2(ω(λ)) + C κH T (h) ,

where

T (h) :=



∫
ω(γ)∩{

√
κHtγ(x)≤1}

|ψ(x)|2 dx if h = fγ ,

∫
ω(γ)∩{

√
κHζγ(x)≤1}

|ψ(x)|2 dx if h = gγ .

(3.6)

In this way we infer from (3.5) the following estimate∫
ω(γ)

(∣∣(∇− iκHA)(hψ) (x)
∣∣2 − κ2h(x)2|ψ(x)|2 − 2α̂2κHh(x)2|ψ(x)|2

)
dx ≤ C κH T (h) . (3.7)
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3.3. Decay in the interior.

Now we choose
γ = λ =

κ

H
+ µ .

Here 0 < µ < µ0 and µ0 is sufficiently small such that µ0 + 1
c1
< β0 . This ensures that ω(λ) 6= ∅ .

We choose in (3.7) the function h = fλ, where fλ is the function introduced in (3.4). Note
that fλψ ∈ H1

0 (ω(λ)). We may apply the result in Proposition 2.6 to φ := fλψ and infer from
(3.7)∫

ω(λ)

((
1− Cκ−σ(α))|B0(x)| − 2α̂2 − κ

H

)
f2
λ |ψ|2 dx ≤ C

∫
ω(λ)∩{

√
κHtλ(x)≤1}

|ψ(x)|2 dx .

We then use that |B0(x)| ≥ λ in ω(λ) and that λ = κ
H + µ . Consequently, for 0 < µ < µ0 ,

0 < α̂ < α̂0 , κ ≥ κ0 , α̂0 sufficiently small (for example α̂2
0 < µ/4) and κ0 sufficiently large(

1− Cκ−σ(α))|B0(x)| − 2α̂2 − κ

H
≥ µ

2
.

Consequently, there exists a constant Cµ > 0 such that∫
ω(λ)

fλ(x)2 |ψ(x)|2 dx ≤ C−1
µ

∫
ω(λ)∩{

√
κHtλ(x)≤1}

|ψ(x)|2 dx

≤ C√
κH

by (2.8) .

Inserting this into (3.7) (with h = fλ and T (fλ) defined in (3.6)) achieves the proof of Item (1)
in Theorem 3.1.

3.4. Decay up to the boundary. Now we prove Item (2) in Theorem 3.1. Here we choose

γ = β = Θ−1
0

( κ
H

+ µ
)
.

Note that the estimate in Item (2) of Theorem 3.1 is trivially true if ω(β) = ∅ . So, we assume
in the sequel that ω(β) 6= ∅ . This holds if

H ≥ c1κ , c1 > (Θ0β1)−1 ,

and µ is sufficiently small.
We write (3.7) for h = gβ , where gβ is introduced in (3.4) and T (gβ) in (3.6). We apply

Proposition 2.6 to φ := gβψ and get∫
ω(β)

((
1−Cκ−σ(α))Θ0|B0(x)|−Cα̂2− κ

H

)
gβ(x)2|ψ(x)|2 dx ≤ C

∫
ω(β)∩{

√
κHζβ(x)≤1}

|ψ(x)|2 dx .

(3.8)
We decompose the integral over ω(β) as follows∫

ω(β)
=

∫
ωint(β)

+

∫
ωbnd(β)

,

where

ωint(β) = ω(β) ∩
{√

κH dist(x, ∂Ω) ≥ 1
}

and ωbnd(β) = ω(β) ∩
{√

κH dist(x, ∂Ω) < 1
}
.

From (3.2), we see that ζβ(x) = tβ(x) and fβ(x) = gβ(x) in ωint(β) . Furthermore, from the
definition of ω(·) in (1.12), we see that ω(β) ⊂ ω(λ) and tβ(x) ≤ tλ(x) on ω(β) if β ≥ λ . Hence,
by the first item in Theorem 3.1 (which is already proved for all α̂ ∈ (0, α̂0)),∫

ωint(β)

∣∣∣(1− Cκ−σ(α))Θ0|B0(x)| − 2α̂2 − κ

H

∣∣∣ gβ(x)2 |ψ(x)|2 dx ≤ C

κ
. (3.9)
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Thus, we infer from (3.8) (and the bound |ψ| ≤ 1),∫
ωbnd(β)

((
1− Cκ−σ(α))Θ0|B0(x)| − 2α̂2 − κ

H

)
gβ(x)2|ψ(x)|2 dx ≤ C

κ
.

But, in ωbnd(β), Θ0|B0(x)| ≥ κ
H + µ , by definition of ω(β) and β = Θ−1

0 ( κH + µ) . Thus, as long
as α̂ is selected sufficiently small, we have

(1− Cκ−σ(α)) Θ0|B0(x)| − 2α̂2 − κ

H
≥ µ

2
,

and consequently, for some constant C̃µ > 0 ,∫
ωbnd(β)

gβ(x)2|ψ(x)|2 dx ≤ C̃µ
κ
.

We insert this estimate and the one in (3.9) into (3.8) to get∫
ω(β)

gβ(x)2|ψ(x)|2 dx ≤ C̃µ + C

κ
.

Finally, by inserting this estimate into (3.7) (with h = gβ and T (gβ) defined in (3.6)), we finish
the proof of Item (2) in Theorem 3.1.

4. Surface energy

The analysis of surface superconductivity starts with the work of St. James-deGennes [38],
who studied this phenomenon on the ball. In the last two decades, many papers adressed the
boundary concentration of the Ginzburg-Landau order parameter for general 2D and 3D samples
in the presence of a constant magnetic field. We refer the reader to [3, 12, 14, 16, 19, 18, 31, 34].

In this section, we study surface superconductivity in non-uniform magnetic fields. Our pre-
sentation not only generalizes the results known for the constant field case, but also provides
local estimates and new proofs, see Theorems 4.7 and 4.8 . The most notable novelty in the
proofs is that we do not use the L∞ elliptic estimates.

4.1. The surface energy function. In this subsection, we give the definition of the continuous
function Esurf : [1,Θ−1

0 ] → (−∞, 0] introduced by X.B. Pan in [34] and which appeared after
(1.14) and in Theorem 1.5. Θ0 is as before the deGennes constant introduced in (1.5) with
property (1.6).

