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Abstract— The present letter studies the impact of electromag-

netic mutual coupling on the near fields of generic antenna 
systems. The main objective here is to derive an upper bound on 
near-fields deviations caused by mutual coupling. The method 
transforms the problem of near-field coupling from the near zone 
to the recently introduced antenna current Green’s function 
defined on the antenna itself. Through this upper bound, the 
formulation presented here can be used to develop automatic 
algorithms for the design of coupled antenna systems with 
optimum near-field performance. Numerical examples involving 
linear wire arrays are given to demonstrate and confirm the 
approach proposed here. 
 

Index Terms—Antenna current Green’s function, mutual 
coupling, near field. 
 

I. INTRODUCTION 
UTUAL coupling in electromagnetic systems is one 

of the most important and fundamental problems in- 
volved in the design and development of systems for diverse 
applications ranging from radar and sensor devices to wireless 
communications such as multiple-input–multiple-output 
(MIMO) and mobile links. The ongoing demand to reduce the 
size of these systems, together with the need to explore new 
functions and potentials in crowded electromagnetic 
environments and subwavelength behavior, have made 
necessary undertaking a reconsideration of the near field 
associated with interacting antennas [1]–[7]. Although mutual 
coupling is traditionally characterized by circuit parameters, 
i.e., mutual impedances [8]–[10] or the embedded radiation 
pattern method [11], it has been pointed out recently that 
deviations in device performance in the near zone due to 
coupling effects should be treated by more comprehensive 
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methods [1], [2], [6]. In particular, new emerging applications 
like near-field communication (NFC), near-field MIMO, the 
physics of complex media, and wireless power transfer have 
all already suggested the need to reexamine the problem of 
computing and characterize near-field effects caused by 
mutual coupling and energy exchange at short distances. 

Though near fields are routinely computed in full-wave 
analysis codes such as finite element method (FEM), method 
of moments (MoM), and finite-difference time domain 
(FDTD), to our knowledge, rigorous and comprehensive 
studies of the impact of mutual coupling on near fields has 
been taken up systematically only recently. Specifically, the 
work in [6] proposed a method to estimate mutual coupling in 
the near zone using a single numerical measure [global error 
in the observation region, see (6) below]. On the other hand, 
using the method of the antenna current Green’s function 
(ACGF) [2], the new approach of characterizing mutual 
coupling in terms of a special Green’s function, the mutual 
coupling Green’s function (basically, an exact spatial transfer 
function for mutual coupling effects on the antenna current) 
was proposed and verified in [3]. 

In the present letters, the proposals of modeling mutual cou-
pling through a special ACGF [3] and characterizing mutual 
coupling in the near-field zone [6] will be combined here to 
analyze and understand the near field of coupled antenna 
arrays at a very general level. Indeed, we show that the 
deviation of the near field from its ideal value due to mutual 
coupling effects computed using the method in [6] is bounded 
by a quantity that depends on the mutual coupling ACGF 
defined on the entire antenna surface [3]. This upper bound 
can be used to provide a quick characterization of near fields’ 
sensitivity to electromagnetic mutual coupling effects and to 
suggest novel methods for properly designing the radiating 
elements in antenna arrays in order to meet given performance 
measures determined in terms of the near field, for example 
near-field focusing and communications. Furthermore, this 
letter provides a theoretical frame- work for developing 
special design methods, for example engineering the current 
on the antenna, to obtain antennas with optimum near-field 
coupling performance. The present letter provides proof of 
concept and simple example for demonstration, while detailed 
investigations of more throughout methods to compensate for 
near-field mutual coupling will be given in future work.  
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II. DERIVATION OF THE UPPER BOUND USING THE ANTENNA 
CURRENT GREEN’S FUNCTION METHOD 

The key idea in this letter is to use the ACGF instead of the 
current or the impedance parameters of the antenna in order to 
study the mechanism behind near-field deviations in 
electromagnetically coupled antennas. The motivation is that 
in order to be able to derive an upper bound on the near-field 
error valid for arbitrary-shaped excitation, one must 
incorporate in the derivation itself variations in the input 
signal exciting the antenna itself. Therefore, one needs the 
transfer function that connects this input excitation with the 
actual current induced on the antenna (the latter is responsible 
of producing the near field.) This special transfer function is in 
fact the ACGF of the problem [2]. The input impedance 
method includes only the level of the excitation in the 
derivation; therefore, it cannot deal with arbitrary forms of 
excitation (i.e., both level and shape of excitation are needed 
to insure the validity of the near-field study for any input 
excitation or illuminating scattered fields by objects close to 
the antenna under consideration.) 

