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Mixed normal-superconducting states in the presence of strong electric currents

. We conclude by obtaining some weaker results, albeit similar, for steady-state solutions in the large domain limit.

Consider a planar superconducting body which is placed at a sufficiently low temperature (below the critical one) under the action of an applied magnetic field . Its energy is given by the Ginzburg-Landau energy functional which can be represented in the following dimensionless form [START_REF] Fournais | Spectral Methods in Surface Superconductivity[END_REF] 

E = Ω |(∇ -iκA)ψ| 2 + κ 2 2 (1 -|ψ| 2 ) 2 + κ 2 |B -h ex | 2 dx , (1.1) 
in which ψ ∈ H 1 (Ω, C) is the superconducting order parameter, such that |ψ| varies from |ψ| = 0 (when the material is at a normal state) to |ψ| = 1 (for the purely superconducting state). The magnetic vector potential is denoted by A ∈ H 1 (Ω, R 2 ) (the magnetic field is, then, given by B = curl A), h ex is the applied magnetic field, and κ is the Ginzburg-Landau parameter which is a material property. The superconductor lies in Ω, which is an open, connected planar domain. The above energy functional is presented in a dimensionless form where length has been scaled with respect to the penetration depth (see [START_REF] Almog | Global Stability of the Normal State of Superconductors in the Presence of a Strong Electric Current[END_REF]).

If instead of applying an external magnetic field, we pass an electric current through Ω, we can no longer find (ψ, A) by looking for critical points of E. Instead, we need to consider the time-dependent Ginzburg-Landau equations, originally obtained by Gor'kov and Eliashberg [START_REF] Gorkov | Generalization of the ginzburglandau equations for non-stationary problems in the case of alloys with paramagnetic impurities[END_REF]. These are given, in terms of the energy E, by

∂ψ ∂t + iκφ = δE δ ψ (1.2a) σ κ 2 ∂A ∂t + ∇φ = δE δA .
(1.2b)

In the above, φ is the electric potential and σ is the dimensionless normal conductivity. If φ ≡ 0, then, as can be easily verified, E becomes a Lyapunov function, and the solution will converge as t → ∞ to a critical point of E [START_REF] Feireisl | Long-time stabilization of solutions to the Ginzburg-Landau equations of superconductivity[END_REF]. If, however, an electric current is applied on the boundary, φ ≡ 0, and the analysis of the problem becomes much more difficult. Explicitly, the system (1.2) together with the proper boundary condition, describing the passage of an electric current through a supercon-ducting wire, is given in the form ∂ψ ∂t -∇ 2 κA ψ + iκφψ = κ 2 (1 -|ψ| 2 )ψ in (0, +∞) × Ω , (1.3a)

1 c ∂A ∂t + ∇φ + curl 2 A = 1 κ Im ( ψ∇ κA ψ) in (0, +∞) × Ω , (1.3b) 
ψ = 0 on (0, +∞) × ∂Ω c , (1.3c) ∇ κA ψ • ν = 0 on (0, +∞) × ∂Ω i , (1.3d) ∂φ ∂ν = -cκJ(x) on (0, +∞) × ∂Ω c , (1.3e) ∂φ ∂ν = 0 on (0, +∞) × ∂Ω i , (1.3f) -∂Ω curl A(t, x) ds = κh ex , on (0, +∞) (1.3g)

ψ(0, x) = ψ 0 (x) in Ω , (1.3h 
) A(0, x) = A 0 (x) in Ω .

(1.3i)

We note that (1.3a) is an evolution equation for ψ, taking into account the interaction ψ with the magnetic and the electric fields. The second equation, (1.3b) is a generalized Ampère's law, administering the relation between the magnetic field and the electric current. The electric current is the sum of the normal current (∂A/∂t+∇φ)/c where c = κ 2 /σ, and the superconducting current given by Im ( ψ∇ κA ψ)/κ. We use the notation

∇ A ψ = ∇ψ -iAψ, ∆ A ψ = ∇ 2 A ψ = ∆ψ -i(2A • ∇ψ + ψ ÷ A) -|A| 2 ψ.
In the above, Ω ⊂ R 2 denotes a bounded domain which has the same characteristics as in [START_REF] Almog | Global Stability of the Normal State of Superconductors in the Presence of a Strong Electric Current[END_REF]. In particular its boundary ∂Ω can be split into two disjoints subsets: ∂Ω c , which is a union of two disjoint smooth interfaces adjacent to a conducting metal at the normal state, and ∂Ω i which is proximate to an insulator. Thus, we require that ψ vanishes on ∂Ω c in (1.3c), thereby guaranteeing continuity of ψ through the superconductornormal metal interface, and allow for normal current to pass through ∂Ω c in (1.3e), where J denotes the local current density. In contrast, we require that the normal current vanishes on ∂Ω i in (1.3f). Finally, the imaginary part of the magnetic Neumann condition (1.3d) prescribes zero superconducting current flow through ∂Ω i , whereas its real part is tantamount to zero flux of |ψ| 2 (or superconducting electrons).

We use ν to denote the unit outer normal vector of ∂Ω, and τ denotes the unit tangential vector in the positive direction of ∂Ω, both exist on ∂Ω \ (∂Ω i ∩ ∂Ω c ). Then we use ∂φ ∂ν and ∂φ ∂τ to denote the directional derivative of φ in the direction of ν and τ respectively. We denote by ds the induced measure on ∂Ω, and adopt in (1.3g) the standard notation

- ∂Ω = 1 |∂Ω| ,
where the notation |F | for a set F denotes its overall measure. In particular, |∂Ω| denotes the total length of ∂Ω. Hence, h ex denotes the average magnetic field on ∂Ω divided by κ, and is constant in time.

We further assume that (ψ 0 , A 0 ) ∈ H 1 (Ω, C) × H 1 (Ω, R 2 ) and that

ψ 0 L ∞ (Ω,C) ≤ 1 . (1.4) 
We make the following assumptions on the current J

(J1) J ∈ C 2 (∂Ω c , R) , (1.5) 
(J2)

∂Ω c J ds = 0 , (1.6) 
and (J3) the sign of J is constant on each connected component of ∂Ω c .

(1.7) We allow for J = 0 at the corners despite the fact that no current is allowed to enter the sample through the insulator. The rest of ∂Ω, denoted by ∂Ω i is adjacent to an insulator, and hence we may extend J to ∂Ω i by setting J| ∂Ω i ≡ 0.

To simplify some of our regularity arguments we introduce the following geometrical assumption (for further discussion we refer the reader to Appendix A in [START_REF] Almog | Global Stability of the Normal State of Superconductors in the Presence of a Strong Electric Current[END_REF]) on ∂Ω: (1.8) We also require that (R2) Both ∂Ω c and ∂Ω i have two components.

(R1)
J in ∂Ω c ∂Ω i ∂Ω i J out ∂Ω c
(1.9)

Figure 1 presents a typical sample with properties (R1) and (R2), where the current flows into the sample from one connected component of ∂Ω c , and exits from another part, disconnected from the first one. Most wires would fall into the above class of domains.

The system (1.3) is invariant to the gauge transformation

A = A + ∇ω , φ = φ - ∂ω ∂t , ψ = ψe iω . (1.10)
We thus choose, as in [START_REF] Almog | Global Stability of the Normal State of Superconductors in the Presence of a Strong Electric Current[END_REF], the Coulomb gauge, i.e., we assume

div A = 0 in (0, +∞) × Ω , A • ν = 0 on (0, +∞) × ∂Ω , (1.11) 
where the divergence is computed with respect to the spatial coordinates only.