For b ∈ [1,Θ−1
0 ] and R > 0 , we consider the reduced Ginzburg-Landau functional,

V(UR) 3 φ 7→ Eb,R(φ) =

∫
UR

(
b|(∇(σ,τ) + iτ f)φ|2 − |φ|2 +

1

2
|φ|4

)
dσdτ , (4.1)

where f = (1, 0) and UR is the domain,

UR = (−R,R)× (0,+∞) , (4.2)

and
V(UR) = {u ∈ L2(UR) : (∇(σ,τ) + iτ f)u ∈ L2(UR) , u(±R, ·) = 0 } . (4.3)

We introduce the following ground state energy,

d(b, R) = inf{Eb,R(φ) : φ ∈ V(UR)} . (4.4)

In [34], it is proved that, for all b ∈ [1,Θ−1
0 ] , there exists Esurf(b) ∈ (−∞, 0] such that

Esurf(b) = lim
R→∞

d(b, R)

2R
. (4.5)

The surface energy function Esurf(·) can be described by a simplified 1D problem as well (cf.
[3, 18] and finally [12] for the optimal result). We collect some properties of Esurf(·):

• Esurf(·) is a continuous and increasing function (cf. [19]) ;
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• Esurf(Θ
−1
0 ) = 0 and Esurf(b) < 0 for all b ∈ [1,Θ−1

0 ) (cf. [14]).
The next theorem gives the existence of some minimizer with good properties (cf. [34, Theo-

rems 4.4 & 5.3]):

Theorem 4.1. There exist positive constants R0 and M such that, for all b ∈ [1,Θ−1
0 ) and

R ≥ R0:
(1) The functional (4.1) has a minimizer uR in V(UR) with the following properties:

(a) uR 6≡ 0 ;
(b) ‖uR‖∞ ≤ 1 ;
(c)

1

R

∫
UR∩{τ≥3}

τ2

(ln τ)2

(
|(∇(σ,τ) + iτ f)uR|2 + |uR(σ, τ)|2 + τ2|uR(σ, τ)|4

)
dσdτ ≤M .

(2) The surface energy function Esurf(b) satisfies

Esurf(b) ≤
d(b, R)

2R
≤ Esurf(b) +

M

R
.

The upper bound in Item (2) above results from a property of superadditivity of d(b, R), see
[34, Eq. (5.4)]. The lower bound in Item (2) above is not explicitly mentioned in [34], but its
derivation is easy [17, Proof of Thm 2.1, Step 2, p. 351] and can be sketched in the following
way. Let R > 0 and n ∈ N. Let uR ∈ H1

0 (UR) be a minimizer of the functional in (4.1). We
extend uR to a function in H1

0 (U(2n+1)R) by periodicity as follows

uR(x1 + 2R, x2) = uR(x1, x2) .

Consequently,
d(b, (2n+ 1)R) ≤ Eb,(2n+1)R(uR) = (2n+ 1)d(b, R) .

Dividing both sides of the preceding inequality by 2(2n+ 1)R and sending n to +∞ , we get

Esurf(b) ≤
d(b, R)

2R
.

4.2. Boundary coordinates. The analysis of the boundary effects is performed in specific co-
ordinates valid in a tubular neighborhood of ∂Ω. We call these coordinates boundary coordinates.
For more details on these coordinates, see for instance [15, Appendix F].

For a sufficiently small t0 > 0, we introduce the open set

Ω(t0) = {x ∈ R2 : dist(x, ∂Ω) < t0} .
In the sequel, let x0 ∈ ∂Ω be a fixed point. Let s 7→ γx0(s) be the parametrization of ∂Ω by
arc-length such that γx0(0) = x0. Also, let ν(s) be the unit inward normal of ∂Ω at γx0(s). The
orientation of γx0 is selected in the counter clock-wise direction, hence

det
(
γ′x0

(s), ν(s)
)

= 1 .

Define the transformation

Φx0 :

[
−|∂Ω|

2
,
|∂Ω|

2

)
× (0, t0) 3 (s, t) 7→ γx0(s) + tν(s) ∈ Ω(t0) . (4.6)

We may choose t0 sufficiently small (independently from the choice of the point x0 ∈ ∂Ω) such
that the transformation in (4.6) is a diffeomorphism. The Jacobian of this transformation is
|DΦx0 | = 1− tk(s), where k denotes the curvature of ∂Ω. For x ∈ Ω(t0), we put

Φ−1
x0

(x) = (s(x), t(x)) .

In particular, we get the explicit formulae

t(x) = dist(x, ∂Ω) and s(x0) = 0 . (4.7)
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Using Φx0 , we may associate to any function u ∈ L2(Ω), a function ũ = TΦx0
u defined in

[− |∂Ω|
2 , |∂Ω|

2 ) × (0, t0) by,
ũ(s, t) = u(Φx0(s, t)) . (4.8)

Also, for every vector field A ∈ H1(Ω), we assign the vector field

Ã(s, t) =
(
Ã1(s, t), Ã2(s, t)

)
with  Ã1(s, t) = a(s, t)A

(
Φx0(s, t)

)
· γ′x0

(s) ,

Ã2(s, t) = A
(

Φx0(s, t)
)
· ν(s) ,

(4.9)

and
a(s, t) = 1− t k(s) .

The following change of variable formulas hold.

Proposition 4.2. For u ∈ H1(Ω) and A ∈ H1(Ω;R2), we have:∫
Ω(t0)

|(∇− iA)u|2 dx =

∫ t0

0

∫ |∂Ω|
2

− |∂Ω|
2

[
[a(s, t)]−2|(∂s − iÃ1)ũ|2 + |(∂t − iÃ2)ũ|2

]
a(s, t) dsdt ,

(4.10)

and ∫
Ω(t0)

|u(x)|2 dx =

∫ t0

0

∫ |∂Ω|
2

− |∂Ω|
2

|ũ(s, t)|2a(s, t) dsdt . (4.11)

Recall the vector field A0 introduced in (2.2). Up to a gauge transformation, the vector field
A0 admits a useful (local) representation in the coordinate system (s, t).

