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Time-dependent thermoelectric transport for nanoscale thermal machines

A.-M. Daré∗ and P. Lombardo
Aix-Marseille Université, CNRS, IM2NP UMR 7334, 13397, Marseille, France

(Dated: June 1, 2022)

We analyze an electronic nanoscale thermal machine driven by time-dependent environment:
besides bias and gate voltage variations, we consider also the less prevailing time modulation of
the couplings between leads and dot. We provide energy and heat current expressions in such
situations, as well as expressions for the power exchanged between the dot+leads system and its
outside. Calculations are made in the Keldysh nonequilibrium Green’s function framework. We
apply these results to design a cyclic refrigerator, circumventing the ambiguity of defining energy
flows between subsystems in the case of strong coupling. For fast lead-dot coupling modulation, we
observe transient currents which cannot be ascribed to charge tunneling.

PACS numbers: 73.63.–b,73.50.Lw,05.70.Ln

INTRODUCTION

Since the early days of thermodynamics, thermal ma-
chines have been fascinating objects. Their very ap-
plied aspect was not an obstacle to infer quite abstract
ideas [1]. Since then, substantial progress has been made,
thanks primarily to statistical physics, particularly con-
cerning the heat concept. However, this is not the whole
story. Progress is still called for in the context of meso-
scopic and nanoscale systems in which, quantum effects,
the hybridization of subsystems, and important fluctua-
tions are inevitable. The expected advances are maybe
within reach nowadays due to recent significant break-
throughs in experiments [2, 3] that open opportunities
for testing and developing new theoretical approaches.

Besides, in the context of energy harvesting, thermo-
electricity has come back to the forefront of research. In
a famous paper [4], it was shown that device nanostruc-
turation can be an advantage for performance. How-
ever, confinement in nanosize electronic devices requires
a proper handling of quantum properties.

Nanoscopic thermoelectric devices have been and are
still the subject of numerous studies. Even the simplest
ones consisting of an effective resonant-level dot coupled
with two reservoirs, have been investigated from many
different perspectives. For example, it has been shown
that subtle effects such as Kondo physics emerging from
Coulomb repulsion, may have a beneficial impact on ther-
moelectric performance [5–7]. Besides, simple and fun-
damental questions are still open or have been recently
addressed in these devices: one can cite the issue ad-
dressing efficiency at maximum power [8], one can also
mention the work by Whitney [9, 10], which proves the
existence of a quantum bound on the output power of
thermal machines. In parallel to their static properties,
interesting dynamical issues concerning nanoscale ther-
moelectric devices have been raised recently. Time vary-
ing bias and gate voltages [11–18], or even temperature
bias [19, 20] have been considered.

To probe the dynamics of the device, the time-

dependent dot-lead hybridization Γ(t) has also been
widely operated, essentially for charge pumping, i.e.
outside the thermoelectric context (see, for example,
Refs. [21–26]). However, in the latter field, modulation
of this parameter has been relatively seldom considered,
except in few pioneering works [27–30]. In these studies,
(except the last one which is a linear response study of
systems under adiabatic ac driving), currents were evalu-
ated using the master equation approach. Yet, this tech-
nique, compared to the one employed in the present pa-
per, suffers from some drawbacks, as for instance, slow
driving and dot-lead weak coupling restrictions [31]. To
overcome these limitations, we evaluate the energy and
heat currents with a nonequilibrium Green’s function ap-
proach (NEGF). Even if the NEGF approach can incor-
porate the Coulomb interaction (not considered in this
paper) through a self-energy, in that case, approxima-
tions are needed to evaluate the currents.
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FIG. 1: (Color online) Schematic representation of the de-
vice: the bias voltage Vb(t), the gate voltage VG(t), as well
as hybridizations between dot and leads can be modulated in
time.
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In this paper, we explore a simple device (Fig. 1)
consisting of a one-level non correlated spin-degenerate
dot coupled with two leads. The leads are electronic
reservoirs characterized by different temperatures and
chemical potentials. This simple thermal machine, which
could be operated in the static regime, is driven by time-
dependent parameters: gate and bias voltages, as well as
hybridizations between the dot and the leads can vary in
an arbitrary manner in time. Using the Keldysh NEGF
approach, which can be solved exactly in the absence of
Coulomb interaction, we evaluate the electric and ther-
mal currents without using the slow driving hypothesis
or the weak dot-lead coupling approximation. For strong
hybridization between the dot and the reservoirs, there
is some ambiguity in defining the energy current flowing
from a lead [16, 32]; indeed, the lead hybridizes with the
dot and even with the second lead, thus, in some sense,
looses its individuality. This has no consequence in the
stationary regime, because of no energy or charge accu-
mulations in the contact regions. But it is not so simple in
the time-dependent regime. The situation is even trick-
ier for the definition of heat and work exchanged between
subsystems [32], for which the difficulty persists even in
the static regime. To circumvent these difficulties, we
consider a cycle linking disconnected subsystem states,
then, when integrated over a cycle, some vagueness dis-
appears. We apply the present general expressions to a
refrigerator carefully including in the balance and in the
thermal machine performance, all electric works supplied
to the machine.