Upon taking the scalar product of (3.1b) with ν, we use (3.1d) and (3.1f) to obtain that curl A is constant on each connected component of ∂Ω i . Let then {∂Ω i,j } 2 j=1 denote the set of connected components of ∂Ω i . We can write, for j = 1, 2 , curl

A ∂Ω i,j = h j κ , (1.12) 
where h 1 and h 2 are constants. Note that h 1 and h 2 can be determined from J and h ex via the formula (see [START_REF] Almog | Global Stability of the Normal State of Superconductors in the Presence of a Strong Electric Current[END_REF])

h j = h ex -- ∂Ω |Γ(x, x j )| J(x)ds(x) for any x j ∈ ∂Ω i,j , j = 1, 2 ,
(1.13) where Γ(x, x j ) is the portion of ∂Ω connecting x and x j in the positive trigonometric direction. We assume that h ex and J are such that

h 1 h 2 < 0 , (1.14) 
and without any loss of generality we can assume h 2 > 0. Let

h = max(|h 1 |, |h 2 |) . (1.15)
We assume that h > 1 (1.16) and distinguish below between two different cases

1 < h ≤ 1 Θ 0 or 1 Θ 0 < h , (1.17a,b)
where Θ 0 is given by (2.2) in section 2 (recall that Θ 0 ∼ 0.59 [START_REF] Saint-James | Onset of superconductivity in decreasing fields[END_REF][START_REF] Fournais | Spectral Methods in Surface Superconductivity[END_REF]).

In [START_REF] Almog | Global Stability of the Normal State of Superconductors in the Presence of a Strong Electric Current[END_REF] we have established the global existence of solutions (ψ c , A c , φ c ) for (1.3), such that

ψ c ∈ C([0, +∞); W 1+α,2 (Ω, C)) ∩ H 1 loc ([0, +∞); L 2 (Ω, C)) , ∀α < 1 , A c ∈ C([0, +∞); W 1,p (Ω, R 2 )) ∩ H 1 loc ([0, +∞); L 2 (Ω, R 2 )) , ∀p ≥ 1 , φ c ∈ L 2 loc ([0, +∞); H 1 (Ω)) .
We next define, as in [3, Subsection 2.2], (in a slightly different manner as the definition here is c-independent) the normal state fields. These are defined as the weak solution -

(A n , φ n ) ∈ H 1 (Ω, R 2 ) × H 1 (Ω) -of (1.11) and                      curl 2 A n + ∇φ n = 0 in Ω , - ∂φ n ∂ν = J on ∂Ω , - ∂Ω curl A n ds = h ex , Ω φ n dx = 0 . (1.18a) (1.18b) (1.18c) (1.18d)
Note that by (1.18) (0, κA n , cκφ n ) is a steady-state solution of (1.3), representing the normal state for which ψ ≡ 0. By (1.18) we have (cf. [START_REF] Almog | Global Stability of the Normal State of Superconductors in the Presence of a Strong Electric Current[END_REF]) that the normal magnetic field

B n = curl A n satisfies the following problem      ∆B n = 0 in Ω , ∂B n ∂τ = J on ∂Ω , - ∂Ω B n (x) ds = h ex . (1.19) 
By taking the divergence of (1.18a) we also obtain

           ∆φ n = 0 in Ω , - ∂φ n ∂ν = J on ∂Ω , Ω φ n dx = 0 . (1.20a) (1.20b) (1.20c)
We recall from [3, (2.16) and (2.17)] that

B n ∈ W 2,p (Ω) , φ n ∈ W 2,p (Ω) , ∀p > 1 . (1.21)
We focus attention in this work on the exponential decay of ψ in regions where |B n | > 1. For steady-state solutions of (1.3) in the absence of electric current (J = 0) we may set φ ≡ 0 and the magnetic field is then constant on the boundary. The exponential decay of ψ away from the boundary has been termed "surface superconductivity" and has extensively been studied (cf. [START_REF] Fournais | Spectral Methods in Surface Superconductivity[END_REF] and the references within). More recently, the case of a non-constant magnetic field has been studied as well [START_REF] Attar | The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field[END_REF][START_REF] Helffer | The Ginzburg-Landau functional with vanishing magnetic field[END_REF]. In these works φ still identically vanishes but nevertheless ∇B n = 0 in view of the presence of a current source term curl h ex in (1.3b). In particular in [START_REF] Helffer | The Ginzburg-Landau functional with vanishing magnetic field[END_REF] it has been established, in the large κ limit for the case 1 h κ that ψ is exponentially small away from B -1 n (0). As mentioned above, in the absence of electric current the timedependent solutions of (1.3) is of lesser interest, since it converges to a steady-state solution [START_REF] Lin | Ginzburg-Landau vortices: dynamics, pinning, and hysteresis[END_REF][START_REF] Feireisl | Long-time stabilization of solutions to the Ginzburg-Landau equations of superconductivity[END_REF]. This result has been obtained in [START_REF] Feireisl | Long-time stabilization of solutions to the Ginzburg-Landau equations of superconductivity[END_REF] by using the fact that the Ginzburg-Landau energy functional is a Lyapunov function in this case. In contrast, when J = 0 this property of the energy functional is lost, and convergence to a steady-state is nolonger guaranteed. In [START_REF] Almog | Global Stability of the Normal State of Superconductors in the Presence of a Strong Electric Current[END_REF] the global stability of the normal state has been established for h = O(κ) in the large κ limit. Solutions of (1.3), for much weaker current densities (J ∼ O(ln κ)) have been addressed in [START_REF] Tice | Ginzburg-Landau vortex dynamics driven by an applied boundary current[END_REF]. Whereas simplified model for strong magnetic fields have been addressed in [START_REF] Du | Vortex solutions of the high-κ highfield Ginzburg-Landau model with an applied current[END_REF][START_REF] Hari | Kinematic and dynamic vortices in a thin film driven by an applied current and magnetic field[END_REF].

In the present contribution, for the same limit, we explore the behavior of the solution for 1 < h κ , and establish exponential decay of ψ in every subdomain of Ω where |B n | > 1. We do that for both steady-state solutions (whose existence we need to assume) and time-dependent ones. We also study the large-domain limit, where we obtain weaker results for steady-state solutions only.

Let, for j = 1, 2,

ω j = {x ∈ Ω : (-1) j B n (x) > 1} , (1.22) 
where B n is the normal magnetic field, satisfying (1.19). Our first theorem concerns steady state solutions and their exponential decay, in certain subdomains of Ω, in the large κ limit.

Theorem 1.1. Let for κ ≥ 1, (ψ κ , A κ , φ κ ) be a time-independent solution of (1.3). Suppose that for some j ∈ {1, 2} we have

1 < |h j | . (1.23)
Then, for any compact set K ⊂ ω j ∪ ∂Ω c , there exist C > 0, α > 0, and κ 0 ≥ 1, such that for any κ ≥ κ 0 we have

K |ψ κ (x)| 2 dx ≤ Ce -ακ . (1.24)
If, in addition,

1 Θ 0 < |h j | , (1.25) 
then (1.24) is satisfied for any compact subset K ⊂ ω j ∪ (ω j ∩ ∂Ω c ).

In addition to the above exponential decay estimate, which is limited to the region where the normal magnetic field is large, we establish a weaker decay of ψ κ in the entire domain.

Proposition 1.2. Under the assumptions (1.5)-(1.17) there exists C(J, Ω) > 0 such that, for κ ≥ 1,

ψ κ L 2 (Ω,C) ≤ C(J, Ω) (1 + c -1/2 ) 1/3 κ -1/6 .
(1.26) Theorem 1.1 is extended to the time dependent case in the following way.

