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DECAY OF SUPERCONDUCTIVITY AWAY FROM THE MAGNETIC ZERO SET

We establish exponential bounds on the Ginzburg-Landau order parameter away from the curve where the applied magnetic field vanishes. In the units used in this paper, the estimates are valid when the parameter measuring the strength of the applied magnetic field is comparable with the Ginzburg-Landau parameter. This completes a previous work by the authors analyzing the case when this strength was much higher. Our results display the distribution of surface and bulk superconductivity and are valid under the assumption that the magnetic field is Hölder continuous.

1. Introduction 1.1. The functional. In non-dimensional units, the Ginzburg-Landau functional is defined as follows,

E(ψ, A) = Ω |(∇ -iκHA)ψ| 2 -κ 2 |ψ| 2 + κ 2 2 |ψ| 4 + (κH) 2 | curl A -B 0 | 2 dx , (1.1) 
where:

• Ω ⊂ R 2 is an open, bounded and simply connected set with a C ∞ boundary ;

• (ψ, A) ∈ H 1 (Ω; C) × H 1 (Ω; R 2 ) ;

• κ > 0 and H > 0 are two parameters ;

• B 0 is a real-valued function in L 2 (Ω) . The superconducting sample is supposed to occupy a long cylinder with vertical axis and horizontal cross section Ω. The parameter κ is the Ginzburg-Landau parameter that expresses the properties of the superconducting material. The applied magnetic field is κHB 0 e, where e = (0, 0, 1). The configuration pair (ψ, A) describes the state of superconductivity as follows: |ψ| 2 measures the density of the superconducting Cooper pairs, curl A measures the induced magnetic field in the sample and j := (iψ, ∇ψ -iκHAψ) measures the induced super-current. Here (•, •) denotes the inner product in C defined as follows, (u, v) = u 1 v 1 + u 2 v 2 where u = u 1 + iu 2 and v = v 1 + iv 2 .

At equilibrium, the state of the superconductor is described by the (minimizing) configurations (ψ, A) that realize the following ground state energy

E gs (κ, H) = inf{E(ψ, A) : (ψ, A) ∈ H 1 (Ω; C) × H 1 (Ω; R 2 )} . (1.2)
Such configurations are critical points of the functional introduced in (1.1), that is they solve the following system of Euler-Lagrange equations (ν is the unit inward normal on the boundary)

       -∇ -iκHA 2 ψ = κ 2 (1 -|ψ| 2 )ψ in Ω , -∇ ⊥ curl A -B 0 = (κH) -1 Im ψ (∇ -iκHA)ψ in Ω , ν • (∇ -iκHA)ψ = 0 on ∂Ω , curlA = B 0 on ∂Ω . (1.3)
Once a choice of (κ, H) is fixed, the notation (ψ, A) κ,H stands for a solution of (1.3). When B 0 belongs to C 0 (Ω), we introduce two constants β 0 and β 1 that will play a central role in this (1.4)

1.2. The case with a constant magnetic. A huge mathematical literature is devoted to the analysis of the functional in (1.1) when the magnetic field is constant. This corresponds to taking B 0 = 1 in (1.1). The two monographs [START_REF] Fournais | Spectral Methods in Surface Superconductivity[END_REF][START_REF] Sandier | Vortices for the Magnetic Ginzburg-Landau Model[END_REF] and the references therein are mainly devoted to this subject. One important situation is the transition from bulk to surface superconductivity. This happens when the parameter H increases between two critical values H C 2 and H C 3 called the second and third critical fields respectively. In this analysis the de Gennes constant plays a central role. This constant is universal and defined as follows

Θ 0 = inf ξ∈R inf u 2 =1 ∞ 0 |u (t)| 2 + (t -ξ) 2 |u(t)| 2 dt .
(1.5) Furthermore, it is known (cf. [START_REF] Fournais | Spectral Methods in Surface Superconductivity[END_REF]) that 1 2 < Θ 0 < 1 .

(1.6)

The de Gennes constant appears indeed in the asymptotics of H C 3 for κ large H C 3 ∼ Θ -1 0 κ , while we have for the second critical field

H C 2 ∼ κ .
To be more specific, if b > 0 is a constant and (ψ, A) κ,H is a minimizer of the functional in (1.1) for H = bκ (and B 0 = 1), the concentration of ψ in the limit κ → ∞ depends strongly on b .

If 0 < b < 1, then ψ is uniformly distributed in the domain Ω (cf. [START_REF] Kachmar | The Ginzburg-Landau order parameter near the second critical field[END_REF][START_REF] Sandier | The decrease of bulk superconductivity close to the second critical field in the Ginzburg-Landau model[END_REF]) . If 1 < b < Θ -1 0 , then ψ is concentrated on the surface and decays exponentially in the bulk (cf. [START_REF] Correggi | On the Ginzburg-Landau functional in the surface superconductivity regime[END_REF][START_REF] Pan | Surface superconductivity in applied magnetic fields above HC 2[END_REF]) . If b > Θ -1 0 , then ψ = 0 (cf. [START_REF] Helffer | Upper critical field and location of surface nucleation of superconductivity[END_REF][START_REF] Lu | Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity[END_REF]). The critical cases when b is close to 1 or Θ -1 0 are thoroughly analyzed in [START_REF] Fournais | Nucleation of bulk superconductivity close to critical magnetic field[END_REF][START_REF] Fournais | Energy asymptotics for type II superconductors[END_REF].

1.3. The case with a non-vanishing magnetic field. The case of a non-constant magnetic field B 0 satisfying the assumptions B 0 ∈ C 0 (Ω) and inf x∈Ω B 0 (x) > 0 , is qualitatively similar to the constant magnetic field case. This situation is reviewed in [START_REF] Helffer | The Ginzburg-Landau functional with a vanishing magnetic field[END_REF]Sec. 2.2]. Surface superconductivity is studied in [START_REF] Fournais | Spectral Methods in Surface Superconductivity[END_REF], while the transition to the normal solution is discussed in [START_REF] Raymond | Sharp asymptotics for the Neumann Laplacian with variable magnetic field : case of dimension 2[END_REF].

1.4. The case with a vanishing magnetic field. The results in this paper are valid for a large class of applied magnetic fields, see Assumption 1.2 below. However, one interesting situation covered by our results is the case where the applied magnetic field has a non-trivial zero set. In the presence of such an applied magnetic field, we will study the concentration of the minimizers (ψ, A) κ,H of (1.1) in the asymptotic limit κ → +∞ and H ≈ κ . Unlike the results in [START_REF] Fournais | Spectral Methods in Surface Superconductivity[END_REF][START_REF] Raymond | Sharp asymptotics for the Neumann Laplacian with variable magnetic field : case of dimension 2[END_REF] that only investigate surface superconductivity, the situation discussed here includes bulk superconductivity as well.

The discussion in this subsection is focusing on magnetic fields that satisfy:

Assumption 1.1. [On the applied magnetic field]

(1) The function B 0 is in C 1 (Ω) .

(2) The set Γ := {x ∈ Ω : B 0 (x) = 0} is non-empty and consists of a finite disjoint union of simple smooth curves. (3) Γ ∩ ∂Ω is either empty or a finite set. (4) For all x ∈ Ω , |B 0 (x)| + |∇B 0 (x)| = 0 .

(5) The set Γ is allowed to intersect ∂Ω transversely. More precisely, if Γ ∩ ∂Ω = ∅ , then on this set, ν × ∇B 0 = 0 , where ν is the normal vector field along ∂Ω .

A much weaker assumption will be described later (cf. Assumption 1.2). Under Assumption 1.1, we may introduce the following two non-empty open sets Ω + = {x ∈ Ω : B 0 (x) > 0} and Ω -= {x ∈ Ω : B 0 (x) < 0} .

(1.7)

The boundaries of Ω ± are given as follows

∂Ω ± = Γ ∪ (Ω ± ∩ ∂Ω) .
Magnetic fields satisfying Assumption 1.1 are discussed in many contexts:

• In geometry, this appears in [START_REF] Montgomery | Hearing the zero locus of a magnetic field[END_REF] under the appealing question: can we hear the zero locus of a magnetic field ? • In the semi-classical analysis of the spectrum of Schrödinger operators with magnetic fields satisfying Assumption 1.1 (and Γ ⊂ Ω). These operators are extensively studied in [START_REF] Dombrowski | Semi-classical analysis with vanishing magnetic fields[END_REF][START_REF] Helffer | Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells[END_REF][START_REF] Helffer | Spectral gaps for periodic Schrödinger operators with hypersurface magnetic wells: Analysis near the bottom[END_REF]. • In the study of the time-dependent Ginzburg-Landau equations [START_REF] Almog | Global stability of the normal state of superconductors in the presence of a strong electric current[END_REF][START_REF] Almog | Mixed normal-superconducting states in the presence of strong electric currents[END_REF], applied magnetic fields as in Assumption 1.1 naturally appear in the presence of applied electric currents. • For superconducting surfaces submitted to constant magnetic fields [START_REF] Contreras | Persistence of superconductivity in thin shells beyond[END_REF], the constant magnetic field may induce a smooth sign-changing magnetic field on the surface. • In the transition from normal to superconducting configurations [START_REF] Pan | Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains[END_REF], one meets the problem of determining H such that the ground state energy in (1.2) vanishes on a curve meeting transversally the boundary. The results in [START_REF] Pan | Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains[END_REF] are sharpened in [START_REF] Attar | Pinning with a variable magnetic field of the two dimensional Ginzburg-Landau model[END_REF][START_REF] Miqueu | Equation de Schrödinger avec un champ magnétique qui s'annule[END_REF]. • The asymptotics of the ground state energy in (1.2) and the concentration of the corresponding minimizers for large values of κ and H is analyzed in [START_REF] Attar | The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field[END_REF][START_REF] Attar | Energy and vorticity of the Ginzburg-Landau model with variable magnetic field[END_REF][START_REF] Helffer | The Ginzburg-Landau functional with a vanishing magnetic field[END_REF][START_REF] Helffer | From constant to non-degenerately vanishing magnetic fields in superconductivity[END_REF]. Of particular importance to us are the results of K. Attar in [START_REF] Attar | The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field[END_REF]. These results hold under Assumption 1.1, for H = bκ with b > 0 constant. One of the results in [START_REF] Attar | The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field[END_REF] is that the ground state energy in (1.2) satisfies, as κ → +∞ ,

E gs (κ, H) = κ 2 Ω g(b|B 0 (x)|) dx + o(κ 2 ) .
(1.8)

Here the function g(•), which was introduced by Sandier-Serfaty in [START_REF] Sandier | The decrease of bulk superconductivity close to the second critical field in the Ginzburg-Landau model[END_REF], is a continuous nondecreasing function defined on [0, ∞) and vanishes on [1, ∞) (cf. (2.5) for more details). K. Attar also obtained an interesting formula displaying the local distribution of the minimizing order parameter ψ. If (ψ, A) κ,H is a minimizer of the functional in (1.1) for

H = bκ ,
and if D is an open set in Ω with a smooth boundary, then, as κ → +∞ , D |ψ(x)| 4 dx = -2 D g(b|B 0 (x)|) dx + o(1) .
(1.9)

The interest for an L 4 control of the order parameter comes back to Y. Almog (see [START_REF] Almog | Non-linear surface superconductivity in three dimensions in the large κ limit[END_REF] and the discussion in the book [15, Ch. 12, Sec. 12.6]). The formula in (1.9) shows that ψ is weakly localized in the neighborhood of Γ, V 1 b , where:

V ( ) := x ∈ Ω , |B 0 (x)| ≤ . (1.10)
For taking account of the boundary effects (the surface superconductivity should play a role like in the constant magnetic field case) we also introduce in ∂Ω the subset

V bnd ( ) := x ∈ ∂Ω , Θ 0 |B 0 (x)| ≤ .
(1.11)

We would like to measure the strength of the (exponential) decay of the minimizing order parameter ψ in the domains

ω 1 b := Ω \ V 1 b .
(1.12) Loosely speaking, we would like to prove that, for all values of b ≥ β -1 0 , the density |ψ| 2 is exponentially small (in the L 2 -sense) outside the set

V( 1 b ) ∪ V bnd ( 1 b
). This will lead us to two distinct regimes:

Regime I: For β -1 0 < b ≤ (Θ 0 β 1 ) -1 , V bnd ( 1 b ) =
∂Ω and ∂Ω carries surface superconductivity everywhere. This is illustrated in Figure 1. Regime II: For b > (Θ 0 β 1 ) -1 , we will get that ψ is exponentially small outside the set V bnd ( 1 b ). Here we have two cases:

• As b increases, surface superconductivity shrinks to the points of {x ∈ ∂Ω, B 0 (x) = 0}, provided that this set is non-empty (cf. Figure 2). • If {B 0 (x) = 0} ∩ ∂Ω = ∅ , then, for sufficiently large values of b, no surface superconductivity is left (cf. Figure 3). Regime II is consistent with the results of [START_REF] Helffer | The Ginzburg-Landau functional with a vanishing magnetic field[END_REF]Thm. 3.6] devoted to the complementary regime where b 1 as κ → +∞ . The results in this paper confirm the behavior described in these two regimes and are valid under a much weaker assumption than Assumption 1.1 (cf. Assumption 1.2 below).