The paper is organized as follows: after an introduc-
tion to the model, and definitions of charge, energy, and
heat currents, the energy balance along a cycle is de-
tailed. Then, expressions for the charge and energy cur-
rents are given in the Keldysh NEGF approach. After a
short section about the efficiency and coefficient of per-
formance (COP), we illustrate our results in the case of
a time-driven refrigerator, and then conclude. Three ap-
pendices give details about the analytical technique, and
the relation between NEGF results and perturbation the-
ory.

THE MODEL

Hamiltonian

When connected together, the Hamiltonian describing
the left and right leads (α = L,R) and the one-orbital
dot, reads in standard notation

Ĥ = ĤD +
∑
α

Ĥα +
∑
α

ĤTα , (1)

where

ĤD =
∑
σ

εd(t)d
†
σdσ ,

Ĥα =
∑
k,σ

εkα(t)c†kασckασ ,

ĤTα =
∑
k,σ

(Vkα(t)c†kασdσ + h.c.) . (2)

In a quantum nanoscopic thermal machine as considered
in this paper, there is no clear boundary between the
central system and the thermal baths: indeed, even in
the absence of electronic interactions, quantum correla-
tions mix the central system and the reservoirs through
the hybridization parameters Vkα. In the so-called weak
coupling situation, a simpler representation is restored
due to the smallness of these quantities.

In the present paper, the dot level εd, as well as the
dispersion in the leads, εkα, and also the hybridization
between the dot and the leads, Vkα, will be allowed to
depend on time as follows [21]

εd(t) = ε0 + ∆(t) ,

εkα(t) = ε0
kα + ∆α(t) ,

Vkα(t) = uα(t) Vα(ε0
kα) . (3)

Without loss of generality, uα(t) will be supposed
real [33]. ε0 + ∆(t) is related to the gate voltage, and the
difference [µR − ∆R(t)] − [µL − ∆L(t)] is the bias volt-
age, with µα the chemical potential of the lead α. In the
context of thermal properties, modulating the hybridiza-
tion parameters has scarcely been explored. However,
it can be realized experimentally at quite high frequen-
cies [34, 35].

Currents

In the Heisenberg representation, we have for the time
derivative of the Hamiltonian

ˆ̇H =
∑
σ

ε̇d(t)d
†
σ(t)dσ(t) +

∑
α,k,σ

ε̇kα(t)c†kασ(t)ckασ(t)

+
∑
α,k,σ

(V̇kα(t)c†kασ(t)dσ(t) + h.c.) . (4)

Indeed, due to [Ĥ, Ĥ] = 0, even in Heisenberg representa-
tion, only the time derivative of the parameters appears

in ˆ̇H. In order to alleviate the preceding formula, the rep-
resentation is not explicit. Henceforth, all operators will
be in the Heisenberg picture. The three right terms in
Eq. (4), after time integration, are identified as work [36],
exchanged between the whole system (dot+leads) and its
outside. The first one is exchanged via the gate which
is capacitively coupled to the dot. The second one is ex-
changed with the apparatus creating the time-dependent
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part of the bias voltage applied to the leads. The last
one results from the time modulation of the hybridiza-
tion parameters. Note that this is not the whole story
concerning the work: due to its static nature, the work
corresponding to the static bias voltage does not appear
in Eq. (4).

Choosing the convention of positive electric and energy
currents for charge or energy entering the dot, we define
the following current operators (e > 0):

Ĵeα(t) = eĴNα (t) = −edN̂α
dt

, (5)

ĴEα (t) = −dĤα

dt
, (6)

with N̂α =
∑
k,σ c

†
kασckασ. The designation of ĴEα (t) as

instantaneous energy current extracted from the α lead
may be questionable (see Ref. [16], for example), one may
also associate to Ĥα a part of ĤTα. However, the ambi-
guity will be lifted in the forthcoming application when
considering a cyclic protocol between disconnected sub-
system states.