Theorem 1.3. Let (ψ κ , A κ , φ κ ) denote a time-dependent solution of (1.3). Assuming c = 1, under the conditions of Theorem 1.1 and (1.4), for any compact set K ⊂ ω j ∪ ∂Ω c there exist C > 0 , α > 0, and κ 0 ≥ 1, such that for any κ ≥ κ 0 we have

lim sup t→∞ K |ψ κ (t, x)| 2 dx ≤ Ce -ακ . (1.27)
Finally, we consider steady-state solutions of (1.3) in the large domain limit. More precisely, we set κ = c = 1 and stretch Ω by a factor of R 1. Let Ω R be the image of Ω under the map x → Rx. We consider again steady-state solutions of (1.3) in Ω R :

∆ A ψ + ψ 1 -|ψ| 2 -iφψ = 0 in Ω R , (1.28a) curl 2 A + ∇φ = Im ( ψ ∇ A ψ) in Ω R , (1.28b 
)

ψ = 0 on ∂Ω R c , (1.28c) 
∇ A ψ • ν = 0 on ∂Ω R i , (1.28d) ∂φ ∂ν = F (R) R J on ∂Ω R c , (1.28e 
)

∂φ ∂ν = 0 on ∂Ω R i , (1.28f) 
- ∂Ω R curl A(x) ds = F (R)h ex . (1.28g)
We study the above problem in the limit R → ∞, supposing F (R) 1 in that limit, where we establish the following result: Proposition 1.4. Suppose that (1.5)-(1.17), and let (ψ, A, φ) denote a solution of (1.28) in Ω R . Then, there exists a compact set with non empty interior K ⊂ Ω , C > 0, R 0 > 0, and α > 0, such that for any R > R 0 we have

K R |ψ(x)| 2 dx ≤ Ce -αR , (1.29) 
where K R is the image of K under the map x → Rx.

Note that in the above proposition h ex must be of O(J), otherwise (0, A n , φ n ) would be the unique solution.

Physically (1.29) demonstrates that there is a significant portion of the superconducting sample which remains, practically, at the normal state, for current densities which may be very small. This result stands in contrast with what one finds in standard physics handbooks [START_REF] Poole | Handbook of Superconductivity[END_REF] where the critical current density, for which the fully superconducting state looses its stability, is tabulated a material property. However, our results suggest that the critical current depends also on the geometry of the superconducting sample. In fact, according to Proposition 1.4, this current density must decay in the large domain limit. In two-dimensions, our result suggests that one should search for a critical current (and not current density), whereas in three-dimensions a density with respect to cross-section circumference (instead of area) should be obtained.

We note that Proposition 1.4 is certainly not optimal. In fact, we expect the following conjecture to be true. Conjecture 1.5. Under the conditions of Proposition 1.4, for any compact set K ⊂ Ω \ B -1 n (0), there exist R 0 > 0, C > 0, and α > 0, such that for any

R > R 0 (1.29) is satisfied for any solution (ψ, A, φ) of (1.28) in Ω R .
The rest of this contribution is organized as follows. In the next section we establish some preliminary results related to the eigenvalues of the magnetic Laplacian in the presence of Dirichlet-Neumann corners. We use these results in Section 3 where we establish Theorem 1.1 and Proposition 1.2. In Section 4 we consider the time-dependent problem and establish, in particular, Theorem 1.3. Finally, in the last section, we obtain some weaker results for steady-state solutions of (1.3) in the large domain limit.

Magnetic Laplacian Ground States

In this section, we analyze the spectral properties of the Schrödinger operator with constant magnetic field in a sector. The Neumann problem has been addressed by V. Bonnaillie-Noël in [START_REF] Bonnaillie | On the fundamental state energy for a Schrödinger operator with magnetic field in domains with corners[END_REF]. In the sequel we shall need, however, a lower bound for the ground state energy of the above operator on a Dirichlet-Neumann sector, i.e., a Dirichlet condition is prescribed on one side of the sector and the magnetic Neumann condition on the other side. We begin by the following auxiliary lemma whose main idea has been introduced to us by M. Dauge [9]. Hereafter the norms in the Lebesgue spaces L p (Ω), L p (Ω, R 2 ) and L p (Ω, C) will be denoted by • L p (Ω) or • p , and the norms in the Sobolev spaces W k,p (Ω, R), W k,p (Ω, R 2 ) and W k,p (Ω, C) will be denoted by

• W k,p (Ω) or • k,p . Lemma 2.1. Let S α denote an infinite sector of angle α ∈ (0, π], i.e., S α = {(x, y) ∈ R 2 : 0 < arg(x + iy) < α} .
Let further

H α = {u ∈ H 1 (S α ) : u(r cos α, r sin α) = 0 , ∀r > 0} ,
and

Θ DN α = inf u∈H α u 2 =1 S α |(∇ -iF )u| 2 dx ,
where F is a magnetic potential satisfying curl F = 1 in S α . Then,

Θ DN α = Θ 0 , (2.1) 
where Let Ω be the domain given in Section 1 and let D ⊂ Ω have a smooth boundary, except at the corners of ∂Ω. As in [START_REF] Almog | Global Stability of the Normal State of Superconductors in the Presence of a Strong Electric Current[END_REF] we let

Θ 0 = inf u∈H 1 (S π ) u 2 =1 S π |(∇ -iF )u| 2 dx . (2.2) Proof. Let 0 < α 1 < α 2 ≤ π and u ∈ H α 1 . Let further ũ ≡ u in S α 1 and ũ ≡ 0 in S α 2 \ S α 1 . Clearly ũ ∈ H α 2 , and hence it follows that Θ DN α 1 ≥ Θ DN α 2 . Consequently, Θ DN α ≥ Θ DN π , ∀α ≤ π.
µ (A, D) = inf u∈H(D) u 2 =1 D | ∇ -iAu| 2 dx , (2.3) 
wherein

H(D) = {u ∈ H 1 (D) : u = 0 on ∂D \ (∂D ∩ ∂Ω i ) } . Let S = ∂Ω c ∩ ∂Ω i ∩ ∂D
denote the corners of Ω belonging to ∂D. Following [START_REF] Bonnaillie-No Ël | Asymptotics for the lowlying eigenstates of the Schrödinger operator with magnetic field near corners[END_REF] we set for a given magnetic potential

A ∈ C 1 (Ω, R 2 ), b = inf x∈D |curl A| ; b = inf x∈∂D∩∂Ω i |curl A| .
The following lemma is similar to a result in [START_REF] Bonnaillie-No Ël | Asymptotics for the lowlying eigenstates of the Schrödinger operator with magnetic field near corners[END_REF] obtained for a Neumann boundary condition. Here we treat instead a Dirichlet-Neumann boundary condition.

Lemma 2.2. Under the above hypotheses there exist C > 0 and 0 > 0 such that for all 0 < < 0

µ (A, D) ≥ min b, Θ 0 b , inf x∈S Θ DN α(x) |curl A| (1 -C 1/2 ) .
The proof of (2.4) can be obtained by following the same steps of the proof of Theorem 7.1 in [START_REF] Bonnaillie-No Ël | Asymptotics for the lowlying eigenstates of the Schrödinger operator with magnetic field near corners[END_REF].

By (2.1) we thus obtain, for sufficiently small and for some C > 0,

µ (A, D) ≥ min(b, Θ 0 b )(1 -C 1/2 ) . (2.4) 
We conclude this section with the following estimate of µ where we allow, in addition, some dependence of the magnetic potential on the semi-classical parameter.

Proposition 2.3. Let a ∈ W 1,∞ (D, R 2 ).
There exist C > 0 and 0 > 0 such that for all 0 < < 0 we have

µ (A + 1/2 a, D) ≥ min(b, Θ 0 b )[1 -C(1 + ∇a 2 ∞ ) 1/3 ] . (2.5) 
Proof. The case b = 0 being trivial, we assume that b > 0. We begin by introducing for any > 0 a partition of unity (cf. also [START_REF] Helffer | Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells[END_REF]), i.e., families

{η i } K i=1 ⊂ C ∞ (Ω), and {x i } K i=1 ⊂ D satisfying K i=1 η 2 i = 1 ; supp η i ⊂ B(x i , 1/3 ) ; K i=1 |∇η i | 2 ≤ C 2/3 ,
where C > 0 is independent of .