The transition to the normal state is studied in [START_REF] Attar | Pinning with a variable magnetic field of the two dimensional Ginzburg-Landau model[END_REF][START_REF] Miqueu | Equation de Schrödinger avec un champ magnétique qui s'annule[END_REF][START_REF] Pan | Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains[END_REF]. This happens, when κ is large, for H ∼ c * κ 2 (equivalently b ∼ c * κ), where c * > 0 is a constant explicitly defined by the domain Ω and the function B 0 .

Main results.

In this paper, we will first work under the following assumption:

Assumption 1.2. • The function B 0 is in C 0,α (Ω) for some α ∈ (0, 1) ; • The constants β 0 and β 1 in (1.4) satisfy β 1 ≥ β 0 > 0 .
Note that this assumption is much weaker than Assumption 1.1. With the previous notation our main theorem is: ) is the domain introduced in (1.12) There exist κ 0 > 0, C > 0 and α 0 > 0 such that, if κ ≥ κ 0 and (ψ, A) κ,H is a solution of (1.3) for H = bκ , then the following inequality holds

ψ H 1 (O) ≤ C e -α 0 κ . (1.13)
Furthermore, if b > (Θ 0 β 1 ) -1 , then the estimate in (1.13) holds when the open set O satisfies

O ⊂ x ∈ ∂Ω, Θ 0 |B 0 (x)| > 1 b ∪ ω 1 b .
The proof of Theorem 1.3 follows from the stronger conclusion of Theorem 3.1, establishing Agmon like estimates.

Remark 1.4. [Sign-changing magnetic fields]

In addition to Assumption 1.2, suppose that Ω + and Ω -are non-empty. The constant β 0 in (1.4) can be expressed as follows

β 0 = max(β + 0 , β - 0 ) where β ± 0 = sup x∈Ω ± |B 0 (x)| .
We will discuss the conclusion of Theorem 1.3 when β + 0 < β - 0 . We have:

• If (β 0 ) -1 < b < (β + 0 ) -1 , then ω( 1 b )∩Ω + = ∅ . Consequently, the exponential decay occurs in ω( 1 b ) ∩ Ω -. • If (β + 0 ) -1 ≤ b , then the exponential decay occurs in both ω( 1 b ) ∩ Ω + and ω( 1 b ) ∩ Ω -.
The situation when β - 0 < β + 0 can be discussed similarly. Next, we suppose that the two sets (∂Ω) + := {x ∈ ∂Ω , B 0 (x) > 0} and (∂Ω) -:= {x ∈ ∂Ω , B 0 (x) < 0} are non-empty, and we express the constant β 1 in (1.4) as follows

β 1 = max(β + 1 , β - 1 ) where β ± 1 = sup x∈(∂Ω) ± |B 0 (x)| .
According to Theorem 1.3, when

β + 1 < β - 1 and (β 1 ) -1 < b < (β + 1 ) -1 , then the exponential decay occurs on {x ∈ ∂Ω, Θ 0 b|B 0 (x)| > 1} ∩ (∂Ω) -, since {x ∈ ∂Ω, Θ 0 b|B 0 (x)| > 1} ∩ (∂Ω) + = ∅ .
Our next result discusses the optimality of Theorem 1.3. This theorem determines a part of the boundary where the order parameter (the first component ψ of the minimizer) is exponentially small. Outside this part of the boundary, we will prove that the L 4 norm of the order parameter is not exponentially small. In physical terms, superconductivity is present there.

The statement of Theorem 1.5 involves the following notation:

• For all t > 0, Ω(t) = {x ∈ R 2 : dist(x, ∂Ω) < t} .

• By smoothness of ∂Ω , there exists a geometric constant t 0 such that, for all x ∈ Ω(t 0 ) , we may assign a unique point p(x) ∈ ∂Ω such that dist(p(x), x) = dist(x, ∂Ω).

• If b > 0, we define the open subset in R 2 Ω(t 0 , b) = {x ∈ Ω(t 0 ) : 1 < b|B 0 (p(x))| < Θ -1 0 } . (1.14) • E surf : [1, Θ -1 0 ) → (-∞, 0
) is the surface energy function which will be defined in (4.5) later. This function is continuous and non-decreasing.

• If Ω(t 0 , b) = ∅ , we define the following distribution in D Ω(t 0 , b) :

C ∞ c Ω(t 0 , b) ϕ → T b (ϕ) = -2 Ω(t 0 ,b)∩∂Ω 1 b|B 0 (x)| E surf b|B 0 (x)| ϕ(x) ds(x) , (1.15) 
where ds is the surface measure on ∂Ω. • If D ⊂ Ω , we introduce the local Ginzburg-Landau energy in D as follows

E(ψ, A; D) = D |(∇ -iκHA)ψ| 2 -κ 2 |ψ| 2 + κ 2 2 |ψ(x)| 4 dx .
(1.16)

• 1 Ω denotes the characteristic function of the set Ω .

Theorem 1.5. [Existence of surface superconductivity] Suppose that Assumption 1.2 holds, that b > β -1 0 and that Ω(t 0 , b) = ∅, where β 0 is the constant introduced in (1.4). If (ψ, A) κ,H is a minimizer of the functional in (1.1) for H = bκ , then as κ → ∞ , we have the following weak convergence

κ1 Ω |ψ κ,H | 4 T b in D Ω(t 0 , b) .
(1.17)

Remark 1.6. Theorem 1.5 demonstrates the existence of surface superconductivity. We can interpret the assumption in Theorem 4.8 in two different ways.

• If H = bκ, b > 0 is fixed and x 0 ∈ ∂Ω, then to find superconductivity near x 0 , this point should satisfy 1 < b|B 0 (x 0 )| < Θ -1 0 . • If x 0 ∈ ∂Ω is fixed and |B 0 (x 0 )| is small, then to find superconductivity near x 0 , the intensity of the applied magnetic field should be increased in such a manner that H = bκ and 1 < b|B 0 (x 0 )| < Θ -1 0 . Our last result confirms that the region {B 0 (x) < κ H } carries superconductivity everywhere. To state it, we will use the following notation:

• If p, q ∈ ∂Ω, dist ∂Ω (p, q) denotes the (arc-length) distance in ∂Ω between p and q .

• For x 0 ∈ R 2 and r > 0 , we denote by Q r (x 0 ) = x 0 + (-r/2, r/2) 2 the interior of the square of center x 0 and side r. When x 0 = 0, we write Q r = Q r (0). • For (x, ) ∈ Ω × (0, t 0 /2), we will use the following notation:

W(x 0 , ) = {x ∈ Ω : dist ∂Ω (p(x), x 0 ) < and dist(x, ∂Ω) < 2 } if x 0 ∈ ∂Ω , Q 2 (x 0 ) if x 0 ∈ Ω . (1.18)
Theorem 1.7. [The superconductivity region] Suppose that Assumption 1.2 holds for some α ∈ (0, 1), b > 0 and 2 2+α < ρ < 1 be two constants. Let x 0 ∈ Ω such that |B 0 (x 0 )| < 1 b . There exist κ 0 > 0, a function r : [κ 0 , +∞) → R + such that lim κ→+∞ r(κ) = 0 and, for all κ ≥ κ 0 and for all critical point (ψ, A) κ,H of the functional in (1.1) with H = bκ , the following two inequalities hold,

1 |W(x 0 , κ -ρ )| Wx 0 (κ -ρ ) |ψ(x)| 4 dx + 2g b|B 0 (x 0 )| ≤ r(κ)
and E ψ, A; W(x 0 , κ -ρ ) -κ 2 g b|B 0 (x 0 )| ≤ κ 2 r(κ) .

Here g(•) is the continuous function appearing in (1.8) and (1.9) (see Subsection 2.1 for its definition and properties).

The result in Theorem 1.7 is a variant of the formula in (1.9) valid for applied magnetic fields which are only Hölder continuous, thereby generalizing the results by Attar [START_REF] Attar | The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field[END_REF] and Sandier-Serfaty [START_REF] Sandier | The decrease of bulk superconductivity close to the second critical field in the Ginzburg-Landau model[END_REF]. This will be clarified further in Remark 1.9.

Remark 1.8. Let us choose fixed constants γ and ρ such that 2 2+α < ρ < 1 and 0 < γ < 1 -ρ. Our proof of Theorem 1.7 yields that the constant κ 0 and the function r(κ) in Theorem 1.7 can be selected independently of the point x 0 provided that

• κ -2γ ≤ b|B 0 (x 0 )| < 1 ; • x 0 ∈ ∂Ω or dist(x 0 , ∂Ω) ≥ 4κ -ρ . The condition dist(x 0 , ∂Ω) ≥ 4κ -ρ ensures that Q x 0 (2κ -ρ ) ⊂ Ω, which is needed in the proof of Theorem 1.7. Remark 1.9. Let γ ∈ (0, α 2+α 
). If we assume furthermore the following geometric condition

{x ∈ Ω , |B 0 (x)| ≤ κ -2γ } = o(1) (κ → ∞) , (1.19) 
then Theorem 1.7 implies the weak convergence

|ψ κ,H (•)| 4 -2g b|B 0 (•)| in D (Ω) .
In (1.19), we used the following notation. If E ⊂ R 2 , |E| denotes the Lebesgue (area) measure of E. Note that the condition in (1.19) holds under Assumption 1.1 considered in [START_REF] Attar | The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field[END_REF].

The rest of the paper is organized as follows. In Section 2, we collect various results that will be used throughout the paper. Section 3 is devoted to the proof of Theorem 1.3. In Section 4, we present the proof of Theorem 1.5. Finally, we prove Theorem 1.7 in Section 5.

In the proofs, we avoid the use of the a priori elliptic L ∞ -estimates, whose derivation is quite complicated (cf. [START_REF] Fournais | Spectral Methods in Surface Superconductivity[END_REF]Ch. 11]), thereby providing new proofs for the results in [START_REF] Pan | Surface superconductivity in applied magnetic fields above HC 2[END_REF][START_REF] Sandier | The decrease of bulk superconductivity close to the second critical field in the Ginzburg-Landau model[END_REF]. To our knowledge, these L ∞ -estimates have not been established when the magnetic field B 0 is only Hölder continuous.

Preliminaries

2.1.

The bulk energy function. The energy function g(•) , hereafter called the bulk energy, has been constructed in [START_REF] Sandier | The decrease of bulk superconductivity close to the second critical field in the Ginzburg-Landau model[END_REF]. We will recall its construction here. It plays a central role in the study of 'bulk' superconductivity, both for two and three dimensional problems (cf. [START_REF] Fournais | The ground state energy of the three dimensional Ginzburg-Landau functional. Part II. Surface regime[END_REF][START_REF] Fournais | The ground state energy of the three dimensional Ginzburg-Landau functional. Part I. Bulk regime[END_REF]). Furthermore, it is related to the periodic solutions of (1.3) and the Abrikosov energy (cf. [START_REF] Aftalion | Lowest Landau level approach for the Abrikosov lattice close to the second critical field[END_REF][START_REF] Fournais | Nucleation of bulk superconductivity close to critical magnetic field[END_REF]).