For x0 ∈ ∂Ω and ` ∈ (0, t0), we introduce the set Vx0(`) ⊂ Ω(t0) as follows:

Vx0(`) = Φx0

(
(−`, `)× (0, `)

)
. (4.12)

Lemma 4.3. There exists r0 > 0 such that, for any x0 in ∂Ω , there exists gx0 in
C∞((−2r0 , 2r0)× (0 , r0)) such that

Ã0(s, t)−∇gx0(s, t) =

(
−t+ k(s)

t2

2
, 0

)
in (−2r0 , 2r0)× (0 , r0) .

Here Ã0 is the vector field associated with A0 by the formulas in (4.9) and one can take r0 =

min(t0,
|∂Ω|

4 ).

For the proof of Lemma 4.3, we refer to [15, Proof of Lem. F.1.1]. Note that Lemma F.1.1 in
[15] is announced for a more general setting.

We will use Lemma 4.3 to estimate the following Ginzburg-Landau energy of u,

G0

(
u,A0;Vx0(`)

)
=

∫
Vx0 (`)

(
|(∇− ihexA0)u|2 − κ2|u|2 +

κ2

2
|u|4
)
dx . (4.13)

Lemma 4.4. There exist constants C > 0, `0 > 0 and κ0 > 0 such that, for all x0 ∈ ∂Ω,
` ∈ (0, `0), κ ≥ κ0 , κ2 ≤ hex ≤ Θ−1

0 κ2 , and u ∈ H1
0 (Vx0(`)) ∩ L∞(Vx0(`)) satisfying ‖u‖∞ ≤ 1 ,

the following two inequalities hold:

G0

(
u,A0;Vx0(`)

)
≥ 2

κ2`√
hex

Esurf

(
hex

κ2

)
− Cκ`

(
`+ κ3`4 + κ`2

)
, (4.14)

and

G0

(
u,A0;Vx0(`)

)
≤ (1 + C`)

κ2

hex
Ehex/κ2,

√
hex `

(ṽ) + Cκ`
(
κ3`4 + κ`2

)
. (4.15)
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where E·,· is the functional introduced in (4.1) and

ṽ(σ, τ) = exp

(
−ihex gx0

( σ√
hex

,
τ√
hex

))
ũ
( σ√

hex
,

τ√
hex

)
.

Here ũ is the function associated with u by (4.8) and gx0 is introduced in Lemma 4.3.

Proof. Using Proposition 4.2 and the assumptions on u, we may write, for two constants C0, C >
0 and for all 0 < ` < min

(
1
2C
−1
0 , t0

)
,

G0

(
u,A0;Vx0(`)

)
≥ (1− C0`)

∫ `

0

∫ `

−`

(
|(∇− ihexÃ0)ũ|2 − κ2|ũ|2 +

κ2

2
|ũ|4
)
dsdt− Cκ2`3 .

Let g := gx0 be the function defined in Lemma 4.3 and w̃(s, t) = e−ihexg(s,t)ũ(s, t) . Using the
Cauchy-Schwarz inequality, we get the existence of C > 0 such that

G0

(
u,A0;Vx0(`)

)
≥ (1−2C0`)

∫ `

0

∫ `

−`

(
|(∇+ihextf)w̃|2−κ2|w̃|2 +

κ2

2
|w̃|4

)
dsdt−Cκ4`5−Cκ2`3 .

Here f = (1, 0). We apply the change of variables (σ, τ) = (
√
hex s,

√
hex t) and ṽ(σ, τ) = w̃(s, t)

to get

G0(u,A0;Vx0(`)) ≥ (1− 2C0`)
κ2

hex
Ehex/κ2,R(ṽ)− Cκ4`5 − Cκ2`3 ,

where R = h
1
2
ex ` and Ehex/κ2,R is the functional introduced in (4.1) for b = hex/κ

2 .
Note that we extended ṽ by 0, which is possible because u ∈ H1

0 (Vx0(`)). Using the second
Item in Theorem 4.1 and the assumption C0` <

1
2 , we get

G0(u,A0;Vx0(`)) ≥ 2(1− 2C0`)
κ2

hex
(h

1
2
ex `)Esurf

(
hex

κ2

)
− Cκ4`5 − Cκ2`3 .

This proves the lower bound (4.14) in Lemma 4.4 .
Similarly, using Lemma 4.3, the Cauchy-Schwarz inequality on the kinetic term and a change of
variables, we get the upper bound (4.15) of Lemma 4.4 . �

4.3. Existence of surface superconductivity.
The proof of Theorem 1.5 follows from the exponential decay stated in Theorem 3.1 and the

following result:

Theorem 4.5. Suppose that Assumption 1.2 holds and that b > β−1
0 , where β0 is the constant

introduced in (1.4). There exists ρ ∈ (0, 1) such that the following is true.
Let x0 ∈ ∂Ω such that 1

b < |B0(x0)| < 1
Θ0b

. If (ψ,A)κ,H is a minimizer of the functional in
(1.1) for H = bκ , then

lim
κ→+∞

(
2κ1+ρ

∫
Vx0 (κ−ρ)

|ψ(x)|4 dx

)
= −2

√
1

b|B0(x0)|
Esurf

(
b|B0(x0)|

)
> 0 , (4.16)

and

lim
κ→+∞

(
2κρ−1E

(
ψ,A;Vx0(κ−ρ)

))
=

√
1

b|B0(x0)|
Esurf

(
b|B0(x0)|

)
< 0 . (4.17)

The proof of Theorem 4.5 will follow from the upper bound in Theorems 4.7 and 4.8 below.

Remark 4.6. Let ε ∈ (1,Θ−1
0 − 1) . The convergence in (4.16) and (4.17) is uniform with respect

to x0 ∈ {1 + ε ≤ b|B0| < Θ−1
0 } ∩ ∂Ω. This is precisely stated in Theorems 4.7 and 4.8.



20 BERNARD HELFFER AND AYMAN KACHMAR

4.4. Sharp upper bound on the L4-norm.
In this subsection, we will prove:

Theorem 4.7. Suppose that B0 ∈ C0,α(Ω) for some α ∈ (0, 1), ρ ∈ ( 3
3+α , 1) and

b ≥ β−1
0 , with β0 := sup

x∈Ω

|B0(x)| > 0 .