It can be easily verified that for any

u ∈ H 1 (Ω, C) ( ∇ -i[A + 1/2 a])u 2 2 = K i=1 ( ∇ -i[A + 1/2 a])(η i u) 2 2 -2 u∇η i 2 2 .
(2.6) We now set

v i = η i u exp(-i -1/2 a(x i ) • x) , to obtain that ( ∇ -i[A + 1/2 a])(η i u) 2 2 = ( ∇ -i[A + 1/2 (a -a(x i ))])v i 2 2 ≥(1 -1/3 ) ( ∇ -iA)v i 2 2 -2/3 a -a(x i ))v i 2 2 ≥(1 -1/3 )µ (A, D) v i 2 2 -C 4/3 v i 2 2 .
Substituting the above into (2.6) yields

( ∇-i[A+ 1/2 a])u 2 2 ≥ (1-1/3 )µ (A, D) u 2 2 -C 4/3 (1+ ∇a 2 ∞ ) u 2 2 . (2.7)
The proposition now follows from (2.1), (2.7), and (2.4).

Steady-State Solutions

We begin by considering steady-state solutions of (1.3) 

(ψ k , A κ , φ κ ) ∈ H 1 (Ω, C × R 2 × R) in the limit κ → +∞. Hence, we look at the system [3, Section 5] -∇ 2 κA κ ψ κ + iκφ κ ψ κ = κ 2 (1 -|ψ κ | 2 )ψ κ in Ω , (3.1a) -curl 2 A κ + 1 c ∇φ κ = 1 κ Im ( ψκ ∇ κA κ ψ κ ) in Ω , (3.1b 
)

ψ κ = 0 on ∂Ω c , (3.1c) ∇ κA κ ψ κ • ν = 0 on ∂Ω i , (3.1d) ∂φ κ ∂ν = -cκJ(x) on ∂Ω c , (3.1e 
)

∂φ κ ∂ν = 0 on ∂Ω i , (3.1f) 
- ∂Ω curl A κ ds = κh ex , (3.1g) 
with the additional gauge restriction (1.11). In the above (ψ k , A κ , φ κ ) is the same as (ψ, A, φ) in (1.3). The subscript κ has been added to emphasize the limit we consider here. We assume in addition (1.5)-(1.17). By the strong maximum principle one has that

ψ κ ∞ < 1 , (3.2) 
see [START_REF] Du | Analysis and approximation of the Ginzburg-Landau model of superconductivity[END_REF], and [13, Proposition 10.3.1]. Let h be given by (1.15). It has been demonstrated in [START_REF] Almog | Global Stability of the Normal State of Superconductors in the Presence of a Strong Electric Current[END_REF] that for some h c > 0, when h < h c κ, the normal state looses its stability. Since we consider cases for which 1 < h κ it is reasonable to expect that other steady-state solutions would exist. We note, however, that in contrast with the case J = 0, where the existence of steady-state solutions can be proved using variational arguments (inapplicable in our case), existence of steady-state solutions to (3.1) is yet an open problem when an electric current is applied. We shall address time-dependent solutions in the next section.

Next we set

A 1,κ = A κ -κA n , φ 1,κ = φ κ -cκφ n . (3.3a,b) Set further B κ = curl A κ , B 1,κ = curl A 1,κ . (3.4a,b) By (3.1b) we then have                curl B 1,κ + 1 c ∇φ 1,κ = 1 κ Im ( ψκ ∇ κA κ ψ κ ) in Ω , ∂φ 1,κ ∂ν = 0 on ∂Ω , - ∂Ω B 1,κ (x) ds = 0 . (3.5a) (3.5b) (3.5c) Note that since ∂B 1,κ /∂τ = ∂φ 1,κ /∂ν = 0 on ∂Ω we must have by (3.5c) that B 1,κ | ∂Ω ≡ 0 . (3.6)
Taking the divergence of (3.1b) yields, with the aid of the imaginary part of (3.1a), that φ κ is a weak solution of

     -∆φ κ + c |ψ κ | 2 φ κ = 0 in Ω , ∂φ κ ∂ν = cκJ on ∂Ω c , ∂φ κ ∂ν = 0 on ∂Ω i . (3.7) 
By assumption φ κ ∈ H 1 (Ω) and hence, by [3, Proposition A.2] we obtain that φ κ ∈ W 2,p (Ω) for all p ≥ 2, hence φ κ ∈ C 1 (Ω). By (3.3b) we then have

-∆φ 1,κ + c |ψ κ | 2 φ 1,κ = -κc 2 |ψ k | 2 φ n in Ω , ∂φ 1,κ ∂ν = 0 on ∂Ω . Let K = φ n ∞ and w = φ 1,κ + Kκc. Clearly, -∆w + c |ψ κ | 2 w = -κc 2 |ψ k | 2 (φ n -K) ≥ 0 in Ω , ∂w ∂ν = 0 on ∂Ω .
It can be easily verified that w is the minimizer in H 1 (Ω) of

J (v) = ∇v 2 2 + c ψ κ v 2 2 + κc 2 |ψ k | 2 (φ n -K), v . As J (v + ) ≤ J (v) ,
it easily follows that w ≥ 0, that is

φ 1,κ + Kκc ≥ 0 .
In a similar manner we obtain φ 1,κ -Kκc ≤ 0 , which together with (3.3b) yields

φ κ ∞ ≤ C(Ω, J) c κ . (3.8) 
We now apply again Proposition A.2 in [START_REF] Almog | Global Stability of the Normal State of Superconductors in the Presence of a Strong Electric Current[END_REF] to obtain that for any p ≥ 2

φ κ 2,p ≤ C(Ω, J) c κ . (3.9)
We note that all elliptic estimates must be taken with special care since Ω possesses corners. The necessary details (with references therein) can be found in Appendices A and B of [START_REF] Almog | Global Stability of the Normal State of Superconductors in the Presence of a Strong Electric Current[END_REF] .

Next we set for δ > 0 and κ ≥ 1,

D δ (κ) = {x ∈ Ω : |B κ (x)| > (1 + δ)κ} ,
and

S δ = {x ∈ Ω : |B n (x)| > (1 + δ)} . (3.10)
By either (1.17a) or (1.17b), it follows that for 0 < δ < h -1, S δ = ∅ . Below we show that the same is true for D δ (κ). Note that (1.14) implies that S δ consists of two disjoint sets:

S δ = S δ,1 ∪ S δ,2 , (3.11) 
one near ∂Ω i,1 denoted by S δ,1 , and one near ∂Ω i,2 denoted by S δ,2 .

We then let

C δ,j = ∂S δ,j \ (∂Ω ∩ ∂S δ,j ) , j = 1, 2 , (3.12) 
and

C δ = C δ,1 ∪ C δ,2 . (3.13) 
We can now state and prove Lemma 3.1. For any 0 < α < 1 there exists κ 0 = κ 0 (Ω, J, α) > 0 such that for all κ ≥ κ 0 and 0 < δ < h -1, we have

S δ+κ -α ⊂ D δ (κ) . (3.14)
Proof.