For b ∈ (0, +∞) , r > 0 , and Q r = (-r/2, r/2) × (-r/2, r/2) , we define the functional,

F b,Qr (u) = Qr b|(∇ -iA 0 )u| 2 -|u| 2 + 1 2 |u| 4 dx , for u ∈ H 1 (Q r ) . (2.1)
Here, A 0 is the magnetic potential,

A 0 (x) = 1 2 (-x 2 , x 1 ) , for x = (x 1 , x 2 ) ∈ R 2 . (2.2) 
We define the Dirichlet and Neumann ground state energies by

e D (b, r) = inf{F b,Qr (u) : u ∈ H 1 0 (Q r )} , (2.3) 
e N (b, r) = inf{F b,Qr (u) : u ∈ H 1 (Q r )} . (2.4) 
We can define g(•) as follows (cf. [START_REF] Attar | The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field[END_REF][START_REF] Fournais | The ground state energy of the three dimensional Ginzburg-Landau functional. Part I. Bulk regime[END_REF][START_REF] Sandier | The decrease of bulk superconductivity close to the second critical field in the Ginzburg-Landau model[END_REF])

∀ b > 0 , g(b) = lim r→∞ e D (b, r) |Q r | = lim r→∞ e N (b, r) |Q r | , (2.5) 
where |Q r | = r 2 denotes the area of Q r . Furthermore, there exists a universal constant C > 0 such that

∀ b > 0 , ∀ r > 1 , g(b) ≤ e D (b, r) |Q r | ≤ e N (b, r) |Q r | + C r ≤ g(b) + 2C r . (2.6) 
One can show that the function g(•) is a non decreasing continuous function such that

g(0) = - 1 2 , g(b) < 0 when b < 1 , and g(b) = 0 when b ≥ 1 . (2.7)
2.2. The magnetic Laplacian. We need two results about the magnetic Laplacian. The first result concerns the Dirichlet magnetic Laplace operator in a bounded set Ω with a strong constant magnetic field B, that is

-(∇ -iBA 0 ) 2 in L 2 (Ω) ,
with the Dirichlet condition u = 0 on ∂Ω .

Here A 0 is the vector field introduced in (2.2), with curl A 0 = 1. It is based on the elementary spectral inequality:

Lemma 2.1. For all B ∈ R and φ ∈ H 1 0 (Ω), it holds Ω |(∇ -iBA 0 )φ| 2 dx ≥ |B| Ω |φ(x)| 2 dx .
The second result concerns the Neumann magnetic Laplace operator in a bounded set Ω with a strong constant magnetic field B, that is

-(∇ -iBA 0 ) 2 in L 2 (Ω) , with the (magnetic) Neumann condition ν • (∇ -iBA 0 )u = 0 on ∂Ω .
Here ν is the unit inward normal vector on ∂Ω. The asymptotic behavior of the groundstate energy as |B| → ∞ is well known (cf. [START_REF] Helffer | Magnetic bottles in superconductivity[END_REF][START_REF] Lu | Eigenvalue problems of Ginzburg-Landau operator in bounded domains[END_REF] and [START_REF] Fournais | Spectral Methods in Surface Superconductivity[END_REF]Prop. 8.2.2]):

Lemma 2.2. There exist β0 > 0 and C > 0 such that, if |B| ≥ β0 and φ ∈ H 1 (Ω) , Ω |(∇ -iBA 0 )φ| 2 dx ≥ Θ 0 |B| -C|B| 3/4 Ω |φ| 2 dx . 2.3. Universal bound on the order parameter. If (ψ, A) is a solution of (1.3), then ψ satisfies in Ω (cf. [15, Prop. 10.3.1]) |ψ(x)| ≤ 1 . (2.8)
2.4. The magnetic energy. Let us introduce the space of vector fields

H 1 div (Ω) = {A ∈ H 1 (Ω; R 2 ) : divA = 0 in Ω and ν • A = 0 on ∂Ω} . (2.9)
The functional in (1.1) is invariant under the gauge transformations (ψ, A) → (e iφ ψ, A + ∇φ).

Consequently, if (ψ, A) solves (1.3), we may apply a gauge transformation such that the new configuration ( ψ = e iφ ψ, A = A+∇φ) is a solution of (1.3) and furthermore A ∈ H 1 div (Ω). Having this in hand, we always assume that every critical/minimizing configuration (ψ, A) satisfies A ∈ H 1 div (Ω) which simply amounts to a gauge transformation. For given B 0 ∈ L 2 (Ω), there exists a unique vector field satisfying

F ∈ H 1 div (Ω) and curl F = B 0 . (2.10) Actually, F = ∇ ⊥ f where f ∈ H 2 (Ω) ∩ H 1 0 (Ω)
is the unique solution of -∆f = B 0 . Remark 2.3. By the elliptic Schauder Hölder estimates (see for example Appendix E.3 in [START_REF] Fournais | Spectral Methods in Surface Superconductivity[END_REF]), if in addition B 0 ∈ C 0,α (Ω) for some α > 0 , then the vector field F is smooth of class C 1,α (Ω) .

We recall the following result from [START_REF] Attar | The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field[END_REF]:

Proposition 2.4. Let γ ∈ (0, 1) and 0 < c 1 < c 2 be fixed constants. Suppose that B 0 ∈ L 2 (Ω). There exist κ 0 > 0 and C > 0 such that, if κ ≥ κ 0 , c 1 κ ≤ H ≤ c 2 κ and if (ψ, A) κ,H ∈ H 1 (Ω) × H 1 div (Ω) is a minimizer of (1.2), then A -F C 0,γ (Ω) ≤ C κ .
The proof of Proposition 2.4 given in [START_REF] Attar | The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field[END_REF] is made under the assumption B 0 ∈ C ∞ (Ω), but it still holds under the weaker assumption B 0 ∈ L 2 (Ω).

The next result gives the existence of a useful gauge transformation that allows us to approximate the vector field F by a vector field generating a constant magnetic field. It is similar to the result in [START_REF] Attar | The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field[END_REF]Lem. A.3], but the difference here is that we only assume

F ∈ C 1,α (Ω) instead of C 2 .
Lemma 2.5. Let α ∈ (0, 1), r 0 > 0 and B 0 ∈ C 0,α (Ω). There exists C > 0 and for any a ∈ Ω a function ϕ a ∈ C 2,α (R 2 ) such that, if r ∈ (0, r 0 ] and B(a, r) ∩ Ω = ∅ , then

∀ x ∈ B(a, r) ∩ Ω , |F(x) -B 0 (a)A 0 (x -a) -∇ϕ a (x)| ≤ C r 1+α .
Here F is the vector field satisfying (2.10).

Proof of Lemma 2.5. Since the boundary of Ω is smooth and F ∈ C 1,α (Ω; R 2 ), the vector field F admits an extension F in C 1,α (R 2 ; R 2 ). We get in this way an extension B 0 = curl F of B 0 in C 0,α (R 2 ). We now define in R 2 , the two vector fields

F(y) = F(a + y) , A(y) = 1 0 s B 0 (a + sy) ds (-y 2 , y 1 ) .
Clearly, curl F = curl A = B 0 (a+y). Consequently, by integrating the closed 1-form associated with F -A, there exists a function ϕ ∈ C 2,α (R 2 ) such that

F -∇ ϕ = A , φ(0) = 0 . Since B 0 ∈ C 0,α (R 2 ), A(y) = B 0 (a)(-y 2 , y 1 ) + O(r 1+α ) in B(0, r). We then define the function ϕ a by ϕ a (x) = ϕ(x -a) + B 0 (a) a 2 x 1 -a 1 x 2 . This implies ∀ x ∈ B(a, r) , | F(x) -B 0 (a)A 0 (x -a) -∇ϕ a (x)| ≤ C r 1+α ,
and the lemma by restriction to Ω.

2.5.

Lower bound of the kinetic energy term. The main result in this subsection is: Proposition 2.6. Let 0 < c 1 < c 2 be fixed constants. Suppose that α ∈ (0, 1] and B 0 ∈ C 0,α (Ω). There exist κ 0 > 0 and C > 0 such that the following is true, with

σ(α) = 2α 3 + α . (2.11) (1) For • κ ≥ κ 0 , c 1 κ ≤ H ≤ c 2 κ ; • (ψ, A) κ,H a solution of (1.3) ; • φ ∈ H 1 (Ω) satisfies supp φ ⊂ {x ∈ Ω, |B 0 (x)| > 0} , we have Ω |(∇ -iκHA)φ (x)| 2 dx ≥ Θ 0 κH Ω |B 0 (x)| -Cκ -σ(α) |φ(x)| 2 dx . (2) If in addition φ = 0 on ∂Ω, then Ω |(∇ -iκHA)φ (x)| 2 dx ≥ κH Ω |B 0 (x)| -Cκ -σ(α) |φ(x)| 2 dx .
The estimates in Items (1) and (2) in this proposition are known when the vector field A is C 2 , independent of (κ, H), curl A = 0 and B 0 is replaced by curl A (cf. Lemma 2.2 and [START_REF] Helffer | Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells[END_REF]).

For α = 1 (i.e. B 0 is Lipschitz) the errors in Proposition 2.6 and Lemma 2.2 are of the same order.

Proof of Proposition 2.6. Let us choose an arbitrary φ ∈ H 1 (Ω). All constants below are independent of φ. For the sake of simplicity, we will work under the additional assumption that supp φ ⊂ {B 0 > 0}.

Step 1. Decomposition of the energy via a partition of unity. For > 0 we consider the partition of unity in R 2

j χ 2 j = 1 , j |∇χ j | 2 ≤ C -2 in R 2
, and supp χ j ⊂ B(a j , ) .

Here the construction is first done for = 1 and then for general > 0 by dilation. Hence the constant C is independent of . Although the points (a j ) depend on , we omit below the reference to and write a j for a j .

In what follows, we will use this partition of unity with = κ -ρ , 0 < ρ < 1 and κ large enough.

Using this partition of unity, we may estimate from below the kinetic energy term as follows

Ω |(∇ -iκHA)φ| 2 dx ≥ j Ω |(∇ -iκHA)(χ j φ)| 2 dx -C -2 Ω |χ j φ| 2 dx . (2.12) Let α j (x) = (x -a j ) • A(a j ) -F(a j )
, where F is the vector field in (2.10). Note the useful decomposition

A(x) -∇α j = F(x) + A(x) -F(x) -A(a j ) -F(a j ) .
By Proposition 2.4, we have in B(a j , ) ∩ Ω,

|(∇ -iκHA)(χ j φ)| 2 = |(∇ -iκH(A -∇α j ))(e -iκHα j χ j φ)| 2 ≥ (1 -δ )|(∇ -iκHF)e -iκHα j χ j φ| 2 --δ κ 2 H 2 2γ A -F 2 C 0,γ (Ω) |χ j φ| 2 ≥ (1 -δ )|(∇ -iκHF)(e -iκHα j χ j φ)| 2 -CH 2 (2γ-δ) |χ j φ| 2 .
(2.13) Here δ > 0 and γ ∈ (0, 1) are two parameters to be chosen later.

By Lemma 2.5, we may define a smooth function ϕ j in B(a j , ) ∩ Ω such that,

|F(x) -∇ϕ j (x) -|B 0 (a j )|A 0 (x -a j )| ≤ C 1+α ,
where C > 0 is independent of j.

Consequently, there exists C > 0 such that, for all j,

|(∇ -iκHF)(e -iκHα j χ j φ)| 2 ≥ (1 -δ )|(∇ -iκH|B 0 (a j )|A 0 (x -a j ))e -iκHϕ j e -iκHα j χ j φ| 2 -Cκ 2 H 2 2+2α-δ |χ j φ| 2 . (2.14)
Step 2. The case supp φ ⊂ {x ∈ Ω, B 0 (x) > 0} and φ = 0 on ∂Ω .