Due to the explicit time dependence of Ĥα, the energy
current ĴEα (t) includes a work contribution in addition to
a thermal one and a chemical one. From the first law of
thermodynamics we have for the heat current extracted
from the α lead

ĴQα (t) = ĴEα (t) +
∑
k,σ

∆̇α(t)c†kασ(t)ckασ(t)− µαĴNα (t) .

(7)

Balances

Due to charge conservation, the instantaneous balance
for the electric current reads∑

α

Ĵeα(t) = e
∑
σ

ˆ̇nσ(t) , (8)

with n̂σ = d†σdσ, using the notation ˆ̇A = dÂ
dt = ∂Â

∂t +
i
~ [Ĥ, Â]. In contrast, the energy is not conserved and
the power balance can be expressed as

ˆ̇HD(t)+
∑
α

ˆ̇HTα(t) =
∑
α

ĴQα (t)+P̂G(t)+ P̂Γ(t)+P̂ch(t) ,

(9)
with

P̂G(t) = ∆̇(t)
∑
σ

n̂σ(t) ,

P̂Γ(t) =
∑
α

P̂αΓ(t) =
∑
α,k,σ

(V̇kα(t)c†kασ(t)dσ(t) + h.c.) ,

P̂ch(t) =
1

e

∑
α

µαĴ
e
α . (10)

These three terms correspond to power exchanged with
the outside respectively through time modulation of the
gate voltage (P̂G), through time modulation of hybridiza-
tion parameters (P̂Γ), and through the time-independent
bias voltage (P̂ch), the last one is sometimes called chemi-
cal power. In the stationary case, it reduces to µL−µR

e ĴeL,
while the other two disappear. It may be tempting
to read Eq.(9) as a balance concerning some extended
dot (dot + contact regions). However, this would be
questionable because powers are exchanged between the
whole system (including the dot and the two leads) and
its outside.

Due to the ambiguity in defining the energy flowing
from the leads, the interpretation of < ĴQα (t) > in terms
of heat currents extracted from the respective reservoirs
is also questionable. However, when integrated along a
cycle linking disconnected subsystem states, the energies
extracted from the leads are no more ambiguous. This is
not true for the heat, which is not a state function except
in the special case when the heat and energy currents
coincide (see later our setup).

In a forced regime, for a periodic modulation of time-
dependent parameters, after the fading of the initial state
influence [37], the currents and dot occupancy become
periodic in time. When integrated along a cycle of du-
ration τ , in this periodic regime, the power balance (9)
will lead to

0 =
∑
α

Qα +WG +WΓ +Wch , (11)

with, in self-explanatory notation ( for the sake of brevity
we adopt the notation < X̂ > = X ), Qα =

∫
τ
dtJQα (t)

and Wi =
∫
τ
dtPi(t). Indeed, in the Heisenberg represen-

tation, the global density operator is constant leading to

<
˙̂
O >= d<Ô>

dt , thus the left-hand side of Eq. (9), when
integrated over a period, vanishes. It is worth noting
that not all quantities are periodic in the aforementioned

regime. For example integrating < ˆ̇Nα > does not give
zero over a period, due to charge transfer between the
two leads, only the sum over α will cancel. Thus the
balance over a period relies also on the fact that there is
neither energy or charge accumulation in the dot, nor in
the contact regions.

CURRENTS WITHIN THE KELDYSH NEGF

The Keldysh NEGF technique has been developed in
interacting and noninteracting resonant tunneling de-
vices in a famous paper by Jauho et al. [21]. This is
a powerful technique which is exact in the case of a non-
interacting system. In absence of Coulomb interaction,
another approach, namely the scattering matrix formal-
ism [38], has been shown to be equivalent to NEGF in
the case of periodically driven systems. In Ref. [21], the
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charge current was derived in the general case. Since
then, expressions for the dynamical energy current have
been proposed [14, 15], however they are restricted to bias
or gate voltage modulations. We generalize and write
down the energy and heat current expressions in the case
of time modulation of hybridization parameters too.

We adopt the wide-band limit (WBL) hypothesis,
which requires an energy-independent one-spin density
of states for the α lead, ρα(ε), as well as an energy-
independent parameter Vα(ε), such as to define a sim-
ple hybridization parameter: Γα = 2πρα|Vα|2. In the
WBL, by nature, some integrals are infinite, this has no
influence on the balances when integrated along a cycle.
In the following, we choose the symmetric hybridization
case ΓL = ΓR = Γ/2.