Step 1: Prove that for some C(Ω, J) > 0

A κ ∞ ≤ C κ . (3.15)
Taking the divergence of (3.5a) yields, with the aid of (3.5b),

-∆φ 1,κ = -c κ div Im ( ψκ ∇ κA κ ψ κ ) in Ω , ∂φ 1,κ ∂ν = 0 on ∂Ω . (3.16)
Multiplying the above equation by φ 1,κ and integrating by parts then yields, with the aid of (3.2) and (3.1c,d),

∇φ 1,κ 2 ≤ c κ ∇ κA κ ψ κ 2 . (3.17)
Taking the inner product of (3.1a) with ψ κ yields, after integration by parts

∇ κA κ ψ κ 2 2 = κ 2 ψ κ 2 2 . (3.18) 
By (3.17) we then obtain that

∇φ 1,κ 2 ≤ Cc .
Since curl B 1,κ = ∇ ⊥ B 1,κ , the boundedness of ∇B 1,κ 2 then easily follows from the above and (3.5). Consequently,

1 c ∇φ 1,κ 2 + ∇B 1,κ 2 ≤ C . (3.19) 
Note that ∇φ 1,κ and ∇ ⊥ B 1,κ are respectively the L 2 projections of Im ( ψκ

∇ κA κ ψ κ ) on H 0 0 (curl , Ω) = { V ∈ L 2 (Ω, R 2 ) : curl V = 0}
, and

H 0 d := { W ∈ L 2 (Ω, R 2 
) : div W = 0 and W • ν = 0 on ∂Ω} . Next, we attempt to estimate ∇φ 1,κ p and ∇B 1,κ p for any p > 2. Since Ω is simply-connected, we may conclude from (1.11), (3.4a) and Remark B.2 in [START_REF] Almog | Global Stability of the Normal State of Superconductors in the Presence of a Strong Electric Current[END_REF] that there exists for any p > 2 a constant C(p, Ω) > 0 such that

A κ 1,p ≤ C B κ p , for all κ ≥ 1. Sobolev embeddings then imply A κ ∞ ≤ C B κ p .
(3.20)

Since ∇B 1,κ 2 is uniformly bounded for all κ ≥ 1, we obtain from (3.6), the Poincaré inequality, and Sobolev embeddings that, for any p > 2 there exists a constant C(p, Ω) > 0 such that we have

B 1,κ p ≤ C(p, Ω) . (3.21)
Hence, recalling from (1.21) that B n ∈ L p and independent of c and κ, as J is independent of κ, there exists a constant C > 0 such that

B κ p = B 1,κ + κB n p ≤ C κ . (3.22)
Combining the above computations with (3.20) then yields (3.15).

Step 2: Prove (3.14).

We first rewrite (3.1a,c,d) in the following form

     ∆ψ κ = 2iκA κ • ∇ κA κ ψ κ + |κA κ | 2 ψ κ -κ 2 ψ κ 1 -|ψ κ | 2 + iκφ κ ψ κ in Ω , ψ κ = 0 on ∂Ω c , ∂ψ κ ∂ν = iκ(A κ • ν)ψ κ = 0 on ∂Ω i ,
where the last equality follows from (1.11). By (3.15), (3.8), the fact ψ κ ∞ ≤ 1, Proposition A.3 and Remark A.4 in [START_REF] Almog | Global Stability of the Normal State of Superconductors in the Presence of a Strong Electric Current[END_REF] (note that ψ κ vanishes at the corners) we obtain that for some C(Ω, p, J)

ψ κ 2,p ≤ C κ 4 + κ 2 ∇ κA κ ψ κ p , ∀p > 2 .
Sobolev embedding and (3.15) then yield

∇ κA κ ψ κ ∞ ≤ C κ 4 + κ 2 ∇ κA κ ψ κ p . (3.23) 
We now use a standard interpolation theorem to obtain that

∇ κA κ ψ κ p ≤ ∇ κA κ ψ κ 2/p 2 ∇ κA κ ψ κ 1-2/p ∞ .
Substituting (3.23) in conjunction with (3.18) into the above inequality then yields

∇ κA κ ψ κ p ≤ C κ 4 + κ 2 ∇ κA κ ψ κ p 1-2/p κ 2/p . (3.24)
Suppose first that

κ 2 < ∇ κA κ ψ κ p .
Then, we have

∇ κA κ ψ κ p ≤ C ∇ κA κ ψ κ 1-2/p p κ 2(1-1/p) .
Hence,

∇ κA κ ψ κ p ≤ Cκ p-1 . (3.25)
Next, assume that

∇ κA κ ψ κ p ≤ κ 2 ,
to obtain that ∇ κA κ ψ κ p ≤ Cκ 4-6/p . ¿From the above, together with (3.25) we easily conclude that, for any 2 < p ≤ 3, there exists a constant C such that

1 κ ∇ κA κ ψ κ p ≤ Cκ 3(1-2/p) . (3.26) 
To continue, we need a W 1,p estimates for the solution of ∆u = f where f ∈ W -1,p . We thus apply [15, Theorem 7.1], which is valid for any domain which is bilipschitz equivalent to the unit cube, to (3.16). This yields that, for some C(p, Ω) > 0, we have 

∇φ 1,κ p ≤ C c κ ∇ κA κ ψ κ p , ∀κ ≥ 1 , 2 < p ≤ 3 . ( 3 
B 1,κ ∞ ≤ Cκ 3(p-2)/p , ∀κ > 1 , 2 < p ≤ 3 . (3.29) Let x ∈ S δ+κ -α , namely |B n (x)| > (1 + δ + κ -α ) .
¿From (3.29), for some C(p, Ω, J) > 0 we have that

|B κ (x)| >κ|B n (x)| -|B 1,κ (x)| ≥ (1 + δ + κ -α )κ -Cκ 3(p-2)/p =(1 + δ)κ + [κ 1-α -Cκ 3(p-2)/p ].
By choosing 2 < p < min 3, 6 2 + α ,

we have κ 1-α -Cκ 3(p-2)/p > 0 for sufficiently large κ . Thus

|B κ (x)| > (1 + δ)κ ,
and hence x ∈ D δ (κ). Consequently, S δ+κ -α ⊂ D δ (κ) .

As a byproduct of the proof, we also obtain Proposition 3.2. For any 2 < p ≤ 3, there exists κ 0 ≥ 1 and C > 0

such that A 1,κ 2,p ≤ Cκ 3(p-2)/p , ∀κ ≥ κ 0 . (3.30) 
Proof. The proof follows immediately from (3.5), (3.28), and Proposition B.3 in [START_REF] Almog | Global Stability of the Normal State of Superconductors in the Presence of a Strong Electric Current[END_REF].

We can now prove the following semi-classical Agmon estimate for ψ κ , establishing that it must be exponentially small in S δ . Proposition 3.3. Suppose that h satisfies (1.17b). Let then j ∈ {1, 2} be such that h j > 1/Θ 0 . There exist C > 0 and δ 0 > 0, such that, for any 0 < δ ≤ δ 0 , some κ 0 (δ) can be found, for which

κ ≥ κ 0 (δ) ⇒ S δ,j exp δ 1/2 κ d(x, C δ,j ) |ψ κ | 2 dx ≤ C δ 3/2 , (3.31) 
where S δ,j is introduced in (3.11) and C δ,j in (3.12).

Proof.

For δ > 0, let η ∈ C ∞ (Ω, [0, 1]) satisfy η(x) = 1 x ∈ S δ,j , 0 x ∈ Ω \ S δ/2,j . (3.32) 
By (1.19) and (1.21), it follows that ∇B n is bounded and independent of both δ and κ. Consequently, there exists a constant C 1 > 0 such that

d(C δ,j , C δ/2,j ) ≥ δ C 1 ,
and hence, for some C(Ω, J) and all 0 < δ < δ 0 we can choose η such that |∇η| ≤ C δ .