The current ( )J r  induced on the antenna due to excitation 

field ( )exE r  applied at a port area U is given by [2]-[3]  
 
             ( ) ( ) ( )ex,

U
dsʹ ʹ ʹ= ⋅∫J r F r r E r , (1) 

 
where the tensor (dyad) ( ), ʹF r r  is the ACGF of the system 
under consideration. Throughout this paper, a time harmonic 
excitation ( )exp i tω−  is assumed and suppressed everywhere. 
In particular, note that the ACGF is frequency dependent. 

Consider two arbitrary antennas A and B brought into 
proximity to each other in order to allow for mutual coupling 
effects to come into being. For simplicity, we assume that only 
antenna A is excited and denotes this excitation by ( )exE r  as 
above. The ACGF of antenna A without mutual coupling is 
denoted by ( )0 ,A ʹF r r . However, due to mutual coupling, the 
system A + B is now described by the new ACGF 
 
              ( ) ( ) ( ), , ,A BAʹ ʹ ʹ ʹ= +F r r F r r F r r . (2) 
 
Following [3], the mutual coupling ACGF is defined as 
 

( ) ( ) ( ) ( ) ( )0, : , , , , .A A BAδ δʹ ʹ ʹ ʹ ʹ ʹ= − = +F r r F r r F r r F r r F r r  (3) 
 
In other words, ( ), 'δF r r  is the difference in value between 
the ACGFs before and after mutual coupling. Note that 

( ) ( ) ( )0, : , ,A A Aδ ʹ ʹ ʹ= −F r r F r r F r r . Moreover, ( ),BA ʹF r r  
physically means the transfer function connecting an 
excitation on antenna A to the response current induced on 
antenna B. A general method to compute ( ),δ ʹF r r  using 
perturbation theory was proposed in [3]. 

The field radiated by an antenna is given by [1], [5] 

 
             ( ) ( ) ( ),

S
dsʹ ʹ ʹ= ⋅∫E r G r r J r , (4) 

 
where ( ), ʹG r r  is the free-space dyadic Green’s function [1] 
and S is the radiating antenna’s full surface. Because of mutual 
coupling, the current induced on the antenna system changes 
as ( ) ( )ʹ→J r J r ; hence we define the deviation in the current 

due to mutual coupling as ( ) ( ) ( ):δ ʹ= −J r J r J r . Similarly, 
mutual coupling changes the field according to the scheme 
( ) ( )ʹ→E r E r  and we define ( ) ( ) ( ):δ ʹ= −E r E r E r . From 

(1) and (4), we therefore have 
 
         ( ) ( ) ( )ex,

U
dsδ δ ʹ ʹ ʹ= ⋅∫J r F r r E r , (5) 

 
         ( ) ( ) ( ),

S
dsδ δʹ ʹ ʹ= ⋅∫E r G r r J r . (6) 

 
Note the formal similarity between (5) and (6), which was one 
of the motivations for introducing the ACGF formalism in [2]. 

For a generic input excitation, we assume that the energy of 
the source is finite, i.e., we have 
 
                       ( )ex Cʹ ≤E r , (7) 

 
Here, ⋅  stands for the Euclidean vector norm and C is a 
positive real number characterizing the maximum energy level 
of the input. From (6), we can write 
 
          ( ) ( ) ( ),

S
dsδ δʹ ʹ ʹ≤ ⋅∫E r G r r J r . (8) 

 
In order to proceed further, we need to evaluate the norm of a 
dyadic function multiplied by a vector. This can be 
accomplished in the following manner. First expand the 
dyadic multiplication as [1] 
 