As first quoted in Eq. (46) of Ref. [21], the electric
current in the noninteracting resonant-level model reads

Jeα(t) = − 2e

~
Γαuα(t)

∑
σ

∫
dε

2π
fα(ε)Im[Aασ(ε, t)]

− e

~
Γα uα(t)2

∑
σ

nσ(t) , (12)

with, in Jauho’s al. notations [21]

Aασ(ε, t) =
1

~

∫
dt1G

r
σ(t, t1)uα(t1)eiε(t−t1)/~e−

i
~
∫ t1
t du ∆α(u) .

(13)
Besides,

Grσ(t, t′) = grσ(t, t′)e−
1
2~

∫ t
t′ dt1[ΓL(uL(t1))2+ΓR(uR(t1))2] ,

(14)
and

grσ(t, t′) = −iθ(t− t′)e− i
~
∫ t
t′ dt1 εd(t1) . (15)

fα(ε) = (e(ε−µα)/Tα + 1)−1 are the lead Fermi functions.
Throughout this paper we take kB = 1. Finally, the dot
density is evaluated from

nσ(t) =
∑
α

Γα
∫

dε

2π
fα(ε)|Aασ(ε, t)|2 . (16)

In appendix A we establish the following expression for
the energy currents:

JEα (t) = − 2

~
Γα
∑
σ

∫
dε

2π

[ ]
− 1

~
Γα εd(t) uα(t)2

∑
σ

nσ(t)

− ∆̇α(t)
∑
k,σ

< c†kασ(t)ckασ(t) > , (17)

with [ ]
= 1

2 uα(t)2
(

ΓLfL(ε)uL(t)Re
[
ALσ(ε, t)

]
+ ΓRfR(ε)uR(t)Re

[
ARσ(ε, t)

])
+ fα(ε)

(
ε+ ∆α(t)

)
uα(t)Im

[
Aασ(ε, t)

]
. (18)

The heat current is then obtained from Eq. (7). Fol-
lowing Jauho’s interpretation [21] of the charge current
(Eq.(12)) in terms of inflow and outflow contributions
(respectively first and second terms), we can also detail
the energy current (Eq.(17)): the first and second terms
are, respectively, the energy counterparts of the two
charge contributions. While the third term in Eq.(17)
is the contribution of the work exchanged between the
lead and the system outside.

We finally evaluate the mean values corresponding to
the different powers supplied by the system outside. Two
of them, PG(t) and Pch(t) in Eq.(10), are readily evalu-
ated, from the electric currents [Eq.(12)], and dot density
[Eq.(16)]. The third one, which is the power exchanged
between the whole system and its outside during the hy-
bridization modulation of the α-side, can be calculated
(see Appendix B) and reads

PαΓ(t) = 2Γα u̇α(t)
∑
σ

∫
dε

2π
fα(ε) Re

[
Aασ(ε, t)

]
. (19)

This integral may diverge in the WBL due to the absence
of a low-energy cutoff. However, along a cycle, this trou-
ble can be cured by a partial cancellation between the
opening and the closing of the hybridization between the
dot and the reservoir. Moreover, for uα(t) varying as a
step function, a δ-like divergence of PαΓ(t) is expected.
We shall avoid such abrupt variations in the following.

In all calculations, we observed that the sign of this
power is opposite to the sign of u̇α(t), such that linking
up the dot and the reservoir supplies power to the out-
side, while closing the connection requires power from
the outside. (See later for a numerical example.) This
sign can be understood in a simpler model: suppose a
dot is initially disconnected from a lead α, the energy for
the lead+dot in this initial equilibrium state Ei is readily
written. Then the dot and lead are connected. When the
new equilibrium state is reached, we can estimate the en-
ergy Ef of the whole system: neglecting the dot energy
variation, the difference Ef − Ei is equal to 1

2 < Heq
Tα >

[39]. This quantity can be evaluated using the single-lead
equilibrium expression of Aα,σ(ε, t), Aeq

α (ε) = 1
ε−ε0+iΓα/2

,
we get

< Heq
Tα >= −2Γα

∑
σ

∫
dε

2π
fα(ε)

ε0 − ε
(ε0 − ε)2 + Γ2

α/4
,

(20)
which diverges in absence of any low-energy cutoff, and
is negative due to the monotonous decrease of the Fermi
function.
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EFFICIENCY AND COEFFICIENT OF
PERFORMANCE OF A CYCLIC THERMAL

MACHINE

The kind of device under scrutiny in this paper offers
a great advantage over a mechanical thermal machine:
its great tunability. To switch from an engine to a re-
ceptor (refrigerator or heat pump), one needs to invert
the mechanical cycle of a usual thermal machine. It is
quite simpler for the present thermoelectric devices: one
may switch from engine to receptor just by varying the
level position with a gate voltage, and/or varying the bias
voltage. For example, for the static device, with TL = 30,
TR = 10, µR − µL = 60, all in Γ units, changing the dot
level from ε0 = 50 to ε0 = 70 converts a refrigerator to
an engine. The refrigerator is characterized by a COP
which is about half that of Carnot, COP ' 0.54 COPC ,
while the engine is characterized by a relative efficiency
of η/ηC ' 0.8 (ηC is the Carnot efficiency). Such high
COP and η are close to the best values we can get in such
a device for these temperatures, respectively, 0.56 COPC ,
and 0.83 ηC .