There exist κ0 > 0, a function r : [κ0,+∞) → R+ such that limκ→+∞ r(κ) = 0 and, for all
κ ≥ κ0 , for all critical point (ψ,A)κ,H of the functional in (1.1) with H = bκ , and all x0 ∈ ∂Ω
satisfying

1 ≤ b |B0(x0)| < Θ−1
0 ,

the inequality

1

2`

∫
Vx0 (`)

|ψ(x)|4 dx ≤ −2κ−1

√
1

b|B0(x0)|
Esurf

(
b |B0(x0)|

)
+ κ−1 r(κ) ,

holds with
` = κ−ρ and Vx0(`) is defined in (4.12).

Proof.
The proof is reminiscent of the method used by the second author in [26, Sec. 4] (see also [27]).
We assume that B0(x0) > 0. The case where B0(x0) < 0 can be treated in the same manner by
applying the transformation u 7→ u.

Let σ ∈ (0, 1) and ` = κ−ρ as in the statement of Theorem 4.7 . Let f be a smooth function
satisfying,

f = 1 in Vx0(`), 0 ≤ f ≤ 1 and |∇f | ≤ C

σ`
in Vx0

(
(1 + σ)`

)
. (4.18)

The function f depends on the parameters x0, `, σ but the constant C is independent of these
parameters. We will estimate the following local energy

E1(fψ,A) := E1

(
fψ,A;Vx0((1 + σ)`)

)
, (4.19)

where, for an open set V ⊂ Ω,

E1(u,A;V) :=

∫
V

(
|(∇− iκHA)u|2 − κ2|u|2 +

κ2

2
|u|4
)
dx ,

E2(u,A;V) :=

∫
V

(
|(∇− iκHA)u|2 − κ2|u|2 +

κ2

2
|u|4
)
dx

+ (κH)2

∫
Ω
| curlA−B0|2 dx .

(4.20)

Since (ψ,A) is a solution of (1.3), an integration by parts yields (cf. [16, Eq. (6.2)]),

E1(fψ,A) = κ2

∫
Vx0 ((1+σ)`)

f2

(
−1 +

1

2
f2

)
|ψ|4 dx+

∫
Vx0 ((1+σ)`)

|∇f |2|ψ|2 dx . (4.21)

Since f = 1 in Vx0(`) and −1 + 1
2f

2 ≤ −1
2 in Vx0((1 + σ)`), we may write∫

Vx0 ((1+σ)`)
f2

(
−1 +

1

2
f2

)
|ψ|4 dx ≤ −1

2

∫
Vx0 (`)

|ψ|4 dx .

We estimate the integral in (4.21) involving |∇f | using (4.18) and
∣∣supp f

∣∣ ≤ Cσ`2, where∣∣supp f
∣∣ denotes the area of the support of f . In this way, we infer from (4.21),

E1(fψ,A) ≤ −κ
2

2

∫
Vx0 (`)

|ψ|4 dx+ Cσ−1 . (4.22)
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Now we write a lower bound for this energy. We may find a real-valued function
w ∈ C2,α(Vx0((1 + σ)`) such that

E1(fψ,A) ≥
∫
Vx0 ((1+σ)`)

(
(1−C`δ)|(∇− iκHB0(x0)A0)(e−iκHwfψ)|2−κ2|fψ|2 +

κ2

2
|fψ|4

)
dx

− Cκ2
(
`2γ−δ + κ2`2+2α−δ

)∫
Vx0 ((1+σ)`)

|fψ|2 ,

where γ ∈ (0, 1) is a constant whose choice will be specified later and δ > 0 .
The details of these computations are given in (2.13) and (2.14).
From now on we choose δ = α , use the lower bound in Lemma 4.4 and the assumption that
H = bκ to write

E1(fψ,A) ≥ 2(1− C`α)κ(1 + σ)`

√
1

b|B0(x0)|
Esurf

(
b|B0(x0)|

)
− Cκ`(`+ κ3`4 + κ`2)− Cκ2

(
`α + `2γ−α + κ2`2+α

)∫
Vx0 ((1+σ)`)

|fψ|2 .

Using the bound ‖fψ‖∞ ≤ 1 , we get further

E1(fψ,A) ≥ 2(1− C`α)κ(1 + σ)`

√
1

b|B0(x0)|
Esurf

(
b|B0(x0)|

)
− Cκ`

(
`+ κ`1+α + κ`1+2γ−α + κ3`3+α

)
. (4.23)

To optimize the remainder, we choose γ = α . Our assumption

` = κ−ρ with (1 + α)−1 < 3(3 + α)−1 < ρ < 1

yields that the function
Σ(κ, `) := `α + `+ κ`1+α + κ3`3+α

tends, with ` = κ−ρ, to 0 as κ→ +∞ .
Now, coming back to (4.22), we find

2κ(1 + σ)`

√
1

b|B0(x0)|
Esurf

(
b|B0(x0)|

)
− C κ `Σ(κ, `) ≤ −κ

2

2

∫
Vx0 (`)

|ψ|4 dx+ Cσ−1 .

We rearrange the terms in this inequality, divide by κ2`, and choose σ = κ
1
2

(ρ−1). In this way,
we get the upper bound in Theorem 4.7 with, for some constant C > 0,

r(κ) = C
(

Σ(κ, κ−ρ) + κ
1
2

(ρ−1)
)
.

�
4.5. Sharp Lower bound on the L4-norm.

In this subsection, we will prove the asymptotic optimality of the upper bound established in
Theorem 4.7 by giving a lower bound with the same asymptotics.

We remind the reader of the definition of the domain Vx0(`) in (4.12) and the local energy
E1

(
ψ,A;V

)
introduced in (4.20).

Theorem 4.8. Let 1 < ε < Θ−1
0 − 1, 3

3+α < ρ < 1 and 1 − ρ < δ < 1 be constants. Under
the assumptions of Theorem 4.7, there exist κ0 > 0, a function r̂ : [κ0,+∞) → R+ such that
limκ→+∞ r̂(κ) = 0 and, for all κ ≥ κ0 , for all minimizer (ψ,A)κ,H of the functional in (1.1)
with H = bκ , and all x0 ∈ ∂Ω satisfying

1 + ε ≤ b|B0(x0)| < Θ−1
0 ,
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the two inequalities

1

2`

∫
Vx0 (`)

|ψ(x)|4 dx ≥ −2κ−1

√
1

b|B0(x0)|
Esurf

(
b|B0(x0)|

)
− κ−1 r̂(κ) ,∣∣∣∣∣ 1

2`
E1

(
ψ,A;Vx0((1 + σ)`)

)
− κ

√
1

b|B0(x0)|
Esurf

(
b|B0(x0)|

)∣∣∣∣∣ ≤ κ r̂(κ) ,

hold, with ` = κ−ρ and σ = κ−δ.