The assumption on the support of φ yields that χ j φ ∈ H 1 0 (Ω). Collecting (2.13), (2.14) and the spectral inequality in Lemma 2.1, we get the existence of C > 0 such that for all j

Ω |(∇ -iκHA)(χ j φ)| 2 dx ≥ (1 -2 δ )κH Ω |B 0 (a j )| |χ j φ| 2 dx -CH 2 ( 2γ-δ + κ 2 2+2α-δ ) Ω |χ j φ| 2 dx . Since B 0 is in C 0,α (Ω), we have B 0 (x) = B 0 (a j ) + O( α ) in B(a j , ) . Thus Ω |(∇ -iκHA)(χ j φ)| 2 dx ≥ κH Ω |B 0 (x)| |χ j φ(x)| 2 dx -CH 2 ( α + δ + 2γ-δ + κ 2 2+2α-δ ) Ω |χ j φ(x)| 2 dx .
After summation and using that j χ 2 j = 1 , we get

Ω |(∇ -iκHA)φ| 2 dx ≥ κH Ω |B 0 (x)| |φ(x)| 2 dx -C( α + δ + 2γ-δ + κ 2 2+2α-δ + κ -2 -2 ) Ω |φ| 2 dx .
Hence the goal is to choose, when κ → +∞ and with = κ -ρ , the parameters ρ , δ , γ and α in order to minimize the sum

Σ 0 (κ, ) := α + δ + 2γ-δ + κ 2 2+2α-δ + κ -2 -2 .
(2.15)

If we take δ = γ, which corresponds to give the same order for the second and the third terms in Σ 0 , we obtain with = κ -ρ

Ω |(∇ -iκHA)φ| 2 dx ≥ κH Ω |B 0 (x)| -C(κ -ρα + κ -ργ + κ 2-(2+2α-γ)ρ + κ 2ρ-2 |φ(x)| 2 dx.
In the remainder, to minimize the error for the two last terms, we select ρ such that

2 -(2 + 2α -γ)ρ = 2ρ -2 , i.e. ρ = 4/(4 + 2α -γ) .
Getting the condition 0 < ρ < 1 satisfied leads to the condition α > γ/2 . We select γ = 2 3 α . This choice is optimal since

σ(α) := max 0<γ<2α σ 0 (α, γ) = σ 0 α, 2α 3 = 2α 3 + α ,
where

σ 0 (α, γ) = min 4α 4 + 2α -γ , 4γ 4 + 2α -γ , 2(2α -γ) 4 + 2α -γ .
This finishes the proof of Item (2) in Proposition 2.6 .

Step 3. The case supp φ ⊂ {x ∈ Ω , B 0 (x) > 0}. We continue with the choice δ = γ = 2 3 α and ρ = 4/(4 + 2α -γ). We collect the inequalities in (2.13), (2.14) and Lemma 2.2 and write

Ω |(∇ -iκHA)(χ j φ)| 2 dx ≥ (1 -2 2α/3 ) κH Ω Θ 0 |B 0 (a j )| -C(κH) -1/4 |χ j φ| 2 dx -CH 2 κ -σ(α) Ω |χ j φ| 2 dx .
Since B 0 ∈ C 0,α (Ω), we can replace B 0 (a j ) by B 0 (x) on the support of χ j modulo an error O( α ). We insert the resulting estimate into (2.12) and use that j χ 2 j = 1 to get,

Ω |(∇ -iκHA)φ| 2 dx ≥ κH Ω Θ 0 |B 0 (x)| -C(κ -σ(α) + κ -1/2 ) |φ(x)| 2 dx .
Observing that σ(α) ≤ 1 2 , we have achieved the proof of Item (1) in Proposition 2.6 .

Exponential decay

3.1. Main statements. We recall the definition of the de Gennes constant Θ 0 in (1.5), and the two constants β 0 , β 1 in (1.4). For all λ ∈ (0, β 0 ), we introduce the two functions on ω(λ):

t λ (x) = dist x, ∂ω(λ) and ζ λ (x) = dist x, Ω ∩ ∂ω(λ) , (3.1) 
where ω(•) is the domain introduced in (1.12).

Theorem 3.1. [Exponential decay outside the superconductivity region]

Let c 1 and c 2 be two constants such that β -1 0 < c 1 < c 2 . Suppose that Assumption 1.2 holds for some α ∈ (0, 1). There exists µ 0 > 0 and for all µ ∈ (0, µ 0 ), there exist κ 0 > 0 , C > 0 and α > 0 such that, if

κ ≥ κ 0 , c 1 κ ≤ H ≤ c 2 κ ,
and (ψ, A) κ,H is a solution of (1.3) , then the following inequalities hold:

(1) Decay in the interior:

ω(λ)∩{t λ (x)≥ 1 √ κH } |ψ(x)| 2 + 1 κH |(∇ -iκHA)ψ (x)| 2 exp 2α √ κH t λ (x) dx ≤ C κ ,
where λ = κ H + µ ;

(2) Decay up to the boundary:

ω(β)∩{ζ β (x)≥ 1 √ κH } |ψ(x)| 2 + 1 κH |(∇ -iκHA)ψ (x)| 2 exp 2 α√ κH ζ β (x) dx ≤ C κ ,
where

β = Θ -1 0 κ H + µ .
Remark 3.2. Theorem 3.1 says that, for µ > 0 sufficiently small, bulk superconductivity breaks down in the region {x ∈ Ω, |B 0 (x)| ≥ κ H + µ} and that surface superconductivity breaks down in the region {x ∈ ∂Ω, Θ 0 |B 0 (x)| ≥ κ H + µ} . This is illustrated in Figures 1 and2 . Remark 3.3. In the constant magnetic field case, B 0 = 1 , Theorem 3.1 is proved by Pan [START_REF] Pan | Surface superconductivity in applied magnetic fields above HC 2[END_REF], in response to a conjecture by Rubinstein [37, p. 182]. Our proof of Theorem 3.1 is simpler than the one in [START_REF] Pan | Surface superconductivity in applied magnetic fields above HC 2[END_REF] since we do not use the a priori elliptic L ∞ -estimates, whose derivation is not easy (cf. [START_REF] Fournais | Spectral Methods in Surface Superconductivity[END_REF]Ch. 11]).

Remark 3.4. On a technical level, one can still avoid to use the L ∞ -elliptic estimates in the proof of Theorem 3.1 when the magnetic field is constant, by establishing a weak decay estimate on the order parameter (namely ψ 2 = O(κ -1/4 )). This has been done by Bonnaillie-Noël and Fournais in [START_REF] Bonnaillie-Noël | Superconductivity in domains with corners[END_REF] and then generalized by Fournais-Helffer to non-vanishing continuous magnetic fields in [START_REF] Fournais | Spectral Methods in Surface Superconductivity[END_REF]Cor. 12.3.2]. However, in the sign-changing field case and the regime considered in Theorem 3.1, the weak decay estimate as in [START_REF] Bonnaillie-Noël | Superconductivity in domains with corners[END_REF] does not hold.

The substitute of the weak decay estimate in our proof is the use of a (local) gauge transformation. This has been used earlier to estimate the Ginzburg-Landau energy (cf. [START_REF] Kachmar | The ground state energy of the three-dimensional Ginzburg-Landau model in the mixed phase[END_REF][START_REF] Attar | Pinning with a variable magnetic field of the two dimensional Ginzburg-Landau model[END_REF]), and the exponential decay of the order parameter for non-smooth magnetic fields (cf. [START_REF] Assaad | The influence of magnetic steps on bulk superconductivity[END_REF]). We will extend this method for obtaining local estimates in Theorems 4.7 and 4.8. 

O ⊂ ω κ H + µ
for µ sufficiently small, and

dist x, ∂ω κ H + µ ≥ c µ in O , for a constant c µ > 0 .
Similarly, when O is an open set independent of κ and

O ⊂ ω(κ/H) ∪ {x ∈ ∂Ω, Θ 0 |B 0 (x)| < κ/H} , then O ⊂ ω Θ -1 0 κ H + µ
for µ sufficiently small, and

dist x, ∂ω Θ -1 0 κ H + µ ≥ ĉµ in O ,
for a constant ĉµ > 0 .

The rest of this section is devoted to the proof of Theorem 3.1, which follows the scheme of the proof of the semi-classical Agmon estimates (cf. [15, Ch. 12] and references therein).

Suppose that the parameters κ and H have the same order, i.e.

κ ≥ κ 0 and c 1 κ ≤ H ≤ c 2 κ , where κ 0 ≥ 1 is supposed sufficiently large (this condition will appear in the proof below). Suppose also that c 2 > c 1 > β -1 0 , where c 1 , c 2 are fixed constants and β 0 was introduced in (1.4).

Useful inequalities.

For all γ > 0 , we extend to Ω the definitions of t γ and ζ γ given in (3.1) as follows

t γ (x) = dist x, ∂ω(γ) if x ∈ ω(γ) 0 if x ∈ Ω \ ω(γ)) (3.2)
and

ζ γ (x) = dist x, Ω ∩ ∂ω(γ) if x ∈ ω(γ) 0 if x ∈ Ω \ ω(γ) . (3.3) 
In the sequel, we will add conditions on γ to ensure that ω(γ) = ∅ . Let χ ∈ C ∞ (R) be a non negative function satisfying

χ = 0 on (-∞, 1 2 ] , χ = 1 on [1, ∞) .
Define the functions χ γ , η γ , f γ and g γ on Ω as follows:

χ γ (x) = χ √ κHt γ (x) , η γ (x) = χ √ κHζ γ (x) , f γ (x) = χ γ (x) exp α√ κH t γ (x) and g γ (x) = η γ (x) exp α√ κH ζ γ (x) , (3.4) 
where α is a positive number whose value will be fixed later. Let h ∈ {f γ , g γ }. We multiply both sides of the first equation in (1.3) by h 2 ψ and then integrate by parts over ω(γ). We get

ω(γ) (∇ -iκHA)(hψ) 2 -κ 2 h 2 |ψ| 2 -|∇h| 2 |ψ| 2 dx ≤ 0 . (3.5) 
In the computations below, the constant C is independent of α, γ, κ and H. We estimate the term involving ∇h as follows

ω(γ) |∇h| 2 |ψ| 2 dx ≤ 2 α2 κH hψ 2 L 2 (ω(λ)) + C κH T (h) ,
where

T (h) :=            ω(γ)∩{ √ κHtγ (x)≤1} |ψ(x)| 2 dx if h = f γ , ω(γ)∩{ √ κHζγ (x)≤1} |ψ(x)| 2 dx if h = g γ . (3.6) 
In this way we infer from (3.5) the following estimate

ω(γ) (∇ -iκHA)(hψ) (x) 2 -κ 2 h(x) 2 |ψ(x)| 2 -2 α2 κHh(x) 2 |ψ(x)| 2 dx ≤ C κH T (h) . (3.7)
3.3. Decay in the interior.

Now we choose

γ = λ = κ H + µ .
Here 0 < µ < µ 0 and µ 0 is sufficiently small such that µ 0 + 1 c 1 < β 0 . This ensures that ω(λ) = ∅ . We choose in (3.7) the function h = f λ , where f λ is the function introduced in (3.4). Note that f λ ψ ∈ H 1 0 (ω(λ)). We may apply the result in Proposition 2.6 to φ := f λ ψ and infer from (3.7)

ω(λ) 1 -Cκ -σ(α) )|B 0 (x)| -2 α2 - κ H f 2 λ |ψ| 2 dx ≤ C ω(λ)∩{ √ κHt λ (x)≤1} |ψ(x)| 2 dx .
We then use that |B 0 (x)| ≥ λ in ω(λ) and that λ = κ H + µ . Consequently, for 0 < µ < µ 0 , 0 < α < α0 , κ ≥ κ 0 , α0 sufficiently small (for example α2 0 < µ/4) and κ 0 sufficiently large

1 -Cκ -σ(α) )|B 0 (x)| -2α 2 - κ H ≥ µ 2 .
Consequently, there exists a constant C µ > 0 such that

ω(λ) f λ (x) 2 |ψ(x)| 2 dx ≤ C -1 µ ω(λ)∩{ √ κHt λ (x)≤1} |ψ(x)| 2 dx ≤ C √ κH by (2.8) .
Inserting this into (3.7) (with h = f λ and T (f λ ) defined in (3.6)) achieves the proof of Item (1) in Theorem 3.1.

3.4.