Let us use the generic term performance for η and
COP: for fixed reservoir temperatures, we have com-
pared various time-driven thermal machines to the static
performance-optimized one [40]. We never observed that
a better performance could be found in the time-driven
case. However, moving away from the optimized static
thermal machine, we can enhance performance by time
driving, as will be shown in the next section.

Thermoelectric generator (TEG)

For a cyclic thermal machine (engine or receptor) pe-
riodically driven in time, the balance over the period was
established in Eq. (11). For a TEG, with TL > TR, we
have Wch +WΓ +WG < 0, QL > 0 and QR < 0, and its
efficiency may be defined by

η =
|Wch +WΓ +WG|

QL
= 1− |QR|

QL
. (21)

Three work contributions come in. The chemical work is
the useful one, and is related to the charge transferred
between the left and right leads. In a forced periodic
regime, the left and right charge currents may be dif-
ferent, however, when the cycle is completed, we have:∫
τ
dtJeL(t) = −

∫
τ
dtJeR(t). Indeed, the total charge is

conserved and the dot density goes back to its initial
value.

The previous definition of efficiency in Eq.(21) may
seem not so obvious: indeed, the efficiency may be nat-
urally defined as the ratio between gain and cost. This
rather leads to the expression

η′ =
|Wch|

QL +WΓ +WG
. (22)

However, the latter definition has some drawback com-
pared to Eq.(21): in the context of energy harvesting, we
want our machine to be a thermal engine, not a mechan-
ical engine which would use essentially electric work ex-
changed through the gate and contact regions to produce
electric work. Equation (21) was used also in Ref. [27].

Refrigerator

Correspondingly, still with TL > TR, the coefficient of
performance for a refrigerator may be written as

COP =
QR

Wch +WΓ +WG
=

1

−QL
QR
− 1

. (23)

In the case of a receptor, Wch +WΓ +WG > 0, QL < 0,
and QR > 0.

DRIVEN REFRIGERATOR

We illustrate our findings with a setup where the bias
voltage is zero. Thus, the stationary regime would be
totally irrelevant in the context of thermal machines; in
presence of a temperature gradient, there would be only
a spontaneous heat transfer from the hot reservoir to the
cold one. Instead, in the dynamical regime, we can en-
gineer a refrigerator, by sequentially connecting and dis-
connecting the dot from the two reservoirs. Without loss
of generality, by choice of energy origin, we take µα = 0.

As sketched in Fig. 2, in one phase of the cycle, the
dot level is in the highest position (ε0 + ∆d) and is con-
nected to the left hot lead, such that electrons can drop
from the dot to the L lead. Then a second phase be-
gins: the connection to L lead is suppressed, while the
connection to the colder R lead opens up, concomitantly
with the lowering of the dot level to ε0. In this phase,
the dot filling increases. The two phases follow one an-
other periodically. A drawing in this figure shows the
hybridization modulations uL(t) and uR(t), furthermore,
we take ∆(t) = ∆d×uL(t). The connections and discon-
nections from reservoirs, as well as the shift of the dot
level, are not exactly step functions to prevent a δ(t)-
like divergence of PΓ(t) and of PG(t), but are character-
ized by quite rapid variations: in a time scale of about
τ/50, they reach 98% of the the plateau values, where
τ = 4~/Γ is the cycle period. For definiteness, uL(t) and
uR(t) are composed of step functions smoothed by a fac-
tor (1−1/(e200(t−t0)/τ +1)). In both phases of the cycle,
the dot level is higher than the lead chemical potentials.
On the grounds of stationary results, a heat current of
the same sign as the electric current is thus expected.
One can also be convinced about this by taking a look at
Fig. 2 and thinking in terms of modification of electron
distribution in the lead by electron transfer: a jump to
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L lead from a dot level higher than µL tends to warm up
the left reservoir. On the contrary, a jump from the right
reservoir onto the dot, from a level higher than µR tends
to cool down the corresponding reservoir. This protocol
also leads to charge pumping from the right to the left
leads. Note that heat and charge transfers exist also in
case of no temperature bias.