Remark 4.9. Let c2 > c1 > 0 be fixed constants. The conclusion in Theorem 4.8 remains true if
` satisfies

c1κ
−ρ ≤ ` ≤ c2κ

−ρ .

Proof of Theorem 4.8. In the sequel, σ ∈ (0, 1) will be selected as a negative power of κ , σ = κ−δ

for a suitable constant δ ∈ (0, 1). As the proof of Theorem 4.7, we can assume that B0(x0) > 0.
The proof of the lower bound in Theorem 4.8 will be done in four steps.

Step 1: Construction of a trial function.
The construction of the trial function here is reminiscent of that by Sandier-Serfaty in the

study of bulk superconductivity (cf. [40]). Define the function

u(x) = 1Vx0 ((1+σ)`)(x)χ

(
t(x)

`

)
exp

(
iκHw(x)

)
vR ◦ Φ−1

x0
(x) + η`(x)ψ(x) (x ∈ Ω) . (4.24)

Here Vx0(·) is introduced in (4.12), t(x) = dist(x, ∂Ω), Φx0 is the coordinate transformation
defined in (4.6),

vR(s, t) = exp
(
iκHgx0(s, t)

)
uR
(
s
√
B0(x0)κH, t

√
B0(x0)κH

)
, (4.25)

R = (1 + σ)`
√
B0(x0)κH , (4.26)

and (cf. (4.1))

uR(·) is a minimizer of the reduced functional EbB0(x0),R(·) .

The function gx0(s, t) satisfies the following identity in
(
− 2` , 2`

)
× (0, `) (cf. Lemma 4.3),

Ã0(s, t)−∇gx0(s, t) =
(
− t+

t2

2
k(s), 0

)
.

The function χ ∈ C∞([0,∞)) satisfies

χ = 1 in [0, 1/2] , χ = 0 in [1,∞) , and 0 ≤ χ ≤ 1 .

The function η` is a smooth function satisfying

η`(x) = 0 in Vx0((1 + σ)`) , η`(x) = 1 in Ω \ Vx0((1 + 2σ)`) , 0 ≤ η`(x) ≤ 1 in Ω ,

and
|∇η`(x)| ≤ Cσ−1`−1 in Ω ,

for some constant C > 0 .
Finally, the function w is the sum of two real-valued C2,α-functions w1 and w2 in Vx0((1+σ)`)

and satisfying the following estimates

|A(x)−F(x)−∇w1(x)| ≤ C

κ
`α and |F(x)−B0(x0)A0(x)−∇w2(x)| ≤ C`1+α in Vx0((1+σ)`) .

(4.27)
By Proposition 2.4, we simply define w1(x) = (x − x0) ·

(
A(x0) − F(x0)

)
. The fact that the

vector field A0(x) is gauge equivalent to A0(x− x0) and Lemma 2.5 ensure the existence of w2.
We decompose the energy E(u,A) as follows

E(u,A) = E1(u,A) + E2(u,A) , (4.28)
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where

E1(u,A) = E1

(
u,A;Vx0((1 + σ)`)

)
and E2(u,A) = E2

(
u,A; Ω \ Vx0((1 + σ)`)

)
(4.29)

are introduced in (4.20).
Step 2: Estimating E1(u,A).
Using the Cauchy-Schwarz inequality and the estimates in (4.27), we get

E1(u,A) ≤ (1 + `α) E1

(
e−iκHw u,B0(x0)A0

)
+ C

(
κ2`2+α + κ4`4+α

)
.

For estimating the term E1

(
e−iκHw u,B0(x0)A0

)
, we write

E1

(
e−iκHw u,B0(x0)A0

)
= G0

(
e−iκHw u, hexA0;Vx0(˜̀)

)
,

where
˜̀= (1 + σ)` , hex = κHB0(x0) and G0 is introduced in (4.13) .

We apply Lemma 4.4 and get

E1(u,A) ≤ (1 + C`α)
1

bB0(x0)
EbB0(x0),R

(
χ̃` uR

)
+ Cκ`

(
κ3`3+α + κ`1+α

)
,

where

χ̃`(τ) = χ

(
τ

`
√
κH

)
, b = H/κ , and R =

√
hex

˜̀,

in conformity with (4.26).
Note that supp(1− χ̃2

` ) ⊂ [`
√
κH/2 , +∞) and supp χ̃′` ⊂ [`

√
κH/2, `

√
κH]. Using the decay of

uR established in Theorem 4.1, we get

EbB0(x0),R

(
χ̃` uR

)
≤ EbB0(x0),R

(
uR
)

+ C
| ln(`

√
κH)|2

`
√
κH

.

Since EbB0(x0),R(uR) = d(bB0(x0), R) and R = (1 + σ)`
√
B0(x0)κH, Theorem 4.1 yields

E1(u,A) ≤ 2κ`

√
1

b|B0(x0)|
Esurf

(
bB0(x0)

)
+ Cκ`

(
`α + κ3`3+α + κ`1+α + σ + (κ`)−1 +

| ln(`
√
κH)|2

`2κ2

)
. (4.30)

Step 3: Estimating E2(u,A).
Let Vx0(˜̀) { := Ω \ Vx0(˜̀) and u = η`ψ . By the Cauchy-Schwarz inequality, we get, for any

ζ ∈ (0, 1) ,∫
Vx0 (˜̀) {

|(∇− iκHA)η`ψ|2 dx

≤ (1 + κ−ζ)

∫
Vx0 (˜̀) {

|η`(∇− iκHA)ψ|2 dx+ (1 + κζ)

∫
Vx0 (˜̀) {

|∇η`|2|ψ|2 dx

≤ (1 + κ−ζ)

∫
Vx0 (˜̀) {

|(∇− iκHA)ψ|2 dx

+ (1 + κζ)

∫
{t(x)≤σ`}∩Vx0 (˜̀){

|∇η`|2|ψ|2 dx+ (1 + κζ)

∫
{t(x)>σ`}

|∇η`|2|ψ|2 dx

≤ (1 + κ−ζ)

∫
Vx0 (˜̀) {

|(∇− iκHA)ψ|2 dx + C(1 + κζ) .