Decay up to the boundary. Now we prove Item (2) in Theorem 3.1. Here we choose

γ = β = Θ -1 0 κ H + µ .
Note that the estimate in Item (2) of Theorem 3.1 is trivially true if ω(β) = ∅ . So, we assume in the sequel that ω(β) = ∅ . This holds if

H ≥ c 1 κ , c 1 > (Θ 0 β 1 ) -1 ,
and µ is sufficiently small. We write (3.7) for h = g β , where g β is introduced in (3.4) and T (g β ) in (3.6). We apply Proposition 2.6 to φ := g β ψ and get

ω(β) 1 -Cκ -σ(α) )Θ 0 |B 0 (x)| -C α2 - κ H g β (x) 2 |ψ(x)| 2 dx ≤ C ω(β)∩{ √ κHζ β (x)≤1} |ψ(x)| 2 dx .
(3.8) We decompose the integral over ω(β) as follows

ω(β) = ω int (β) + ω bnd (β)
, where

ω int (β) = ω(β) ∩ √ κH dist(x, ∂Ω) ≥ 1 and ω bnd (β) = ω(β) ∩ √ κH dist(x, ∂Ω) < 1 .
From (3.2), we see that ζ β (x) = t β (x) and f β (x) = g β (x) in ω int (β) . Furthermore, from the definition of ω(•) in (1.12), we see that ω(β) ⊂ ω(λ) and t β (x) ≤ t λ (x) on ω(β) if β ≥ λ . Hence, by the first item in Theorem 3.1 (which is already proved for all α ∈ (0, α0 )),

ω int (β) 1 -Cκ -σ(α) )Θ 0 |B 0 (x)| -2α 2 - κ H g β (x) 2 |ψ(x)| 2 dx ≤ C κ . (3.9) 
Thus, we infer from (3.8) (and the bound |ψ| ≤ 1),

ω bnd (β) 1 -Cκ -σ(α) )Θ 0 |B 0 (x)| -2α 2 - κ H g β (x) 2 |ψ(x)| 2 dx ≤ C κ .
But, in ω bnd (β), Θ 0 |B 0 (x)| ≥ κ H + µ , by definition of ω(β) and β = Θ -1 0 ( κ H + µ) . Thus, as long as α is selected sufficiently small, we have

(1 -Cκ -σ(α) ) Θ 0 |B 0 (x)| -2α 2 - κ H ≥ µ 2 ,
and consequently, for some constant Cµ > 0 ,

ω bnd (β) g β (x) 2 |ψ(x)| 2 dx ≤ Cµ κ .
We insert this estimate and the one in (3.9) into (3.8) to get

ω(β) g β (x) 2 |ψ(x)| 2 dx ≤ Cµ + C κ .
Finally, by inserting this estimate into (3.7) (with h = g β and T (g β ) defined in (3.6)), we finish the proof of Item (2) in Theorem 3.1.

Surface energy

The analysis of surface superconductivity starts with the work of St. James-de Gennes [START_REF] St | Onset of superconductivity in decreasing fields[END_REF], who studied this phenomenon on the ball. In the last two decades, many papers adressed the boundary concentration of the Ginzburg-Landau order parameter for general 2D and 3D samples in the presence of a constant magnetic field. We refer the reader to [START_REF] Almog | The distribution of surface superconductivity along the boundary: on a conjecture of X. B. Pan[END_REF][START_REF] Correggi | On the Ginzburg-Landau functional in the surface superconductivity regime[END_REF][START_REF] Fournais | Energy asymptotics for type II superconductors[END_REF][START_REF] Fournais | Nucleation of bulk superconductivity close to critical magnetic field[END_REF][START_REF] Fournais | The ground state energy of the three dimensional Ginzburg-Landau functional. Part II. Surface regime[END_REF][START_REF] Fournais | Superconductivity between Hc2 and Hc3[END_REF][START_REF] Lu | Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity[END_REF][START_REF] Pan | Surface superconductivity in applied magnetic fields above HC 2[END_REF].

In this section, we study surface superconductivity in non-uniform magnetic fields. Our presentation not only generalizes the results known for the constant field case, but also provides local estimates and new proofs, see Theorems 4.7 and 4.8 . The most notable novelty in the proofs is that we do not use the L ∞ elliptic estimates.

4.1.

The surface energy function. In this subsection, we give the definition of the continuous function E surf : [1, Θ -1 0 ] → (-∞, 0] introduced by X.B. Pan in [START_REF] Pan | Surface superconductivity in applied magnetic fields above HC 2[END_REF] and which appeared after (1.14) and in Theorem 1.5. Θ 0 is as before the de Gennes constant introduced in (1.5) with property (1.6).

For b ∈ [1, Θ -1 0 ] and R > 0 , we consider the reduced Ginzburg-Landau functional,

V(U R ) φ → E b,R (φ) = U R b|(∇ (σ,τ ) + iτ f )φ| 2 -|φ| 2 + 1 2 |φ| 4 dσdτ , (4.1) 
where f = (1, 0) and U R is the domain,

U R = (-R, R) × (0, +∞) , (4.2) 
and

V(U R ) = {u ∈ L 2 (U R ) : (∇ (σ,τ ) + iτ f )u ∈ L 2 (U R ) , u(±R, •) = 0 } . (4.
3) We introduce the following ground state energy,

d(b, R) = inf{E b,R (φ) : φ ∈ V(U R )} . (4.4)
In [START_REF] Pan | Surface superconductivity in applied magnetic fields above HC 2[END_REF], it is proved that, for all b ∈ [1, Θ -1 0 ] , there exists

E surf (b) ∈ (-∞, 0] such that E surf (b) = lim R→∞ d(b, R) 2R . (4.5)
The surface energy function E surf (•) can be described by a simplified 1D problem as well (cf. [START_REF] Almog | The distribution of surface superconductivity along the boundary: on a conjecture of X. B. Pan[END_REF][START_REF] Fournais | Superconductivity between Hc2 and Hc3[END_REF] and finally [START_REF] Correggi | On the Ginzburg-Landau functional in the surface superconductivity regime[END_REF] for the optimal result). We collect some properties of E surf (•):

• E surf (•) is a continuous and increasing function (cf. [START_REF] Fournais | The ground state energy of the three dimensional Ginzburg-Landau functional. Part II. Surface regime[END_REF]) ; [START_REF] Fournais | Energy asymptotics for type II superconductors[END_REF]). The next theorem gives the existence of some minimizer with good properties (cf. [START_REF] Pan | Surface superconductivity in applied magnetic fields above HC 2[END_REF]Theorems 4.4 & 5.3]): Theorem 4.1. There exist positive constants R 0 and M such that, for all b ∈ [1, Θ -1 0 ) and R ≥ R 0 :

• E surf (Θ -1 0 ) = 0 and E surf (b) < 0 for all b ∈ [1, Θ -1 0 ) (cf.
(1) The functional (4.1) has a minimizer u R in V(U R ) with the following properties:

(a) u R ≡ 0 ; (b) u R ∞ ≤ 1 ; (c) 1 R U R ∩{τ ≥3} τ 2 (ln τ ) 2 |(∇ (σ,τ ) + iτ f )u R | 2 + |u R (σ, τ )| 2 + τ 2 |u R (σ, τ )| 4 dσdτ ≤ M .
(2) The surface energy function E surf (b) satisfies

E surf (b) ≤ d(b, R) 2R ≤ E surf (b) + M R .
The upper bound in Item ( 2) above results from a property of superadditivity of d(b, R), see [START_REF] Pan | Surface superconductivity in applied magnetic fields above HC 2[END_REF]Eq. (5.4)]. The lower bound in Item (2) above is not explicitly mentioned in [START_REF] Pan | Surface superconductivity in applied magnetic fields above HC 2[END_REF], but its derivation is easy [17, Proof of Thm 2.1, Step 2, p. 351] and can be sketched in the following way. Let R > 0 and n ∈ N. Let u R ∈ H 1 0 (U R ) be a minimizer of the functional in (4.1). We extend u R to a function in

H 1 0 (U (2n+1)R ) by periodicity as follows u R (x 1 + 2R, x 2 ) = u R (x 1 , x 2 ) . Consequently, d(b, (2n + 1)R) ≤ E b,(2n+1)R (u R ) = (2n + 1)d(b, R) .
Dividing both sides of the preceding inequality by 2(2n + 1)R and sending n to +∞ , we get

E surf (b) ≤ d(b, R) 2R .
4.2. Boundary coordinates. The analysis of the boundary effects is performed in specific coordinates valid in a tubular neighborhood of ∂Ω. We call these coordinates boundary coordinates.

For more details on these coordinates, see for instance [START_REF] Fournais | Spectral Methods in Surface Superconductivity[END_REF]Appendix F]. For a sufficiently small t 0 > 0, we introduce the open set

Ω(t 0 ) = {x ∈ R 2 : dist(x, ∂Ω) < t 0 } .
In the sequel, let x 0 ∈ ∂Ω be a fixed point. Let s → γ x 0 (s) be the parametrization of ∂Ω by arc-length such that γ x 0 (0) = x 0 . Also, let ν(s) be the unit inward normal of ∂Ω at γ x 0 (s). The orientation of γ x 0 is selected in the counter clock-wise direction, hence

det γ x 0 (s), ν(s) = 1 .
Define the transformation

Φ x 0 : - |∂Ω| 2 , |∂Ω| 2 × (0, t 0 ) (s, t) → γ x 0 (s) + tν(s) ∈ Ω(t 0 ) . (4.6)
We may choose t 0 sufficiently small (independently from the choice of the point x 0 ∈ ∂Ω) such that the transformation in (4.6) is a diffeomorphism. The Jacobian of this transformation is

|DΦ x 0 | = 1 -tk(s),
where k denotes the curvature of ∂Ω. For x ∈ Ω(t 0 ), we put

Φ -1
x 0 (x) = (s(x), t(x)) . In particular, we get the explicit formulae t(x) = dist(x, ∂Ω) and s(x 0 ) = 0 .

(4.7)

Using Φ x 0 , we may associate to any function u ∈ L 2 (Ω), a function u = T Φx 0 u defined in

[-|∂Ω| 2 , |∂Ω| 2 ) × (0, t 0 ) by, u(s, t) = u(Φ x 0 (s, t)) .
(4.8) Also, for every vector field A ∈ H 1 (Ω), we assign the vector field

Ã(s, t) = Ã1 (s, t), Ã2 (s, t) with    Ã1 (s, t) = a(s, t)A Φ x 0 (s, t) • γ x 0 (s) , Ã2 (s, t) = A Φ x 0 (s, t) • ν(s) , (4.9) 
and a(s, t) = 1 -t k(s) . The following change of variable formulas hold. Proposition 4.2. For u ∈ H 1 (Ω) and A ∈ H 1 (Ω; R 2 ), we have:

Ω(t 0 ) |(∇ -iA)u| 2 dx = t 0 0 |∂Ω| 2 - |∂Ω| 2 [a(s, t)] -2 |(∂ s -i Ã1 ) u| 2 + |(∂ t -i Ã2 ) u| 2 a(s, t) dsdt , (4.10) 
and

Ω(t 0 ) |u(x)| 2 dx = t 0 0 |∂Ω| 2 - |∂Ω| 2 | u(s, t)| 2 a(s, t) dsdt . (4.11)
Recall the vector field A 0 introduced in (2.2). Up to a gauge transformation, the vector field A 0 admits a useful (local) representation in the coordinate system (s, t).

For x 0 ∈ ∂Ω and ∈ (0, t 0 ), we introduce the set V x 0 ( ) ⊂ Ω(t 0 ) as follows:

V x 0 ( ) = Φ x 0 (-, ) × (0, ) . (4.12)

Lemma 4.3. There exists r 0 > 0 such that, for any x 0 in ∂Ω , there exists

g x 0 in C ∞ ((-2r 0 , 2r 0 ) × (0 , r 0 )) such that Ã0 (s, t) -∇g x 0 (s, t) = -t + k(s) t 2 2 , 0 in (-2r 0 , 2r 0 ) × (0 , r 0 ) .
Here Ã0 is the vector field associated with A 0 by the formulas in (4.9) and one can take r 0 = min(t 0 , |∂Ω| 4 ). For the proof of Lemma 4.3, we refer to [15, Proof of Lem. F.1.1]. Note that Lemma F.1.1 in [START_REF] Fournais | Spectral Methods in Surface Superconductivity[END_REF] is announced for a more general setting.