Let further ζ = χ η

where

χ = exp(α δ κd(x, C δ,j )) if x ∈ S δ,j , 1 if x ∈ Ω \ S δ,j .
We leave the determination of α δ to a later stage. We further define, for any r 

∈ (0, r 0 ), η r ∈ C ∞ (Ω, [0, 1]) and ηr ∈ C ∞ (Ω, [0, 1]) such that η r (x) = 1 d(x, ∂Ω i ) > r 0 d(x, ∂Ω i ) < r/
∇ κA κ (ζ ηκ -1/2 ψ κ ) 2 2 + ∇ κA κ (ζη κ -1/2 ψ κ ) 2 2 ≤κ 2 ζψ κ 2 2 + ζψ κ ∇η κ -1/2 2 2 + ζψ κ ∇η κ -1/2 2 2 + ψ κ ∇ζ 2 2 .
Observing that ψ κ ∇χ, ψ κ ∇η = 0, we obtain

ψ κ ∇ζ 2 2 ≤ α 2 δ κ 2 ψ κ ζ 2 2 + ψ κ ∇η 2 2 .
Hence,

∇ κA κ (ζ ηκ -1/2 ψ κ ) 2 2 + ∇ κA κ (ζη κ -1/2 ψ κ ) 2 2 ≤κ 2 1 + α 2 δ + Cκ -1 ζψ κ 2 2 + ψ κ ∇η 2 2 .
(3.34)

We now use (2.5) and (3.30) to obtain, for sufficiently small δ,

∇ κA κ (ζ ηκ -1/2 ψ κ ) 2 2 ≥κ 4 µ κ -2 (A n + κ -1 A 1,κ , S δ/2 ) ζ ηκ -1/2 ψ κ 2 2 ≥κ 2 min(Θ 0 h j , 1 + δ/2)[1 -Cκ -2/3 ] ζ ηκ -1/2 ψ κ 2 2 ≥(1 + δ 2 ) κ 2 [1 -Cκ -2/3 ] ζ ηκ -1/2 ψ κ 2 2 .
(3.35) By [5, Theorem 2.9] we have, since ζη κ -1/2 ψ κ vanishes on ∂Ω, 

∇ κA κ (ζη κ -1/2 ψ κ ) 2 2 ≥ (1 + δ/2 -κ -1/2 )κ 2 ζη κ -1/2 ψ κ 2 2 . ( 3 
α 2 δ = δ 4
we obtain, that for κ ≥ κ(δ), with κ(δ) sufficiently large:

κ 2 δ 8 ζψ κ 2 2 ≤ κ 2 δ 4 -Cκ -1 2 ζψ κ 2 2 ≤ ψ κ ∇η 2 2 ,
from which (3.31) easily follows.

Next we consider currents satisfying only (1.17a). Let, for j = 1, 2,

ω δ,j = {x ∈ Ω : (-1) j B n (x) > 1 + δ ; d(x, ∂Ω i ) > δ } , (3.37) 
and Γ δ,j = ∂ω δ,j \ ∂Ω c ∩ ∂ω δ,j .

We can now state Proposition 3.4. Suppose that for some j ∈ {1, 2} we have

1 < |h j | . (3.39)
Then, there exist C > 0, δ 0 > 0, such that for any 0 < δ < δ 0 , some κ 0 (δ) > 0 can be found, for which

κ ≥ κ 0 (δ) ⇒ ω δ,j exp δ 1/2 κd(x, Γ δ,j ) |ψ κ | 2 dx ≤ C δ 3/2 . (3.40)
Proof. Without loss of generality we may assume h j > 0; otherwise we apply to (3.1) the transformation (ψ κ , A κ , φ κ ) → ( ψκ , -A κ , -φ κ ). Let

χ = exp 1 2 δ 1/2 κd(x, Γ δ,j ) if x ∈ ω δ,j , 1 if x ∈ Ω \ ω δ,j .
(3.41)

Let further η and η r be given by (3.32) and (3.33) respectively. Then set

ζ = η δ η χ . (3.42)
The proof proceeds in the same manner as in the previous proposition with ζ replaced by ζ with the difference that now ζψ κ (x) vanishes for all x ∈ ∂Ω i . Consequently, (1.17a) is no longer necessary (see (3.36)). We use (1.17b) to establish that ω δ,j is not empty.

We conclude this section by showing that for O(κ) currents (i.e. when J is independent of κ) ψ κ 2 must be small. To this end we define Φ n as the solution of (1.20a,b), and

Ω |ψ κ | 2 Φ n dx = 0 . (3.43)
The above condition is a natural choice as by (3.7) we have that

Ω |ψ κ | 2 φ κ dx = 0 .
It can be easily verified from (2.2) that

Φ n = φ n + C(κ, c) , (3.44) 
where φ n denotes the solution of (1.20). The constant can be extracted from (3.43):

C(κ, c) = -Ω φ n |ψ κ | 2 dx Ω |ψ κ | 2 dx
, from which we get the following upper bound (independent of κ and c)

|C(κ, c)| ≤ φ n ∞ < +∞ .
(3.45) Proposition 3.5. Under Assumptions (1.5)-(1.17) there exists C(J, Ω) > 0 and κ 0 > 0 such that for any κ ≥ κ 0 ,

ψ κ 2 ≤ C(J, Ω)(1 + c -1/2 ) 1/3 κ -1/6 . (3.46) Proof. Let Φ 1,κ = φ k -cκΦ n . An immediate consequence of (3.7) is that -∆Φ 1,κ + c|ψ| 2 κ Φ 1,κ = -c 2 |ψ| 2 κ κΦ n in Ω , ∂Φ 1,κ ∂ν = 0 on ∂Ω . (3.47)
Taking the inner product with Φ n yields, with the aid of (3.43),

κ ψ κ Φ n 2 2 = - 1 c 2 ∇Φ n , ∇Φ 1,κ + 1 c |ψ κ |Φ n , |ψ κ |(Φ 1,κ -(Φ 1,κ ) Ω ≤ 1 c 2 ∇Φ n 2 ∇Φ 1,κ 2 + 1 c ψ κ Φ n 2 ψ κ (Φ 1,κ -(Φ 1,κ ) Ω ) 2 , (3.48) where (Φ 1,κ ) Ω is the average of Φ 1,κ in Ω.
With the aid of (3.19) (note that ∇φ 1,κ = ∇Φ 1,κ ), the fact that |ψ κ | ≤ 1, and the Poincaré inequality we then obtain

ψ κ Φ n 2 ≤ Cκ -1/2 (1 + c -1/2 ) .
(3.49)

We now set

U κ = {x ∈ Ω : |Φ n (x)| < (1 + c -1/2 ) 2/3 κ -1/3 } .
By (3.43) the level set Φ -1 n (0) lies inside Ω. Let x 0 ∈ Φ -1 n (τ ) for some τ = 0, and set Γ ⊥ = B -1 n (B n (x 0 )). By (1.18a) B n is the conjugate harmonic function of Φ n , and hence Γ ⊥ must be perpendicular to Φ -1 n (τ ) at x 0 . Note that in [3, (2.3)] we showed that B -1 n (µ) is a simple smooth curve connecting the two connected components of ∂Ω c for any h 1 < µ < h 2 . We denote by Γ⊥ the subcurve of Γ ⊥ originating from x 0 in the direction where Φ n decreases if τ > 0 or increases if τ < 0, and terminating either on Φ -1 n (0) or on the boundary. Clearly,

| Γ⊥ | inf x∈Ω |∇Φ n | ≤ Γ⊥ ∇Φ n ds ≤ |τ | ,
where Γ V denotes the circulation of V along the path Γ. In [3, §2.3] we have established that

|∇Φ n | = |∇B n | > 0 in Ω. It follows that d(x 0 , ∂Ω ∪ Φ -1 n (0)) ≤ | Γ⊥ | ≤ C|τ | . (3.50) Let Ũκ (r) = {x ∈ Ω | d(x, ∂Ω ∪ Φ -1 n (0)) ≤ r (1 + c -1/2
) 2/3 κ -1/3 } . By (3.50) we obtain that for sufficiently large r there exists κ 0 (r) such that for all κ > κ 0 and c ∈ R we have U κ ⊆ Ũκ (r). Consequently,

|U κ | ≤ C(1 + c -1/2 ) 2/3 κ -1/3 (|Φ -1 n (0)| + |∂Ω|) ≤ C(1 + c -1/2 ) 2/3 κ -1/3 .
(3.51) By (3.49) we have that

ψ κ L 2 (Ω\U κ ) ≤ C(1 + c -1/2 ) 1/3 κ -1/6 ,
whereas from (3.51) and (3.2) we learn that

ψ κ L 2 (U κ ) ≤ C(1 + c -1/2 ) 1/3 κ -1/6 .
The proposition can now be readily verified.