Here we used the properties of the function η`, namely that η` ≤ 1, |∇η`| = O(σ−1`−1) and
|{t(x) ≤ σ`} ∩ Vx0(˜̀){| = O(σ2`2) .
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For the integral over {t(x) > σ`}, we use that b|B0(x0)| ≥ 1 + ε , which in turn allows us to use
Theorem 1.3 and prove that the integral of |ψ|2 is exponentially small as κ→ +∞ .

Now we use that
∣∣∣Vx0(˜̀) { ∩ supp(1− η`)

∣∣∣ = O(σ`2) to write

−κ2

∫
Vx0 (˜̀) {

|η`ψ|2 dx = −κ2

∫
Vx0 (˜̀) {

|ψ|2 dx+ κ2

∫
Vx0 (˜̀) {

(1− η2
` )|ψ|2 dx

≤ −κ2

∫
Vx0 (˜̀) {

|ψ|2 dx+ Cκ2σ`2 .

This yields

E2(u,A) ≤ (1 + κ−ζ)

∫
Ω\Vx0 (˜̀)

(
|(∇− iκHA)ψ|2 − κ2|ψ|2 +

κ2

2
|ψ|4

)
dx

+ C
(

1 + κζ + κ2σ`2
)

+ κ2H2

∫
Ω
| curlA−B0|2 dx .

Remembering the definition of E2(ψ,A) in (4.29), we obtain

E2(u,A) ≤ (1 + κ−ζ) E2(ψ,A) + C
(

1 + κζ + κ2σ`2
)
. (4.31)

Step 4: Upper bound of the local Ginzburg-Landau energy.

Since (ψ,A) is a minimizer of the functional E(·, ·), E(ψ,A) ≤ E(0,A0) = 0 and

E(ψ,A) ≤ E(u,A) = E1(u,A) + E2(u,A) .

Using that E(ψ,A) ≤ 0 , we get further

(1 + κ−ζ)E(ψ,A) ≤ E(u,A) = E1(u,A) + E2(u,A) .

By (4.29), we may write the simple identity E(ψ,A) = E1(ψ,A) + E2(ψ,A). Using (4.31), we
get

(1 + κ−ζ) E1(ψ,A) ≤ E1(u,A) + C
(

1 + κζ + κ2σ`2
)
.

Now, we use the estimate in (4.30) to write

E1(ψ,A) ≤ 2κ`

√
1

b|B0(x0)|
Esurf

(
bB0(x0)

)
+ Cκ`

(
κ−ζ + `α + κ3`3+α + κ`1+α + σ + (κ`)−1 + κ−1+ζ`−1 + κσ`+

| ln(`
√
κH)|2

`2κ2

)
. (4.32)

Step 5: Lower bound of the L4-norm.
We select

` = κ−ρ , σ = κ−δ and ζ =
1− ρ

2
,

with
1

1 + α
<

3

3 + α
< ρ < 1 and 1− ρ < δ < 1 .

In this way, we get that, the restriction Σ̄(κ, κ−ρ, κ−δ) of

Σ̄(κ, `, σ) := κ−ζ + `α + κ3`3+α + κ`1+α + σ+ (κ`)−1 + κ−1+ζ`−1 + κσ`+
| ln(`

√
κH)|2

`2κ2
, (4.33)

tends to 0 as κ→ +∞ .
Consequently, we infer from (4.32),

E1(ψ,A) ≤ 2κ `

√
1

b|B0(x0)|
Esurf

(
bB0(x0)

)
+ C κ` Σ̄(κ, κ−ρ, κ−δ) . (4.34)
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Now, let f be the smooth function satisfying (4.18). Again, using the properties of f and a
straightforward computation as in Step 3, we have

E1(fψ,A) ≤ (1 + κ−ζ) E1(ψ,A) + C
(
κζ + κ2σ`2

)
,∫

Vx0 (˜̀)
f2
(
− 1 +

1

2
f2
)
|ψ|4 dx ≥ −1

2

∫
Vx0 (`)

|ψ|4 dx+ Cσ`2 .
(4.35)

Using the lower bound of E1(fψ;A) in (4.23), we get from (4.34) and (4.35),∣∣∣∣∣E1(ψ,A)− 2κ`

√
1

b|B0(x0)|
Esurf

(
bB0(x0)

)∣∣∣∣∣ ≤ Cκ` Σ̄(κ, κ−ρ, κ−δ) .

Remembering the definition of E1(ψ,A) = E1

(
ψ,A;Vx0((1 + σ)`)

)
, we get the statement con-

cerning the local energy in Theorem 4.8.
Now we return back to (4.21). Using (4.35), we write

(1 + κ−ζ) E1(ψ,A) + C
(
κ−ζ + κ2σ`2

)
≥ −κ

2

2

∫
Vx0 (`)

|ψ|4 dx− Cσ`2κ2 .

Rearranging the terms, then using (4.34) and (4.33), we arrive at the following upper bound

κ2

2

∫
Vx0 (`)

|ψ(x)|4 dx ≥ −2κ`

√
1

b|B0(x0)|
Esurf

(
bB0(x0)

)
+ C κ ` Σ̄(κ, κ−ρ, κ−δ) .

Using the remark around (4.33), this finishes the proof of Theorem 4.8. �

5. The superconductivity region: Proof of Theorem 1.7

In this section, we present the proof of Theorem 1.7 devoted to the distribution of the super-
conductivity in the region

{x ∈ Ω, b |B0(x)| < 1} for the applied magnetic field H = bκ .

The proof follows by an analysis similar to the one in Section 4, so our presentation will be
shorter here.

Remark 5.1. As `→ 0+, the area of W(x0, `) as introduced in (1.18) is

|W(x0, `)| = 4`2 if x0 ∈ Ω ,

and
|W(x0, `)| = 4`2 + o(`2) if x0 ∈ ∂Ω .

The proof of Theorem 1.7 is presented in five steps. In the sequel, ρ ∈ ( 2
2+α , 1) and c2 > c1 > 0

are fixed,
c1κ
−ρ ≤ ` ≤ c2κ

−ρ and σ = κ
ρ−1

2 . (5.1)
We will refer to the condition on ` by writing ` ≈ κ−ρ.