We will use Lemma 4.3 to estimate the following Ginzburg-Landau energy of u,

G 0 u, A 0 ; V x 0 ( ) = Vx 0 ( ) |(∇ -ih ex A 0 )u| 2 -κ 2 |u| 2 + κ 2 2 |u| 4 dx . (4.13)
Lemma 4.4. There exist constants C > 0, 0 > 0 and κ 0 > 0 such that, for all x 0 ∈ ∂Ω,

∈ (0, 0 ), κ ≥ κ 0 , κ 2 ≤ h ex ≤ Θ -1 0 κ 2 , and u ∈ H 1 0 (V x 0 ( )) ∩ L ∞ (V x 0 ( )) satisfying u ∞ ≤ 1 , the following two inequalities hold: G 0 u, A 0 ; V x 0 ( ) ≥ 2 κ 2 √ h ex E surf h ex κ 2 -Cκ + κ 3 4 + κ 2 , (4.14) 
and

G 0 u, A 0 ; V x 0 ( ) ≤ (1 + C ) κ 2 h ex E hex/κ 2 , √ hex ( v) + Cκ κ 3 4 + κ 2 . (4.15) 
where E •,• is the functional introduced in (4.1) and

v(σ, τ ) = exp -ih ex g x 0 σ √ h ex , τ √ h ex u σ √ h ex , τ √ h ex .
Here u is the function associated with u by (4.8) and g x 0 is introduced in Lemma 4.3.

Proof. Using Proposition 4.2 and the assumptions on u, we may write, for two constants C 0 , C > 0 and for all 0 < < min

1 2 C -1 0 , t 0 , G 0 u, A 0 ; V x 0 ( ) ≥ (1 -C 0 ) 0 - |(∇ -ih ex A 0 ) u| 2 -κ 2 | u| 2 + κ 2 2 | u| 4 dsdt -Cκ 2 3 .
Let g := g x 0 be the function defined in Lemma 4.3 and w(s, t) = e -ihexg(s,t) u(s, t) . Using the Cauchy-Schwarz inequality, we get the existence of C > 0 such that

G 0 u, A 0 ; V x 0 ( ) ≥ (1-2C 0 ) 0 - |(∇+ih ex tf ) w| 2 -κ 2 | w| 2 + κ 2 2 | w| 4 dsdt-Cκ 4 5 -Cκ 2 3 .
Here f = (1, 0). We apply the change of variables

(σ, τ ) = ( √ h ex s, √ h ex t) and v(σ, τ ) = w(s, t) to get G 0 (u, A 0 ; V x 0 ( )) ≥ (1 -2C 0 ) κ 2 h ex E hex/κ 2 ,R ( v) -Cκ 4 5 -Cκ 2 3 , where R = h 1 2
ex and E hex/κ 2 ,R is the functional introduced in (4.1) for b = h ex /κ 2 . Note that we extended v by 0, which is possible because u ∈ H 1 0 (V x 0 ( )). Using the second Item in Theorem 4.1 and the assumption C 0 < 1 2 , we get

G 0 (u, A 0 ; V x 0 ( )) ≥ 2(1 -2C 0 ) κ 2 h ex (h 1 2 ex ) E surf h ex κ 2 -Cκ 4 5 -Cκ 2 3 .
This proves the lower bound (4.14) in Lemma 4.4 . Similarly, using Lemma 4.3, the Cauchy-Schwarz inequality on the kinetic term and a change of variables, we get the upper bound (4.15) of Lemma 4.4 .

Existence of surface superconductivity.

The proof of Theorem 1.5 follows from the exponential decay stated in Theorem 3.1 and the following result: Theorem 4.5. Suppose that Assumption 1.2 holds and that b > β -1 0 , where β 0 is the constant introduced in (1.4). There exists ρ ∈ (0, 1) such that the following is true.

Let

x 0 ∈ ∂Ω such that 1 b < |B 0 (x 0 )| < 1 Θ 0 b . If (ψ, A) κ,H is a minimizer of the functional in (1.1) for H = bκ , then lim κ→+∞ 2κ 1+ρ Vx 0 (κ -ρ ) |ψ(x)| 4 dx = -2 1 b|B 0 (x 0 )| E surf b|B 0 (x 0 )| > 0 , (4.16) 
and

lim κ→+∞ 2κ ρ-1 E ψ, A; V x 0 (κ -ρ ) = 1 b|B 0 (x 0 )| E surf b|B 0 (x 0 )| < 0 . (4.17) 
The proof of Theorem 4.5 will follow from the upper bound in Theorems 4.7 and 4.8 below.

Remark 4.6. Let ∈ (1, Θ -1 0 -1) . The convergence in (4.16) and (4.17) is uniform with respect to x 0 ∈ {1 + ≤ b|B 0 | < Θ -1 0 } ∩ ∂Ω. This is precisely stated in Theorems 4.7 and 4.8.

4.4.

Sharp upper bound on the L 4 -norm.

In this subsection, we will prove:

Theorem 4.7. Suppose that B 0 ∈ C 0,α (Ω) for some α ∈ (0, 1), ρ ∈ ( 3 3+α , 1) and b ≥ β -1 0 , with

β 0 := sup x∈Ω |B 0 (x)| > 0 .
There exist κ 0 > 0, a function r : [κ 0 , +∞) → R + such that lim κ→+∞ r(κ) = 0 and, for all κ ≥ κ 0 , for all critical point (ψ, A) κ,H of the functional in (1.1) with H = bκ , and all

x 0 ∈ ∂Ω satisfying 1 ≤ b |B 0 (x 0 )| < Θ -1 0 , the inequality 1 2 Vx 0 ( ) |ψ(x)| 4 dx ≤ -2κ -1 1 b|B 0 (x 0 )| E surf b |B 0 (x 0 )| + κ -1 r(κ) ,
holds with = κ -ρ and V x 0 ( ) is defined in (4.12). Proof. The proof is reminiscent of the method used by the second author in [START_REF] Kachmar | A new formula for the energy of bulk superconductivity[END_REF]Sec. 4] (see also [START_REF] Kachmar | The distribution of 3D superconductivity near the second critical field[END_REF]). We assume that B 0 (x 0 ) > 0. The case where B 0 (x 0 ) < 0 can be treated in the same manner by applying the transformation u → u.

Let σ ∈ (0, 1) and = κ -ρ as in the statement of Theorem 4.7 . Let f be a smooth function satisfying,

f = 1 in V x 0 ( ), 0 ≤ f ≤ 1 and |∇f | ≤ C σ in V x 0 (1 + σ) . (4.18) 
The function f depends on the parameters x 0 , , σ but the constant C is independent of these parameters. We will estimate the following local energy

E 1 (f ψ, A) := E 1 f ψ, A; V x 0 ((1 + σ) ) , (4.19) 
where, for an open set V ⊂ Ω,

E 1 (u, A; V) := V |(∇ -iκHA)u| 2 -κ 2 |u| 2 + κ 2 2 |u| 4 dx , E 2 (u, A; V) := V |(∇ -iκHA)u| 2 -κ 2 |u| 2 + κ 2 2 |u| 4 dx + (κH) 2 Ω | curl A -B 0 | 2 dx . (4.20) 
Since (ψ, A) is a solution of (1.3), an integration by parts yields (cf. [16, Eq. (6.

2)]),

E 1 (f ψ, A) = κ 2 Vx 0 ((1+σ) ) f 2 -1 + 1 2 f 2 |ψ| 4 dx + Vx 0 ((1+σ) ) |∇f | 2 |ψ| 2 dx . (4.21) Since f = 1 in V x 0 ( ) and -1 + 1 2 f 2 ≤ -1 2 in V x 0 ((1 + σ) ), we may write Vx 0 ((1+σ) ) f 2 -1 + 1 2 f 2 |ψ| 4 dx ≤ - 1 2 Vx 0 ( ) |ψ| 4 dx .
We estimate the integral in (4.21) involving |∇f | using (4.18) and supp f ≤ Cσ 2 , where supp f denotes the area of the support of f . In this way, we infer from (4.21),

E 1 (f ψ, A) ≤ - κ 2 2 Vx 0 ( ) |ψ| 4 dx + Cσ -1 . (4.22) 
Now we write a lower bound for this energy.

We may find a real-valued function

w ∈ C 2,α (V x 0 ((1 + σ) ) such that E 1 (f ψ, A) ≥ Vx 0 ((1+σ) ) (1 -C δ )|(∇ -iκHB 0 (x 0 )A 0 )(e -iκHw f ψ)| 2 -κ 2 |f ψ| 2 + κ 2 2 |f ψ| 4 dx -Cκ 2 2γ-δ + κ 2 2+2α-δ Vx 0 ((1+σ) ) |f ψ| 2 ,
where γ ∈ (0, 1) is a constant whose choice will be specified later and δ > 0 . The details of these computations are given in (2.13) and (2.14).

From now on we choose δ = α , use the lower bound in Lemma 4.4 and the assumption that H = bκ to write

E 1 (f ψ, A) ≥ 2(1 -C α )κ(1 + σ) 1 b|B 0 (x 0 )| E surf b|B 0 (x 0 )| -Cκ ( + κ 3 4 + κ 2 ) -Cκ 2 α + 2γ-α + κ 2 2+α
Vx 0 ((1+σ) )

|f ψ| 2 .
Using the bound f ψ ∞ ≤ 1 , we get further

E 1 (f ψ, A) ≥ 2(1 -C α )κ(1 + σ) 1 b|B 0 (x 0 )| E surf b|B 0 (x 0 )| -Cκ + κ 1+α + κ 1+2γ-α + κ 3 3+α . (4.23)
To optimize the remainder, we choose γ = α . Our assumption

= κ -ρ with (1 + α) -1 < 3(3 + α) -1 < ρ < 1
yields that the function Σ(κ, ) := α + + κ 1+α + κ 3 3+α

tends, with = κ -ρ , to 0 as κ → +∞ . Now, coming back to (4.22), we find

2κ(1 + σ) 1 b|B 0 (x 0 )| E surf b|B 0 (x 0 )| -C κ Σ(κ, ) ≤ - κ 2 2 Vx 0 ( ) |ψ| 4 dx + Cσ -1 .
We rearrange the terms in this inequality, divide by κ 2 , and choose σ = κ 1 2 (ρ-1) . In this way, we get the upper bound in Theorem 4.7 with, for some constant C > 0, r(κ) = C Σ(κ, κ -ρ ) + κ In this subsection, we will prove the asymptotic optimality of the upper bound established in Theorem 4.7 by giving a lower bound with the same asymptotics.

We remind the reader of the definition of the domain V x 0 ( ) in (4.12) and the local energy E 1 ψ, A; V introduced in (4.20).

Theorem 4.8. Let 1 < < Θ -1 0 -1, 3 3+α < ρ < 1 and 1 -ρ < δ < 1 be constants. Under the assumptions of Theorem 4.7, there exist κ 0 > 0, a function r : [κ 0 , +∞) → R + such that lim κ→+∞ r(κ) = 0 and, for all κ ≥ κ 0 , for all minimizer (ψ, A) κ,H of the functional in (1.1) with H = bκ , and all x 0 ∈ ∂Ω satisfying

1 + ≤ b|B 0 (x 0 )| < Θ -1 0 ,
the two inequalities

1 2 Vx 0 ( ) |ψ(x)| 4 dx ≥ -2κ -1 1 b|B 0 (x 0 )| E surf b|B 0 (x 0 )| -κ -1 r(κ) , 1 2 E 1 ψ, A; V x 0 ((1 + σ) ) -κ 1 b|B 0 (x 0 )| E surf b|B 0 (x 0 )| ≤ κ r(κ) ,
hold, with = κ -ρ and σ = κ -δ .

Remark 4.9. Let c 2 > c 1 > 0 be fixed constants. The conclusion in Theorem 4.8 remains true if satisfies

c 1 κ -ρ ≤ ≤ c 2 κ -ρ .
Proof of Theorem 4.8. In the sequel, σ ∈ (0, 1) will be selected as a negative power of κ , σ = κ -δ for a suitable constant δ ∈ (0, 1). As the proof of Theorem 4.7, we can assume that B 0 (x 0 ) > 0.