Results for the dot density, as well as electric and
heat currents are shown in Fig. 3. The parameters are
TL = 30, TR = 10, ε0 = 20, ∆d = 60, all in Γ units. One
can note that Γ, the Lorentzian width of the dot level, is
here the smaller energy scale. The coefficient of perfor-
mance for the present refrigerator is close to half that of
a Carnot refrigerator operating between these reservoirs:
we find a COP of 0.24, while the Carnot COP would be
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currents in Γ2/~ units, t is in ~/Γ units. See text for param-
eters, and Fig. 2 for driving protocol.
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FIG. 4: (Color online) Protocol for the driven refrigerator
in the case of time lags; variations of uL(t), uR(t), as well
as ∆(t)/120 over a period, [∆(t) has been scaled by a factor
120 to match the figure], t is in ~/Γ units. Connection and
disconnection of leads have been shifted by 0.2~/Γ relatively
to dot-level modulation.

1/(TL/TR − 1) = 0.5. In more details, for the cycle, one
gets [41] QL = −3.77 Γ, QR = 0.73 Γ, WG = 2.90 Γ,
WLΓ = 5 × 10−2 Γ, WRΓ = 9 × 10−2 Γ, and an average
transferred charge per cycle q = 4.6 × 10−2e. One can
notice that the charge is very small due to the combina-
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FIG. 5: (Color online) (Top panel) Dot occupancy per spin.
(Middle panel) Electric currents. (Bottom) Heat currents.
See text for parameters, Fig. 4 for driving protocol, and Fig.
3 for units.

26 28 30
t

-5

0

5
PL!
PR!
PG/30

FIG. 6: (Color online) For the protocol shown in Fig. 4, as
defined in text, powers in Γ2/~ units, t is in ~/Γ units. PG
has been reduced by a factor 30 to match the figure.

tion of two facts. Firstly, during the cycle, the dot level
is always above the lead chemical potentials, such that
the dot occupancy is low. Secondly, the time driving is
done at a rather high frequency.

The charge currents, as well as the heat currents in
Fig. 3 display sharp and rapid variations which deserve
to be discussed. To disentangle the effects of connection

and disconnection of reservoirs, as well as the shift of
the dot level, we consider a slightly modified setup where
the modulations are no more concomitant, as shown in
Fig. 4. The delays between opening, closing, and shift
only slightly modify the heat and work exchanged over a
cycle, indeed, for the former parameters, one gets QL =
−3.46Γ, QR = 0.67Γ, WG = 2.57Γ, WLΓ = 3 × 10−2Γ,
WRΓ = 0.18Γ, and transferred charge per cycle q = 4.3×
10−2e. The COP is thus unchanged.

The results for electric currents, density, as well as heat
currents are shown in Fig. 5. It can be observed that
the hybridization shutdown coincides with a dip of the
corresponding charge current, whereas the hybridization
opening is associated with a fast increase of the electric
current entering the dot. However, these currents settle
in rapidly, in a too short time to be allocated to charge
tunneling. Indeed, the rise time or fall time of uα(t) are
roughly of the order of one-tenth of the tunneling time
~/Γ. Rather, such inflows and outflows can be attributed
to the modification of the dot and lead frontiers: after
connection the dot and the leads spread, the frontiers
are dynamically blurred. For dot levels well above the
chemical potential, setting α-hybridization corresponds
to a dot inflow. Conversely, closing it is accompanied
by an outflow. The situation is reversed for dot lev-
els well below the chemical potential. Inflows and out-
flows are corroborated by a perturbative approach, as
shown in Appendix C. The over-currents seen in our re-
sults are reminiscent of those described in experiments
in Refs. [34, 35], which were ascribed to time-dependent
lead-dot couplings and time-dependent dot-level position.

Note that along a cycle there is no compensation be-
tween these over-currents, due to a modification of nσ(t)
between opening and closing. After the over-current fad-
ing, the expected behavior settles in, however, the period
is too short to reach the steady state. Besides, due to the
Γ broadening of the dot level, in the steady state the dot
occupancy would differ from the Fermi function value.

Let us turn to the heat currents, which are shown in
Figs. 3 and Fig. 5 (bottom panels), respectively without
and with delays between different modulations. The heat
over-currents are concomitant with the electric ones, but
are of opposite sign: this is another argument against
charge tunneling. Their sign is also explained in the
perturbative treatment discussed in Appendix C. Except
during these rapid transient behaviors, charge and heat
currents have the same direction, as previously discussed
for electron transfer beyond chemical potential. It is
worth noting that the over-currents, which are related
to fast modulation, would be absent in master equation
calculations.