An immediate conclusion is that whenever cκ 1, |ψ κ | is small. If c = O(κ -1 ), |ψ κ | may not tend to 0 as κ → ∞. Further research is necessary to establish this point.

Remark 3.6. If, for some 0 < α < 1, we assume that J = J(•, κ) satisfies J ≤ Cκ -α , then (3.48) and (3.19) remain valid. Assuming c = 1, and using this time (3.28), we obtain instead of (3.49), for any 0 < β, that

ψ κ Φ n 2 ≤ C β κ -1/2 (κ α/2 + κ β ψ κ 1/ 2 
2 ) . Using the above, with sufficiently small β, we obtain, similarly to the derivation of (3.46)

ψ κ 2 ≤ Cκ -(1-α)/6 , which implies ψ κ 2 ----→ κ→+∞ 0 .
We note that (3.46) stands in sharp contrast with the behavior of ψ κ in the absence of electric potential [START_REF] Attar | The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field[END_REF]. In particular, it has been established in [START_REF] Attar | The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field[END_REF] that for the case where h ex = B n in (1.1), the minimization of E gives

E min = inf (ψ,A)∈H 1 (Ω,C)×H 1 (Ω,R 2 ) E ∼ κ 2 1 2 + Ω g B n (x) dx
where g : R + → [-1/2, 0] is increasing and satisfies -1/2 < g(b) ≤ g(1) = 0 (cf. also [START_REF] Sandier | The decrease of bulksuperconductivity near the second critical field in the Ginzburg-Landau model[END_REF] for the definition of g). Hence, if there is a set of non-vanishing measure in Ω where B n < 1 we have, in that case,

lim κ→∞ E min κ 2 < 1 2 ,
which means that ψ 2 does not vanish as κ → ∞ in that case, in contrast with (3.46).

Time-Dependent Analysis

In this section we return to the time-dependent problem as introduced in (1.3). For convenience we set here

c = 1 . ∂ψ κ ∂t -∇ 2 κA κ ψ κ + iκφ κ ψ κ = κ 2 (1 -|ψ κ | 2 )ψ κ in (0, +∞) × Ω , (4.1a) ∂A κ ∂t + ∇φ κ + curl 2 A κ = 1 κ Im ( ψκ ∇ κA κ ψ κ ) in (0, +∞) × Ω , (4.1b) ψ = 0 on (0, +∞) × ∂Ω c , (4.1c) ∇ κA κ ψ κ • ν = 0 on (0, +∞) × ∂Ω i , (4.1d) ∂φ κ ∂ν = -κJ(x) on (0, +∞) × ∂Ω c , (4.1e) ∂φ κ ∂ν = 0 on (0, +∞) × ∂Ω i , (4.1f) - ∂Ω curl A κ ds = κh ex on (0, +∞) , (4.1g) ψ(0, x) = ψ 0 (x) in Ω , (4.1h) A(0, x) = A 0 (x) in Ω . (4.1i)
We assume again (1.4)-(1.12), (1.14), and (1.17). Since in the time dependent case φ κ is determined up to a constant in view of (1.10) and (1.11), we can further impose

Ω φ κ (t, x) dx = 0 , ∀t > 0 . (4.
2)

It follows from (1.4) by the maximum principle (see [START_REF] Almog | Global Stability of the Normal State of Superconductors in the Presence of a Strong Electric Current[END_REF]Theorem 2.6]) that

ψ κ (t, •) ∞ ≤ 1 , ∀t ≥ 0 . (4.3)
We recall from [3, Subsection 2.4] the following spectral entity

λ = inf V ∈H d V 2 =1 curl V 2 2 , (4.4a) 
where

H d = V ∈ H 1 (Ω, R 2 ) : div V = 0 , V ∂Ω • ν = 0 . (4.4b)
We further recall from [3, Proposition 2.5] that, under condition (R 1 ) on ∂Ω, λ = λ D := inf

u∈H 1 0 (Ω) u 2 =1 ∇u 2 2 > 0 .
We retain our definition of the normal fields (A n , φ n ) via (1.18). For the solution (A κ , φ κ ) of (4.1) we set

A 1,κ (t, x) = A κ (t, x) -κA n (x), φ 1,κ (t, x) = φ κ (t, x) -κφ n (x), B κ (t, x) = curl A κ (t, x), B 1,κ (t, x) = curl A 1,κ (t, x). (4.5) Clearly, ∂A 1,κ ∂t + ∇φ 1,κ + curl B 1,κ = 1 κ Im ( ψκ ∇ κA κ ψ κ ) in (0, +∞) × Ω , (4.6a) ∂φ 1,κ ∂ν = 0 on (0, +∞) × ∂Ω , (4.6b) 
- ∂Ω B 1,κ (t, x) ds = 0 in (0, +∞) . (4.6c)
We begin by the following auxiliary estimate. We recall that

A(t, •) 1,2 = A(t, •) H 1 (Ω,R 2 ) .
Lemma 4.1. Let A 1,κ and B 1,κ be defined by (4.5). Suppose that A 1,κ (•, 0) 2 ≤ M (where M may depend on κ). Then, under the above assumptions, there exists t * (M ) and a constant C = C(Ω, t * ) > 0 such that for all t > t * and κ ≥ 1 we have

A 1,κ (t, •) 1,2 + A 1,κ L 2 (t,t+1,H 2 (Ω)) ≤ C. (4.7)
Proof. By [3, Lemma 5.3] there exists a constant C = C(Ω) > 0 such that for sufficiently large κ

A 1,κ (t, •) 2 2 ≤ A 1,κ (0, •) 2 2 + C κ 2 e -λt + C t 0 e -λ(t-τ ) ψ κ (τ, •) 2 2 dτ .
¿From (4.3), we then get

A 1,κ (t, •) 2 2 ≤ A 1,κ (0, •) 2 2 + C κ 2 e -λt +

C λ

We thus have

A 1,κ (t, •) 2 2 ≤ (M + C)e -λt + C λ (4.8)
Hence, there exists t * 0 (M ), such that for t ≥ t * 0 (M ), we have

A 1,κ (t, •) 2 ≤ 2C λ . (4.9)
Next, we apply [3, Theorem C.1 (Formula C.4)] to the operator L (1) (as introduced there in Example ( 4) above this theorem) to obtain that

A 1,κ L ∞ (t 0 ,t 0 +1,H 1 (Ω)) + A 1,κ L 2 (t 0 ,t 0 +1,H 2 (Ω)) ≤ C κ Im { ψκ ∇ κA κ ψ κ } L 2 (t 0 ,t 0 +1,L 2 (Ω)) + C A 1,κ (t 0 , •) 1,2 . (4.10)
with a constant C independent of t 0 . Since from (4.1a) (cf. [START_REF] Almog | Global Stability of the Normal State of Superconductors in the Presence of a Strong Electric Current[END_REF]) we can easily get that

∇ κA κ ψ κ (t, •) 2 2 ≤ κ 2 ψ κ (t, •) 2 2 - 1 2 d ψ κ (t, •) 2 2 dt , (4.11) 
we obtain by integrating over (t 0 , t 0 + 1)