Step 1. Useful estimates.
Let f be a smooth function such that

f = 1 in W(x0, `), 0 ≤ f ≤ 1 and |∇f | ≤ C

σ`
in W

(
x0, (1 + σ)`

)
. (5.2)

As in the proof of (4.22), we have

E1

(
fψ,A;W(x0, (1 + σ)`)

)
≤ −κ

2

2

∫
W(x0,`)

|ψ(x)|4 dx+ Cσ−1 . (5.3)
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Here E1 is introduced in (4.20). Furthermore, we have the following two estimates (cf. (4.35)):

E1

(
fψ,A;W(x0, (1 + σ)`)

)
≤ (1 + κ−ζ)E1

(
ψ,A;W(x0, (1 + σ)`)

)
+ Cκ2`2

(
σ−1κζ(κ`)−2 + σ

)
, (5.4)

and (cf. (4.21))

E1

(
fψ,A;W(x0, (1 + σ)`)

)
≥ κ2

∫
W(x0,(1+σ)`)

f2

(
−1 +

1

2
f2

)
|ψ|4 dx

≥ −κ
2

2

∫
W(x0,`)

|ψ(x)|4 dx+ Cσ`2κ2 ,

(5.5)

where ζ ∈ (0, 1) is a constant to be chosen later.

Step 2. The case B0(x0) = 0 .
The upper bound for the integral of |ψ|4 in Theorem 1.7 is trivial since |ψ| ≤ 1 and g(0) = −1

2 .
We have the obvious inequalities

E1

(
fψ,A;W(x0, (1 + σ)`)

)
≥
∫
W(x0,(1+σ)`)

(
− κ2|fψ|2 +

κ2

2
|fψ|4

)
dx ≥ −κ

2

2

∫
W(x0,(1+σ)`)

dx .

Inserting this into (5.4) and selecting ζ = 1−ρ
2 , we get

E1

(
ψ,A;W(x0, (1 + σ)`)

)
≥ −Cκ2`2

(
σ−1κζ(κ`)−2 + σ

)
= o(κ2`2) ,

since σ = κ
ρ−1

2 , ` ≈ κ−ρ and 2
2+α < ρ < 1 .

Now we prove an upper bound for E1

(
fψ,A;W(x0, (1 + σ)`)

)
. Let η` be a smooth function

satisfying

η`(x) = 0 in W(x0, (1 + σ)`) , η`(x) = 1 in Ω \W(x0, (1 + 2σ)`) , 0 ≤ η`(x) ≤ 1 in Ω , (5.6)

and

|∇η`(x)| ≤ Cσ−1`−1 in Ω , (5.7)

for some constant C > 0 . We define the function

u(x) = exp
(
iκHw(x)

)
f(x) + η`(x)ψ(x) ,

where the function w is the sum of two functions w1 and w2 such that the two inequalities in
(4.27) are satisfied in W(x0, (1 + σ)`)).

We have the obvious decomposition

E(u,A) = E1

(
exp

(
iκHw(x)

)
f(x),A;W(x0, (1+σ)`)

)
+E2

(
η`(x)ψ(x),A; Ω\W(x0, (1+σ)`)

)
,

where E1 and E2 are introduced in (4.20).
We estimate E2

(
η`(x)ψ(x),A; Ω \W(x0, (1 + σ)`)

)
as we did in the proof of Theorem 4.8 (cf.

Step 3 and (4.31)). In this way we get

E2

(
η`(x)ψ(x),A; Ω \W(x0, (1 + σ)`)

)
≤ (1 + κ−ζ)E2

(
ψ(x),A; Ω \W(x0, (1 + σ)`)

)
+ C(σ−1κζ + σκ2`2) . (5.8)
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For the term E1

(
exp

(
iκHw(x)

)
f(x),A;W(x0, (1 + σ)`)

)
, we argue as in the proof of Theo-

rem 4.8 (Step 2) and write

E1

(
exp

(
iκHw(x)

)
f(x),A;W(x0, (1 + σ)`)

)
≤ (1 + `α)E1

(
f(x), B0(x0)A0;W(x0, (1 + σ)`)

)
+ C(κ2`2+α + κ4`4+α) .

Note that

E1

(
f(x), B0(x0)A0;W(x0, (1 + σ)`)

)
= E1

(
f(x), 0;W(x0, (1 + σ)`)

)
≤ Cσ−1 + κ2

∫
W(x0,(1+σ)`)

f2
(
− 1 +

f2

2

)
dx

≤ Cσ−1 − κ2

2
|W(x0, (1 + σ)`)|+ Cσκ2`2 .

Therefore, we get the estimate

E1

(
exp

(
iκHw(x)

)
f(x),A;W(x0, (1 + σ)`)

)
≤ −(1 + `α)

κ2

2
|W(x0, (1 + σ)`)|

+ Cκ2`2(`α + κ2`2+α + σ−1(κ`)−2 + σ) ,

and consequently

E(u,A) ≤ −κ
2

2
|W(x0, (1 + σ)`)|+ (1 + κ−ζ)E2

(
ψ(x),A; Ω \W(x0, (1 + σ)`)

)
+ Cκ2`2(`α + κ2`2+α + σ−1κζ(κ`)−2 + σ) .

Using that E(ψ,A) ≤ min
(

0, E(ψ,A)
)
, we get

(1 + κ−ζ)E1

(
ψ,A;W(x0, (1 + σ)`)

)
≤ −κ

2

2
|W(x0, (1 + σ)`)|

+ Cκ2`2(`α + κ2`2+α + σ−1κζ(κ`)−2 + σ) . (5.9)

We insert this into (5.4), then we substitute the resulting inequality into (5.5). In this way we
get ∫

W(x0,`)
|ψ|4 dx ≥ 1

2
|W(x0, (1 + σ)`)| − C(σ + σ−1κζ(κ`)−2 + κ2`2+α + `α + κ−ζ) .

The assumption on σ and ` in (5.1) and the choice ζ = 1−ρ
2 yield that the term on the right

hand side above is o(1), hence we get the lower bound for the integral of |ψ|4 in Theorem 1.7.
Now, the estimate of the energy follows by collecting the estimates in (5.9) and (5.5).