The thermal machine performance depends signifi-
cantly on the driving protocol. However, it is not easy
to predict the one which will maximize the COP. For the
refrigerator, we have |QL| > QR, and a smaller |QL| as-
sociated with a bigger QR would improve it. Looking
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at Fig. 3, lower panel, it can be seen that over-currents
can be beneficial or detrimental to the refrigerator: first,
they do not balance between opening and closing, and if
the net contribution to the heat over the cycle is posi-
tive for QL, it is negative for QR. This is an advantage
for |QL|, but a disadvantage for QR. Many parameters
can be varied: the period, the steepness, the duty cy-
cle for example, but also the dot level positions. We
did not make a completely comprehensive study, but the
protocol detailed in Fig. 2 is close to the best we found
from the COP point of view for the chosen temperatures.
It can be slightly improved with a steeper hybridization
modulation dl = τ/400, associated with a longer period
τ = 8~/Γ, this leads to a COP close to 0.28, which is the
best COP of the static machine (see previous section).

In Fig. 6, the power corresponding to a connection
or a disconnection between the lead and the dot, as well
as the power corresponding to moving the dot level is
drawn over a period. The present numerical calculations
were done with a low-energy cutoff equal to −250 Γ [see
the discussion following Eq.(19)]. For the three quanti-
ties, the positive peaks follow the negative ones: as if, in
some sense, during a cycle, the energy was partly tem-
porarily borrowed and returned between the system and
its outside. The WαΓ integrals over one period are small
but finite, being an order of magnitude greater than the
numerical precision.

Again, in our protocol, where the balance is estab-
lished between disconnected states, the problem of in-
terpretation of energy extracted from or spilled into the
leads disappears. For the actual parameters (µα = 0 and
∆̇α = 0), from Eq.(7), ĴQα (t) and ĴEα (t) coincide. Thus
the performance is robust and does not suffer of misin-
terpretation.

Except at very low temperature (of the order of, or
lower than Kondo temperature), the Coulomb interac-
tion would not influence much the thermal machine per-
formance. Indeed, in the large U case, the major effect is
to restrict the channel number from two to one. Then the
charge and heat currents would be two times smaller than
for U = 0, keeping the COP unchanged. In the interme-
diate case U ∼ Γ, on the grounds of a previous study on
electric currents [24], one can expect some renormaliza-
tion of the flows, leading to a substantially similar COP.
However, this conclusion would deserve further valida-
tion. Finally, the noninteracting multi-level model, mul-
tiplying the channel number, obviously leads to the same
performance than the one discussed in the paper.

CONCLUSION

We have derived the energy and heat current expres-
sions for a system composed of a dot coupled with two
reservoirs. The model parameters, such as bias and gate
voltages, as well as hybridizations, are modulated in time.

We have applied our results to engineer an efficient re-
frigerator setup, for which there is no static counterpart.
To avoid the pitfall of strong coupling, which may lead
to an equivocal definition of extracted or injected energy,
we only consider cycles linking disconnected subsystem
states.

Finally, we have observed transient charge and heat
currents which are not of tunneling origin, and we have
shown that their behaviors, which can be understood in
a perturbative approach, are related to the difficulty of
defining boundaries between subsystems.
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Appendix A: evaluation of the energy current

Taking the mean value of Eq.(6), it can be established
that

JEα (t) =
2

~
∑
k,σ

εkα(t)Re
[
Vkα(t)G<dkασ(t, t)

]
−∆̇α(t)

∑
k,σ

nkασ(t) , (24)

where the lesser Green’s function is defined as

G<dkασ(t, t′) = i < c†kασ(t′)dσ(t) > . (25)

Using the equation of motion and Langreth rules, one
can show ([21], Eq.(12)) that

G<dkασ(t, t′) =
1

~

∫
dt1G

r
ddσ(t, t1)V ∗kα(t1)g<kα(t1, t

′)

+
1

~

∫
dt1G

<
ddσ(t, t1)V ∗kα(t1)gakα(t1, t

′)(26)

Notations are close to those found in Ref. [21] and not
recalled here. Using this result, the first line contribution
to JEα (t) in Eq.(24) can be written as

JEαI(t) = −2

~
∑
σ

∫ t

−∞
dt1

∫
dε

2π
(ε+ ∆α(t))Im

[ ]
, (27)

where[ ]
=

1

~
Γα(ε, t1, t)e

iε(t−t1)/~
(
fα(ε)Grddσ(t, t1)+G<ddσ(t, t1)

)
.