The proof of the lower bound in Theorem 4.8 will be done in four steps.

Step 1: Construction of a trial function.

The construction of the trial function here is reminiscent of that by Sandier-Serfaty in the study of bulk superconductivity (cf. [START_REF] Sandier | The decrease of bulk superconductivity close to the second critical field in the Ginzburg-Landau model[END_REF]). Define the function

u(x) = 1 Vx 0 ((1+σ) ) (x)χ t(x) exp iκHw(x) v R • Φ -1 x 0 (x) + η (x)ψ(x) (x ∈ Ω) . (4.24) 
Here V x 0 (•) is introduced in (4.12), t(x) = dist(x, ∂Ω), Φ x 0 is the coordinate transformation defined in (4.6), The function g x 0 (s, t) satisfies the following identity in -2 , 2 × (0, ) (cf. Lemma 4.3),

v R (s, t) = exp iκHg x 0 (s, t) u R s B 0 (x 0 )κH, t B 0 (x 0 )κH , (4.25) 
Ã0 (s, t) -∇g x 0 (s, t) = -t + t 2 2 k(s), 0 . The function χ ∈ C ∞ ([0, ∞)) satisfies χ = 1 in [0, 1/2] , χ = 0 in [1, ∞) , and 0 ≤ χ ≤ 1 .
The function η is a smooth function satisfying

η (x) = 0 in V x 0 ((1 + σ) ) , η (x) = 1 in Ω \ V x 0 ((1 + 2σ) ) , 0 ≤ η (x) ≤ 1 in Ω , and |∇η (x)| ≤ Cσ -1 -1 in Ω , for some constant C > 0 .
Finally, the function w is the sum of two real-valued C 2,α -functions w 1 and w 2 in V x 0 ((1 + σ) ) and satisfying the following estimates

|A(x)-F(x)-∇w 1 (x)| ≤ C κ α and |F(x)-B 0 (x 0 )A 0 (x)-∇w 2 (x)| ≤ C 1+α in V x 0 ((1+σ) ) .
(4.27) By Proposition 2.4, we simply define w 1 (x) = (x -x 0 ) • A(x 0 ) -F(x 0 ) . The fact that the vector field A 0 (x) is gauge equivalent to A 0 (x -x 0 ) and Lemma 2.5 ensure the existence of w 2 .

We decompose the energy E(u, A) as follows

E(u, A) = E 1 (u, A) + E 2 (u, A) , (4.28) 
where

E 1 (u, A) = E 1 u, A; V x 0 ((1 + σ) ) and E 2 (u, A) = E 2 u, A; Ω \ V x 0 ((1 + σ) ) (4.29)
are introduced in (4.20).

Step 2: Estimating E 1 (u, A).

Using the Cauchy-Schwarz inequality and the estimates in (4.27), we get

E 1 (u, A) ≤ (1 + α ) E 1 e -iκHw u, B 0 (x 0 )A 0 + C κ 2 2+α + κ 4 4+α .
For estimating the term E 1 e -iκHw u, B 0 (x 0 )A 0 , we write

E 1 e -iκHw u, B 0 (x 0 )A 0 = G 0 e -iκHw u, h ex A 0 ; V x 0 ( ˜ ) ,
where ˜ = (1 + σ) , h ex = κHB 0 (x 0 ) and G 0 is introduced in (4.13) .

We apply Lemma 4.4 and get

E 1 (u, A) ≤ (1 + C α ) 1 bB 0 (x 0 ) E bB 0 (x 0 ),R χ u R + Cκ κ 3 3+α + κ 1+α ,
where 

χ (τ ) = χ τ √ κH , b = H/κ ,
E bB 0 (x 0 ),R χ u R ≤ E bB 0 (x 0 ),R u R + C | ln( √ κH)| 2 √ κH .
Since E bB 0 (x 0 ),R (u R ) = d(bB 0 (x 0 ), R) and R = (1 + σ) B 0 (x 0 )κH, Theorem 4.1 yields

E 1 (u, A) ≤ 2κ 1 b|B 0 (x 0 )| E surf bB 0 (x 0 ) + Cκ α + κ 3 3+α + κ 1+α + σ + (κ ) -1 + | ln( √ κH)| 2 2 κ 2
. (4.30)

Step 3: Estimating E 2 (u, A). Let V x 0 ( ˜ ) := Ω \ V x 0 ( ˜ ) and u = η ψ . By the Cauchy-Schwarz inequality, we get, for any ζ ∈ (0, 1) ,

Vx 0 ( ˜ ) |(∇ -iκHA)η ψ| 2 dx ≤ (1 + κ -ζ ) Vx 0 ( ˜ ) |η (∇ -iκHA)ψ| 2 dx + (1 + κ ζ ) Vx 0 ( ˜ ) |∇η | 2 |ψ| 2 dx ≤ (1 + κ -ζ ) Vx 0 ( ˜ ) |(∇ -iκHA)ψ| 2 dx + (1 + κ ζ ) {t(x)≤σ }∩Vx 0 ( ˜ ) |∇η | 2 |ψ| 2 dx + (1 + κ ζ ) {t(x)>σ } |∇η | 2 |ψ| 2 dx ≤ (1 + κ -ζ ) Vx 0 ( ˜ ) |(∇ -iκHA)ψ| 2 dx + C(1 + κ ζ ) .
Here we used the properties of the function η , namely that η

≤ 1, |∇η | = O(σ -1 -1 ) and |{t(x) ≤ σ } ∩ V x 0 ( ˜ ) | = O(σ 2 2 ) .
For the integral over {t(x) > σ }, we use that b|B 0 (x 0 )| ≥ 1 + , which in turn allows us to use Theorem 1.3 and prove that the integral of |ψ| 2 is exponentially small as κ → +∞ . Now we use that

V x 0 ( ˜ ) ∩ supp(1 -η ) = O(σ 2 ) to write -κ 2 Vx 0 ( ˜ ) |η ψ| 2 dx = -κ 2 Vx 0 ( ˜ ) |ψ| 2 dx + κ 2 Vx 0 ( ˜ ) (1 -η 2 )|ψ| 2 dx ≤ -κ 2 Vx 0 ( ˜ ) |ψ| 2 dx + Cκ 2 σ 2 .
This yields

E 2 (u, A) ≤ (1 + κ -ζ ) Ω\Vx 0 ( ˜ ) |(∇ -iκHA)ψ| 2 -κ 2 |ψ| 2 + κ 2 2 |ψ| 4 dx + C 1 + κ ζ + κ 2 σ 2 + κ 2 H 2 Ω | curl A -B 0 | 2 dx .
Remembering the definition of E 2 (ψ, A) in (4.29), we obtain

E 2 (u, A) ≤ (1 + κ -ζ ) E 2 (ψ, A) + C 1 + κ ζ + κ 2 σ 2 . ( 4 

.31)

Step 4: Upper bound of the local Ginzburg-Landau energy.

Since (ψ, A) is a minimizer of the functional E(•, •), E(ψ, A) ≤ E(0, A 0 ) = 0 and E(ψ, A) ≤ E(u, A) = E 1 (u, A) + E 2 (u, A) .
Using that E(ψ, A) ≤ 0 , we get further

(1 + κ -ζ )E(ψ, A) ≤ E(u, A) = E 1 (u, A) + E 2 (u, A) .
By (4.29), we may write the simple identity E(ψ, A) = E 1 (ψ, A) + E 2 (ψ, A). Using (4.31), we get

(1 + κ -ζ ) E 1 (ψ, A) ≤ E 1 (u, A) + C 1 + κ ζ + κ 2 σ 2 .
Now, we use the estimate in (4.30) to write

E 1 (ψ, A) ≤ 2κ 1 b|B 0 (x 0 )| E surf bB 0 (x 0 ) + Cκ κ -ζ + α + κ 3 3+α + κ 1+α + σ + (κ ) -1 + κ -1+ζ -1 + κσ + | ln( √ κH)| 2 2 κ 2
. (4.32)

Step 5: Lower bound of the L 4 -norm.

We

select = κ -ρ , σ = κ -δ and ζ = 1 -ρ 2 , with 1 1 + α < 3 3 + α < ρ < 1 and 1 -ρ < δ < 1 .
In this way, we get that, the restriction Σ(κ, κ -ρ , κ -δ ) of

Σ(κ, , σ) := κ -ζ + α + κ 3 3+α + κ 1+α + σ + (κ ) -1 + κ -1+ζ -1 + κσ + | ln( √ κH)| 2 2 κ 2 , (4.33) 
tends to 0 as κ → +∞ . Consequently, we infer from (4.32),

E 1 (ψ, A) ≤ 2κ 1 b|B 0 (x 0 )| E surf bB 0 (x 0 ) + C κ Σ(κ, κ -ρ , κ -δ ) . (4.34) 
Now, let f be the smooth function satisfying (4.18). Again, using the properties of f and a straightforward computation as in Step 3, we have

E 1 (f ψ, A) ≤ (1 + κ -ζ ) E 1 (ψ, A) + C κ ζ + κ 2 σ 2 , Vx 0 ( ˜ ) f 2 -1 + 1 2 f 2 |ψ| 4 dx ≥ - 1 2 Vx 0 ( ) |ψ| 4 dx + Cσ 2 . (4.35)
Using the lower bound of E 1 (f ψ; A) in (4.23), we get from (4.34) and (4.35),

E 1 (ψ, A) -2κ 1 b|B 0 (x 0 )| E surf bB 0 (x 0 ) ≤ Cκ Σ(κ, κ -ρ , κ -δ ) .
Remembering the definition of 

E 1 (ψ, A) = E 1 ψ, A; V x 0 ((1 + σ) ) ,
(1 + κ -ζ ) E 1 (ψ, A) + C κ -ζ + κ 2 σ 2 ≥ - κ 2 2 Vx 0 ( ) |ψ| 4 dx -Cσ 2 κ 2 .
Rearranging the terms, then using (4.34) and (4.33), we arrive at the following upper bound

κ 2 2 Vx 0 ( ) |ψ(x)| 4 dx ≥ -2κ 1 b|B 0 (x 0 )| E surf bB 0 (x 0 ) + C κ Σ(κ, κ -ρ , κ -δ ) .
Using the remark around (4.33), this finishes the proof of Theorem 4.8.

5.

The superconductivity region: Proof of Theorem 1.7

In this section, we present the proof of Theorem 1.7 devoted to the distribution of the superconductivity in the region {x ∈ Ω, b |B 0 (x)| < 1} for the applied magnetic field H = bκ .

The proof follows by an analysis similar to the one in Section 4, so our presentation will be shorter here.

Remark 5.1. As → 0 + , the area of W(x 0 , ) as introduced in (1.18) is

|W(x 0 , )| = 4 2 if x 0 ∈ Ω , and |W(x 0 , )| = 4 2 + o( 2 ) if x 0 ∈ ∂Ω .
The proof of Theorem 1.7 is presented in five steps. In the sequel, ρ ∈ ( 2 2+α , 1) and c 2 > c 1 > 0 are fixed,

c 1 κ -ρ ≤ ≤ c 2 κ -ρ and σ = κ ρ-1 2 .
(5.1)

We will refer to the condition on by writing ≈ κ -ρ .

Step 1. Useful estimates.

Let f be a smooth function such that

f = 1 in W(x 0 , ), 0 ≤ f ≤ 1 and |∇f | ≤ C σ in W x 0 , (1 + σ) . (5.2)
As in the proof of (4.22), we have

E 1 f ψ, A; W(x 0 , (1 + σ) ) ≤ - κ 2 2 W(x 0 , ) |ψ(x)| 4 dx + Cσ -1 . (5.3)
Here E 1 is introduced in (4.20). Furthermore, we have the following two estimates (cf. (4.35)):

E 1 f ψ, A; W(x 0 , (1 + σ) ) ≤ (1 + κ -ζ )E 1 ψ, A; W(x 0 , (1 + σ) ) + Cκ 2 2 σ -1 κ ζ (κ ) -2 + σ , (5.4) 
and (cf. (4.21))

E 1 f ψ, A; W(x 0 , (1 + σ) ) ≥ κ 2 W(x 0 ,(1+σ) ) f 2 -1 + 1 2 f 2 |ψ| 4 dx ≥ - κ 2 2 W(x 0 , ) |ψ(x)| 4 dx + Cσ 2 κ 2 , (5.5) 
where ζ ∈ (0, 1) is a constant to be chosen later.