          ( ) ( ) ( )1 2

,
, n mn m

δ δʹ ʹ ʹ⎡ ⎤⋅ = ⋅⎣ ⎦∑G r r J r G G J r , (9) 

 
where we used ( ) ( ) ( )1 2

,
, , ,n mn m
ʹ ʹ ʹ=∑G r r G r r G r r , and each 

of n and m ranges over the three Cartesian components. 
Therefore, from the usual properties of the norm, we find 
 
           ( ) ( ) ( ) 1 2

,
, n mn m

δ δʹ ʹ ʹ⋅ ≤ ∑G r r J r J r G G . (10) 

 
Next, we observe that the r-function ( ), 'G r r  is continuous in 
any compact subset of the exterior region, i.e., in any 

exterD V⊂ . The same is true for Sʹ∈r  and also in the joint 
region D S× . Therefore, ( ), ʹG r r  attains its maximum there. 
Denote this maximum by M, i.e., we may write 
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        ( ) ( ) ( )1 2

, ,
: max , ,n mD S n m

M ʹ ∈ ×
ʹ ʹ= ∑r r G r r G r r . (11) 

 
From (8), (10), and (11), we conclude 
 
                ( ) ( )

S
M dsδ δ ʹ ʹ≤ ∫E r J r . (12) 

 
    We now turn to (5), which allows us to write 
 
              ( ) ( ) ( )ex, '

U
dsδ δ ʹ ʹ≤ ⋅∫J r F r r E r . (13) 

 
It was shown in [2] that the ACGF can always be put in a 3D 
dyadic form. Therefore, by treating the dyadic function 

( ),δ ʹF r r  in exactly the same way we dealt with ( ), ʹG r r  in 
(9), we find 
 
     ( ) ( ) ( )ex 1 2 ex

,
, n mn m

δ δ δ⎡ ⎤ʹ ʹ ʹ⋅ ≤ ⎣ ⎦∑F r r E r F F E r , (14) 

 
where the expansion ( ) ( ) ( )1 2

,
, ' , ,n mn m

δ δ δʹ ʹ=∑F r r F r r F r r

from [2] was employed. Using (7) and substituting back to 
(13), we find 
 
        ( ) ( ) ( )1 2

,
, ' , 'n mn mU

C dsδ δ δ ʹ≤ ∑∫J r F r r F r r . (15) 

 
Finally, (12) and (15) together yield 
 

( )

( ) ( )1 2
,

,

: , , .n mn mS U
MC ds ds

δ

δ δ

≤ ϒ

ʹ́ ʹ ʹ́ ʹ ʹ ʹ́ϒ = ∑∫ ∫

E r

F r r F r r

 (16) 

 
The number ϒ  is the required upper bound on the near field 
error caused by mutual coupling and its formula (16) is the 
main result of the present paper. 

Some observations on the derived bound are in order. First, 
the integral 

S
dsʹʹ∫  is on the total surface area of the antenna 

system. Second, as can be seen from (11), the number M does 
not depend on the antenna type, but is a property of the free 
space Green’s function. Therefore, according to (11), M can 
always be determined for any compact region 

exterD S V S× ⊂ × . In other words, for antenna design, M may 
be taken as fixed because the free space Green’s function, in 
contrast to the antenna current Green’s function, cannot be 
changed. Third, the last integral in (16) can be computed from 
the mutual coupling ACGF function obtained by full-wave 
analysis or measurement. This bound is then valid for any 
input field satisfying (7) and was obtained for the most 
general possible conditions of operation. We conclude then 
that to reduce near-field deviations due to coupling effects, the 
antenna engineer can either reduce 1) the size of the antenna 

and/or 2) reduce the integral of the norm of the mutual 
coupling ACGF. In the following section we provide examples 
illustrating how the second option can be utilized in practice. 