(28)
This equation is quite similar to the electric current ex-
pression of Jauho et al. ([21], Eq.(15)), except for the
energy term (ε + ∆α(t)) in the integrand. This general
expression, valid without the WBL hypothesis and in the
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case of Coulomb interaction on the dot, was also given
in Refs. [15, 16], in absence of bias modulation. We cut
JEαI(t) = JEαIr(t) + JEαIl∆(t) + JEαIlε(t) in three contribu-
tions, the first one arising from Grddσ, the second one from
∆α G

<
ddσ, and the last one from ε G<ddσ. Along the lines

followed for the electric current evaluation, the first term
in the WBL is readily evaluated, and gives

JEαIr(t) = −2

~
Γαuα(t)×∫

dε

2π
fα(ε)(ε+ ∆α(t))

∑
σ

Im
[
Aασ(ε, t)

]
. (29)

The integral may diverge logarithmically in the WBL (as
in the stationary case). This divergence will be poten-
tially canceled by another term in the case of dot level
modulation, however, it may persist in the case of hy-
bridization connection or disconnection. The evaluation
of the term resulting from ∆α G

<
ddσ is also direct, thanks

to the integration over ε. We get

JEαIl∆(t) = −1

~
Γα∆α(t)uα(t)2

∑
σ

nσ(t) . (30)

The third contribution can be evaluated using the deriva-
tive of the Dirac function

i

∫
dε

2π
ε eiεt/~ = ~2δ′(t) ,with

∫
dtf(t)δ′(t) = −f ′(0) .

(31)
After a lengthy but straightforward calculation, this leads
to

JEαIlε(t) = −1

~
Γα(ε0 + ∆(t))uα(t)2

∑
σ

nσ(t)

+
1

~
Γα∆α(t)uα(t)2

∑
σ

nσ(t)

− 1

~
Γαuα(t)2

∑
β

Γβ ×

uβ(t)

∫
dε

2π
fβ(ε)

∑
σ

Re
[
Aβσ(ε, t)

]
.(32)

Gathering the different previous contributions, we finally
get the announced result quoted in Eq.(17).

Appendix B: Evaluation of PαΓ(t)

From the definition (Eq.(10)), PαΓ(t) can be writ-
ten in terms of the previously defined Green’s function
G<dkασ(t, t′):

PαΓ(t) = 2
∑
k,σ

Im
[
V̇kα(t)G<dkασ(t, t)

]
. (33)

From Eq.(26), this leads to two contributions. The one

related to G<ddσ leads to a term proportional to Im
[ u̇α(t)
uα(t)

]
,

which cancels: indeed, as discussed in Ref. [33] the phase
of the hybridization modulation must be time indepen-
dent. The second contribution originating from Grddσ
leads to the expression quoted in Eq.(19).

Appendix C: Over-current signs

It can be found in textbooks that in the first-order
perturbation theory, the probability of transition from
an initial state of energy εi, to a final state of energy εf ,
at short time t (t� ~

|Vα| ), after a sudden switch at t = 0

of a time-independent potential Vα, reads

P(i→ f, t) = 4
sin2

(
(εi − εf )t/2~

)
(εi − εf )2

|Vα|2 , (34)

indicating that at short times, the perturbation can in-
duce transitions between the dot and the lead continuous
spectrum up to energy differences of order 2π~/t.

To incorporate the mean number of electrons in the
lead α as well as on the dot, one has to weight the pre-
vious probability by the occupation difference nσ(1 −
fα(ε))− fα(ε)(1− nσ) = nσ − fα(ε). Considering a lead
with a density of states ρα(ε), we thus obtain an evalua-
tion of the charge current in this perturbative approach:

Jeα perturb(t) = eΓα
∑
σ

∫
dε

2π
4

sin2 (εd − ε)t/2~
t (εd − ε)2

[fα(ε)−nσ] ,

(35)
where we chose the same convention as in the main
text for the sign, and where we used the WBL relation
ρα|Vα|2 = Γα

2π . This result predicts the right sign for
the electric over-currents at the hybridization opening
observed in the main text. Furthermore the agreement
is nearly quantitative in the case of a steep connection
between the dot and the reservoir at short times. The
perturbative approach enables a similar evaluation of the
heat current, just by replacing the electric charge in the
previous integrand by (ε−µα). It confirms the heat over-
current sign observed in the main text, and gives also
a quantitative agreement for its order of magnitude at
short times in the case of a steep rising connection. In
the case of disconnection between the dot and the lead,
the evaluation of the currents at short times is not so
simple due to the spread of the dot level before discon-
nection. However, one may invoke the time reversal sym-
metry: all other things being equal, the inflow/outflow
at the opening will correspond to the outflow/inflow at
the closing.
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(2010).
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