Step 2. The case B 0 (x 0 ) = 0 . The upper bound for the integral of |ψ| 4 in Theorem 1.7 is trivial since |ψ| ≤ 1 and g(0) = -1 2 . We have the obvious inequalities

E 1 f ψ, A; W(x 0 , (1 + σ) ) ≥ W(x 0 ,(1+σ) ) -κ 2 |f ψ| 2 + κ 2 2 |f ψ| 4 dx ≥ - κ 2 2 W(x 0 ,( 1+σ 
) ) dx .
Inserting this into (5.4) and selecting ζ = 1-ρ 2 , we get

E 1 ψ, A; W(x 0 , (1 + σ) ) ≥ -Cκ 2 2 σ -1 κ ζ (κ ) -2 + σ = o(κ 2 2 ) , since σ = κ ρ-1
2 , ≈ κ -ρ and 2 2+α < ρ < 1 . Now we prove an upper bound for E 1 f ψ, A; W(x 0 , (1 + σ) ) . Let η be a smooth function satisfying η (x) = 0 in W(x 0 , (1 + σ) ) , η (x) = 1 in Ω \ W(x 0 , (1 + 2σ) ) , 0 ≤ η (x) ≤ 1 in Ω , (5.6) and |∇η (x)| ≤ Cσ -1 -1 in Ω , (

for some constant C > 0 . We define the function

u(x) = exp iκHw(x) f (x) + η (x)ψ(x) ,
where the function w is the sum of two functions w 1 and w 2 such that the two inequalities in (4.27) are satisfied in W(x 0 , (1 + σ) )).

We have the obvious decomposition E(u, A) = E 1 exp iκHw(x) f (x), A; W(x 0 , (1 + σ) ) + E 2 η (x)ψ(x), A; Ω \ W(x 0 , (1 + σ) ) ,

where E 1 and E 2 are introduced in (4.20).

We estimate E 2 η (x)ψ(x), A; Ω \ W(x 0 , (1 + σ) ) as we did in the proof of Theorem 4.8 (cf. Step 3 and (4.31)). In this way we get E 2 η (x)ψ(x), A; Ω \ W(x 0 , (1 + σ) ) ≤ (1 + κ -ζ )E 2 ψ(x), A; Ω \ W(x 0 , (1 + σ) ) + C(σ -1 κ ζ + σκ 2 2 ) . (5.8) For the term E 1 exp iκHw(x) f (x), A; W(x 0 , (1 + σ) ) , we argue as in the proof of Theorem 4.8 (Step 2) and write E 1 exp iκHw(x) f (x), A; W(x 0 , (1 + σ) )

≤ (1 + α )E 1 f (x), B 0 (x 0 )A 0 ; W(x 0 , (1 + σ) ) + C(κ 2 2+α + κ 4 4+α ) .

Note that E 1 f (x), B 0 (x 0 )A 0 ; W(x 0 , (1 + σ) ) = E 1 f (x), 0; W(x 0 , (1 + σ) )

≤ Cσ -1 + κ 2 W(x 0 ,(1+σ) ) f 2 -1 + f 2 2 dx ≤ Cσ -1 - κ 2 2 |W(x 0 , (1 + σ) )| + Cσκ 2 2 .
Therefore, we get the estimate Using that E(ψ, A) ≤ min 0, E(ψ, A) , we get We insert this into (5.4), then we substitute the resulting inequality into (5.5). In this way we get

W(x 0 , ) |ψ| 4 dx ≥ 1 2 |W(x 0 , (1 + σ) )| -C(σ + σ -1 κ ζ (κ ) -2 + κ 2 2+α + α + κ -ζ ) .
The assumption on σ and in (5.1) and the choice ζ = 1-ρ 2 yield that the term on the right hand side above is o(1), hence we get the lower bound for the integral of |ψ| 4 in Theorem 1.7. Now, the estimate of the energy follows by collecting the estimates in (5.9) and (5.5).

Step 3. The case |B 0 (x 0 )| > 0: Upper bound.

We use (2.13) and (2.14) with γ = δ = α. We obtain, for some C 2,α real-valued function w, Our choice of σ and in (5.1) guarantees that the term on the right side above is o( 2 ) . Using Remark 5.1, we get the upper bound in Theorem 1.7 .

Remark 5.2. The proof in step 3 is still valid if |B 0 (x 0 )| ≥ κ -2γ , 0 < γ < 1 -ρ and the following condition holds:

If x 0 ∈ Ω then Q 4κ -ρ (x 0 ) ⊂ Ω .
Step 4. The case |B 0 (x 0 )| > 0 and x 0 ∈ ∂Ω : Lower bound.

For the sake of simplicity, we treat the case B 0 (x 0 ) > 0. The case B 0 (x 0 ) < 0 can be treated similarly by taking complex conjugation.

We define the function u(x) = 1 W(x 0 ,(1+σ) ) (x) exp iκHw(x) w R • Φ -1 x 0 (x) + η (x)ψ(x) , where the function η satisfies (5.6) and (5.7). Similarly as in (4.24), the function w is the sum of two functions w 1 and w 2 , defined in W(x 0 , (1 + σ) )) and satisfying the two inequalities in (4.27). Finally w R (s, t) = exp iκHg x 0 (s, t) exp -iκHst 2 u R s B 0 (x 0 )κH , t B 0 (x 0 )κH , and g x 0 is the function satisfying (4.25) in W(x 0 , ) (by Lemma 4.3). The function u R ∈ H 1 0 (Q R ) is a minimizer of the energy e D bB 0 (x 0 ), R for R = 2(1 + σ) B 0 (x 0 )κH (cf. (2.3)). We can estimate E(u, A) similarly as we did in the proof of Theorem 4.8 and get E(u, A) ≤ 4(1 + σ) 2 2 κ 2 g bB 0 (x 0 ) + (1 + κ -ζ )E 2 (ψ, A)

+ Cκ 2 2 α + κ 2 2+α + σ + σ -1 κ ζ (κ ) -2 ,
where ζ ∈ (0, 1) will be chosen later and 
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Figure 1 .

 1 Figure 1. Illustration of Regime I for H = bκ and b = 1/ε : Superconductivity is destroyed in the dark regions and survived on the entire boundary.

Figure 2 .

 2 Figure 2. Illustration of Regime II for H = bκ and b = 1/ε : Superconductivity is also destroyed on the boundary parts {Θ 0 |B 0 (x)| > ε} ∩ ∂Ω .

Figure 3 .

 3 Figure 3. Illustration of Regime II when {B 0 = 0} ∩ ∂Ω = ∅ , H = bκ , b = 1/ε and ε is small: Superconductivity is destroyed on the entire boundary and is concentrated in the set {|B 0 | < ε}.

Theorem 1 . 3 .

 13 [Exponential decay outside the superconductivity region] Suppose that Assumption 1.2 holds, that b > β -1 0 and let O be an open set such that O ⊂ ω 1 b , where ω( 1 b

Remark 3 . 5 .

 35 The conclusion in Theorem 1.3 is a simple consequence of Theorem 3.1 and the estimate in Proposition 2.4. Actually, if O is an open set independent of κ such that O ⊂ ω(κ/H), then

4 . 5 .

 45 Sharp Lower bound on the L 4 -norm.

R = ( 1 +

 1 σ) B 0 (x 0 )κH , (4.26) and (cf. (4.1)) u R (•) is a minimizer of the reduced functional E bB 0 (x 0 ),R (•) .

E 1

 1 exp iκHw(x) f (x), A; W(x 0 , (1 + σ) ) ≤ -(1 + α ) κ 2 2 |W(x 0 , (1 + σ) )| + Cκ 2 2 ( α + κ 2 2+α + σ -1 (κ ) -2 + σ) ,and consequentlyE(u, A) ≤ -κ 2 2 |W(x 0 , (1 + σ) )| + (1 + κ -ζ )E 2 ψ(x), A; Ω \ W(x 0 , (1 + σ) ) + Cκ 2 2 ( α + κ 2 2+α + σ -1 κ ζ (κ ) -2 + σ) .

( 1 +

 1 κ -ζ )E 1 ψ, A; W(x 0 , (1 + σ) ) ≤ -κ 2 2 |W(x 0 , (1 + σ) )| + Cκ 2 2 ( α + κ 2 2+α + σ -1 κ ζ (κ ) -2 + σ) .(5.9)

E 1 2 + κ 2 3 ≥ 1 .

 1231 f ψ, A; W(x 0 , (1 + σ) ) ≥ (1 -α )E 1 e -iκHw f ψ, A 0 ; W(x 0 , (1 + σ) ) -Cκ 2 2 ( α + κ 2 2+α ) . (5.10) If x 0 ∈ Ω , we get by re-scaling and (2.6) thatE 1 e -iκHw f ψ, A 0 ; W(x 0 , (1 + σ) ) ≥ 4κ 2 (1 + σ) 2 2 g(b|B 0 (x 0 )|) .If x 0 ∈ ∂Ω , then we may write a lower bound for E 1 f ψ, A 0 ; W(x 0 , (1 + σ) ) by converting to boundary coordinates as in Lemma 4.4 and getE 1 e -iκHw f ψ, A 0 ;W(x 0 , (1 + σ) ) ≥ (1 -C ) b|B 0 (x 0 )| e N b|B 0 (x 0 )|, 2(1 + σ) |B 0 (x 0 )|κH -Cκ 2 4κ 2 (1 + σ) 2 2 g(b|B 0 (x 0 )|) -Cκ 2 2 + κ 2 3 + (κ ) -1 .Thus, we infer from (5.10), for x 0 ∈ Ω ,E 1 f ψ, A; W(x 0 , (1 + σ) ) ≥ 4κ 2 (1 + σ) 2 2 g(b|B 0 (x 0 )|) -Cκ 2 2 α + κ 2 2+α + (κ ) -Inserting this into (5.3), we get1 2 W(x 0 , ) |ψ(x)| 4 dx ≤ 4(1 + σ) 2 2 g(b|B 0 (x 0 )|) + C 2 α + κ 2 2+α + (κ ) -1 + (κ ) -2 σ -1 .

E 2 κ 2 2 |ψ| 4 dx + κ 2 H 2 Ω|

 22 (ψ, A) = Ω\W(x 0 ,(1+σ) ) |(∇ -iκHA)ψ| 2 -κ 2 |ψ| 2 + curl A -B 0 | 2 dx .Now we use that E(ψ, A) ≤ min(0, E(u, A)) to write(1 + κ -ζ )E 1 ψ, A; W(x 0 , (1 + σ) ) ≤ 4(1 + σ) 2 2 κ 2 g bB 0 (x 0 ) + Cκ 2 2 α + κ 2 2+α + σ + σ -1 κ ζ (κ ) -2 .(5.11) 

  and R = h ex ˜ ,

	in conformity with (4.26). Note that supp(1 -χ 2 ) ⊂ [	√	κH/2 , +∞) and supp χ ⊂ [	√	κH/2,	√ κH]. Using the decay of
	u R established in Theorem 4.1, we get			

  we get the statement concerning the local energy in Theorem 4.8. Now we return back to (4.21). Using (4.35), we write
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Now we use (5.4) and (5.5) to obtain

and ≈ κ -ρ (cf. (5.1)), we get the lower bound for the integral of |ψ| 4 as in Theorem 1.7.

For the estimate of the local energy E 1 (ψ, A; W(x 0 , (1 + σ) )), we collect the inequalities in (5.11), (5.4), (5.5) and the lower and upper bounds for the integral of |ψ| 4 .

Remark 5.3. Remark 5.2 holds for Step 4 as well.

Step 5. The case |B 0 (x 0 )| > 0 and x 0 ∈ Ω : Lower bound.

In this case W x 0 ((1 + σ) ) = Q 2(1+σ) (x 0 ). We define the following trial state

where the functions w and η are as in Step 4,

We argue as in Step 4 and obtain the lower bound for the integral of |ψ| 4 in Theorem 1.7. The details are omitted.