III. NUMERICAL EXAMPLES 
For simplicity, we work with thin-wire antennas, where in 

Fig. 1, we show two linear wire antennas with separation d. 
One antenna will be rotated by angle α in order to control the 
shape of the mutual coupling ACGF. To obtain the ACGF, the 
energized antenna (A) is excited by a Dirac delta source at the 
middle of the wire. For wires, the ACGF itself has the simple 
functional form ( )ˆˆ ,zzF z zʹ . When the antenna is rotated, we 

replace ẑ  by û , where û  is the unit vector along the antenna. 
The current ( )I z  flowing along the wire can be written as 

( ) ( ) ( )exˆ ˆ,
S

z z F z z z z dzʹ ʹ ʹ= ⋅∫I E . Since the problem is one-

dimensional, a great simplification in the upper bound (16) 
can be obtained in this case. Indeed, for linear wires, the upper 
bound (16) reduces to the following  
 
                        ( ),0

S
LMC F z dzδϒ = ∫ , (17) 

 
where L is the total length of the antenna. In terms of the 
notation in (16), the port is located at 0zʹ = . Comparing (17) 
with (16), we realize that the inner sʹ -integral in (16) 
collapsed to mere evaluation of the ACGF at 0zʹ =  since a 
Dirac delta source is applied there. The integral in (17) is the 
area under the magnitude of the mutual coupling ACGF.  

We consider two half-wavelength linear wire antennas at 10 
GHz. A Method of Moment (MoM) code (checked by WIPL-
D) is used to approximate the ACGF of the system in the 
transmitting mode. In order to verify the mutual coupling 
ACGF, the antennas system (for 0.5d λ= ) is then excited by 
a plane wave and a scattering MoM code is used to predict the 
induced current at the receiving port. The inverse reciprocity 
theorem [2] and (1) allow us to predict the same signal using 
the ACGF of the TX mode. The current received by the wire 
A as a function of the rotation of the wire B is presented in 
Fig. 2 computed both using the MoM and the ACGF 
formalism. The two results are in excellent agreement and the 
same conclusion applies for all separations d, including those 
resulting in strong mutual coupling.  

 
 
Fig. 1.  The two thin wire antennas A and B with separation d. The wire B is 
rotated by α degrees in the xz-plane. 
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Moreover, the received current can be further split into 
three different parts: one due to the wire A without mutual 
coupling or ( )0 ,AF z zʹ ; the second due to the wire A with  

mutual coupling effect or ( ),AF z zδ ʹ ; and the third due to the 

wire B or ( ),BAF z zʹ . The contributions of these three ACGFs 
are presented in Fig. 3 and they illustrate the validity of (2) 
and (3). The current due to ( )0 ,AF z zʹ  is obviously constant 
because it does nott depend on the wire B. For the two other 
parts, their contributions decrease as the rotation α  increases. 
Taking the size L of the antennas as constant, we also fix M 
and C by normalization of the results (we investigate the 
evaluation of in future papers.) 

For the purpose of the present letter, we focus mainly on the 
effect of the shape and topology of the array on NF mu- tual 
coupling. From (17), the normalized upper bound of the near-
field deviation caused by mutual coupling is computed for this 
system as a function of rotation and the results are presented in 
Fig. 4. It is seen here that, according to the derivations of (16), 
deviations in the near field for fixed antenna size can be 
reduced by reducing the area under the magnitude of mutual 
coupling ACGF. In this particular example, such reduction 
was attained by changing the shape of this ACGF, which in 
turn was achieved by changing the relative orientation of one 
antenna. More extensive approach will require using 
optimization methods where the norm in (16) stands for the 

cost function to be minimized. 

IV. CONCLUSION 
For a given antenna system size, an exact upper bound on 

near-field deviations was found to depend on the norm of the 
mutual coupling ACGF, the latter a function of the current on 
the entire antenna surface. The derived upper bound 
demonstrates that optimization methods aiming at reduction of 
near-field performance degradation can be achieved by 
working with the mutual coupling ACGF instead of the more 
complex near field it- self in the near zone. This letter 
provided a theoretical frame- work for further study of the 
physics of near-field devices from the perspective of the 
current on the entire surface of the radiating system. 
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Fig. 4.  Upper bound on the near-field error caused by mutual coupling as a 
function of the rotation of the wire B. 
  

 
Fig. 3.  Contribution of each part of the system into the current received by 
the wire as a function of the rotation of the wire B. 
  

 
Fig. 2.  Magnitude of the current received by the wire A when exciting by a 
plane wave as a function of the rotation of the wire B, computing both using 
the MoM and ACGF formalism. 
  