Step 3. The case |B0(x0)| > 0: Upper bound.
We use (2.13) and (2.14) with γ = δ = α. We obtain, for some C2,α real-valued function w,

E1

(
fψ,A;W(x0, (1 + σ)`)

)
≥ (1− `α)E1

(
e−iκHwfψ,A0;W(x0, (1 + σ)`)

)
− Cκ2`2(`α + κ2`2+α) . (5.10)

If x0 ∈ Ω , we get by re-scaling and (2.6) that

E1

(
e−iκHwfψ,A0;W(x0, (1 + σ)`)

)
≥ 4κ2(1 + σ)2`2g(b|B0(x0)|) .



28 BERNARD HELFFER AND AYMAN KACHMAR

If x0 ∈ ∂Ω , then we may write a lower bound for E1

(
fψ,A0;W(x0, (1 + σ)`)

)
by converting to

boundary coordinates as in Lemma 4.4 and get

E1

(
e−iκHwfψ,A0;W(x0, (1 + σ)`)

)
≥ (1− C`)
b|B0(x0)|

eN
(
b|B0(x0)|, 2(1 + σ)`

√
|B0(x0)|κH

)
− Cκ2`2

(
`+ κ2`3

)
≥ 4κ2(1 + σ)2`2g(b|B0(x0)|)− Cκ2`2

(
`+ κ2`3 + (κ`)−1

)
.

Thus, we infer from (5.10), for x0 ∈ Ω ,

E1

(
fψ,A;W(x0, (1 + σ)`)

)
≥ 4κ2(1 + σ)2`2g(b|B0(x0)|)− Cκ2`2

(
`α + κ2`2+α + (κ`)−1

)
.

Inserting this into (5.3), we get
1

2

∫
W(x0,`)

|ψ(x)|4 dx ≤ 4(1 + σ)2`2g(b|B0(x0)|) + C`2
(
`α + κ2`2+α + (κ`)−1 + (κ`)−2σ−1

)
.

Our choice of σ and ` in (5.1) guarantees that the term on the right side above is o(`2) . Using
Remark 5.1, we get the upper bound in Theorem 1.7 .

Remark 5.2. The proof in step 3 is still valid if |B0(x0)| ≥ κ−2γ , 0 < γ < 1− ρ and the following
condition holds:

If x0 ∈ Ω then Q4κ−ρ(x0) ⊂ Ω .

Step 4. The case |B0(x0)| > 0 and x0 ∈ ∂Ω : Lower bound.
For the sake of simplicity, we treat the case B0(x0) > 0. The case B0(x0) < 0 can be treated

similarly by taking complex conjugation.
We define the function

u(x) = 1W(x0,(1+σ)`)(x) exp
(
iκHw(x)

)
wR ◦ Φ−1

x0
(x) + η`(x)ψ(x) ,

where the function η` satisfies (5.6) and (5.7). Similarly as in (4.24), the function w is the sum
of two functions w1 and w2, defined in W(x0, (1 + σ)`)) and satisfying the two inequalities in
(4.27). Finally

wR(s, t) = exp
(
iκHgx0(s, t)

)
exp

(
−iκHst

2

)
uR
(
s
√
B0(x0)κH , t

√
B0(x0)κH

)
,

and gx0 is the function satisfying (4.25) inW(x0, `) (by Lemma 4.3). The function uR ∈ H1
0 (QR)

is a minimizer of the energy eD
(
bB0(x0), R

)
for R = 2(1 + σ)

√
B0(x0)κH (cf. (2.3)). We can

estimate E(u,A) similarly as we did in the proof of Theorem 4.8 and get

E(u,A) ≤ 4(1 + σ)2`2κ2g
(
bB0(x0)

)
+ (1 + κ−ζ)E2(ψ,A)

+ Cκ2`2
(
`α + κ2`2+α + σ + σ−1κζ(κ`)−2

)
,

where ζ ∈ (0, 1) will be chosen later and

E2(ψ,A) =

∫
Ω\W(x0,(1+σ)`)

(
|(∇− iκHA)ψ|2 − κ2|ψ|2 +

κ2

2
|ψ|4

)
dx

+ κ2H2

∫
Ω
| curlA−B0|2 dx .

Now we use that E(ψ,A) ≤ min(0, E(u,A)) to write

(1 + κ−ζ)E1

(
ψ,A;W(x0, (1 + σ)`)

)
≤ 4(1 + σ)2`2κ2g

(
bB0(x0)

)
+ Cκ2`2

(
`α + κ2`2+α + σ + σ−1κζ(κ`)−2

)
. (5.11)
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Now we use (5.4) and (5.5) to obtain

− κ2

2

∫
W(x0,`)

|ψ(x)|4 dx+ Cσ`2κ2 ≤ 4(1 + κ−ζ)(1 + σ)2`2κ2g
(
bB0(x0)

)
+ Cκ2`2

(
`α + κ2`2+α + σ + σ−1κ−ζ(κ`)−2

)
.

We select ζ = 1−ρ
2 . Remembering that σ = κ

ρ−1
2 and ` ≈ κ−ρ (cf. (5.1)), we get the lower bound

for the integral of |ψ|4 as in Theorem 1.7.
For the estimate of the local energy E1(ψ,A;W(x0, (1 + σ)`)), we collect the inequalities in

(5.11), (5.4), (5.5) and the lower and upper bounds for the integral of |ψ|4.

Remark 5.3. Remark 5.2 holds for Step 4 as well.

Step 5. The case |B0(x0)| > 0 and x0 ∈ Ω : Lower bound.
In this case Wx0((1 + σ)`) = Q2(1+σ)`(x0). We define the following trial state

u(x) = 1W(x0,(1+σ)`)(x) exp
(
iκHw(x)

)
wR(x) + η`(x)ψ(x) ,

where the functions w and η` are as in Step 4,

wR(s, t) =


uR
(√

B0(x0)κH (x− x0)
)

if B0(x0) > 0 ,

uR
(√

B0(x0)κH (x− x0)
)

if B0(x0) < 0 ,

and uR ∈ H1
0 (QR) is a minimizer of the energy eD

(
bB0(x0), R

)
for R = 2(1+σ)

√
B0(x0)κH (cf.

(2.3)).
We argue as in Step 4 and obtain the lower bound for the integral of |ψ|4 in Theorem 1.7. The

details are omitted.
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