∇ κA κ ψ κ 2 L 2 (t 0 ,t 0 +1,L 2 (Ω)) ≤ κ 2 ψ κ 2 L 2 (t 0 ,t 0 +1,L 2 (Ω)) + 1 2 ψ κ (t 0 , •) 2 2 , (4.12) 
and note for later reference that it implies

∇ κA κ ψ κ L 2 (t 0 ,t 0 +1,L 2 (Ω)) ≤ C(Ω) κ . (4.13) 
Implementing the upper bound (4.12) in (4.10), yields

A 1,κ L ∞ (t 0 ,t 0 +1,H 1 (Ω)) + A 1,κ L 2 (t 0 ,t 0 +1,H 2 (Ω)) ≤C 1 + ψ κ L 2 (t 0 ,t 0 +1,L 2 (Ω)) + 1 κ ψ κ (t 0 , •) 2 + A 1,κ (t 0 , •) 1,2 .
We next apply [3, Theorem C.1 (Formula C.2)] to obtain in precisely the same manner

A 1,κ L ∞ (t 0 ,t 0 +1,H 1 (Ω)) ≤ C 1 + ψ κ L 2 (t 0 -1,t 0 +1,L 2 (Ω)) + 1 κ ψ κ (t 0 , •) 2 + A 1,κ (t 0 -1, •) 2 .
The above together with (4.3) and (4.9) yields, for

t 0 ≥ t * 0 + 1, A 1,κ L ∞ (t 0 ,t 0 +1,H 1 (Ω)) + A 1,κ L 2 (t 0 ,t 0 +1,H 2 (Ω)) ≤ C , (4.14) 
which implies (4.7), with t * = t * 0 (M ) + 1.

Remark 4.2. Since our interest is in the limit as t → +∞, Lemma 4.1 allows us to assume in the sequel, without any loss of generality, that (4.7) is satisfied for all t ≥ 0. We have just to make a translation t → t -t * and to observe that ψ κ (t * , •) has the same properties as ψ 0 .

Proposition 4.3. Let ω δ,j (j ∈ {1, 2}) be defined in (3.37). Suppose that for some j ∈ {1, 2} we have that

1 < |h j | . (4.15) 
Then, there exist C > 0 and δ 0 > 0, and, for any

0 < δ < δ 0 , κ 0 (δ) ≥ 1 such that, for κ ≥ κ 0 (δ), lim sup t→∞ ω δ,j |ψ κ | 2 (t, x) dx ≤ C δ κ 2 . (4.16) 
Proof. Without loss of generality we may assume h j > 0 ; otherwise we apply to (4.1) the transformation (ψ κ , A κ , φ κ ) → ( ψκ , -A κ , -φ κ ).

Step 1: Let, for n ≥ 1,

a n = ζψ κ L ∞ (n-1,n,L 2 (Ω)) .
Prove that for all δ ∈ (0, 1) and κ ≥ κ 0 (δ),

a 2 n ≤ Cδ -3 κ -2 + κ -1 (a n + a n-1 ) . (4.17) 
Let η and η r be given by (3.32) and (3.33) respectively. Then, set

ζ = η η δ . (4.18) 
Multiplying (4.1a) by ζ 2 ψκ and integrating by parts yields 1 2

d dt ζψ κ (t, •) 2 2 + ∇ κA κ ( ζψ κ (t, •)) 2 2 ≤ κ 2 ζψ κ (t, •) 2 2 + ψ κ (t, •) ∇ ζ 2 2 .
By [5, Theorem 2.9], we have

∇ κA κ ( ζψ κ (t, •)) 2 2 ≥ κB κ (t, •) ζψ κ (t, •), ζψ κ (t, •) =κ 2 B n ζψ κ (t, •), ζψ κ (t, •) + κB 1,κ (t, •) ζψ κ (t, •), ζψ κ (t, •) ≥κ 2 1 + δ 2 ζψ κ (t, •) 2 2 + κB 1,κ ζψ κ (t, •) , ζψ κ (t, •) .
We can thus write

1 2 d dt ζψ κ (t, •) 2 2 + κ 2 δ 2 ζψ κ (t, •) 2 2 ≤ ψ κ (t, •)∇η 2 2 + ψ κ (t, •)∇η δ 2 2 -κB 1,κ (t, •) ζψ κ (t, •), ζψ κ (t, •) . Since ψ κ (t, •)∇η 2 2 + ψ κ (t, •)∇η δ 2 2 ≤ C δ 2 , we obtain that 1 2 d dt ζψ κ (t, •) 2 2 + κ 2 δ 2 ζψ κ (t, •) 2 2 ≤ C δ 2 -κB 1,κ (t, •) ζψ κ (t, •) , ζψ κ (t, •) . (4.19) 
¿From (4.19) we can conclude that

ζψ κ (t, •) 2 2 ≤ ζψ 0 2 2 e -δκ 2 t + C δ 3 κ 2 + 2 t 0 e -δκ 2 (t-τ ) κB 1,κ (τ, •) ζψ κ (τ, •), ζψ κ (τ, •) dτ . (4.20)
To estimate the last term on the right-hand-side of (4.20), we start from

t 0 e -δκ 2 (t-τ ) κB 1,κ (τ, •) ζψ κ (τ, •), ζψ κ (τ, •) dτ ≤κ t 0 e -δκ 2 (t-τ ) B 1,κ (τ, •) 2 2 dτ • t 0 e -δκ 2 (t-τ ) ζψ κ (τ, •) 4 4 dτ 1/2 .
With Remark 4.2 in mind, we use (4.3) to obtain

t 0 e -δκ 2 (t-τ ) B 1,κ (τ, •) 2 2 dτ ≤ C δκ 2 .
Implementing the above estimate, we obtain

t 0 e -δκ 2 (t-τ ) κB 1,κ (τ, •) ζψ κ (τ, •), ζψ κ (τ, •) dτ ≤ Cδ -1 2 t 0 e -δκ 2 (t-τ ) ζψ κ (τ, •) 4 4 dτ 1/2 .
To control of the right hand side we now write for t ≥ 1

t 0 e -δκ 2 (t-τ ) ζψ κ (τ, •) 4 4 dτ 1/2 ≤ t-1 0 e -δκ 2 (t-τ ) ζψ κ (τ, •) 4 4 dτ 1/2 + t t-1 e -δκ 2 (t-τ ) ζψ κ (τ, •) 4 4 dτ 1/2 ≤ C t t-1 e -δκ 2 (t-τ ) ζψ κ (τ, •) 2 2 dτ 1/2 + Cδ -1 2 κ -1 e -δ 2 κ 2 ≤ Cδ -1 2 κ -1 ζψ κ L ∞ (t-1,t,L 2 (Ω)) + Cδ -1 2 κ -1 e -δ 2 κ 2 .
Substituting the above into (4.20) yields, with a new constant C, for κ large enough, and for t ≥ 1 ,

ζψ κ (t, •) 2 2 ≤ Cδ -3 κ -2 + Cδ -1 κ -1 e -δ 2 κ 2 + Cδ -1 κ -1 ζψ κ L ∞ (t-1,t,L 2 (Ω)) .
¿From which we easily obtain (4.17).

Step 2: Prove (4.16).

By (4.3) we have 0 < a n ≤ C , which readily yields a n ≤ Cδ -3 2 κ -1 2 . We improve the above estimate by reimplementing (4.17). To this end we set C := Cδ -3 2 , and then let

a n = C κ α n .
Substituting into (4.17) yields

α 2 n ≤ 1 + α n-1 + α n . (4.21) 
Suppose that for some N ≥ 0, we have

α N ≤ 1 + √ 2 , then α N +1 ≤ 1 + √ 2 and hence α n ≤ 1 + √ 2 for all n ≥ N . If α n-1 > 1 + √ 2 for any n, we have, with αn = α n -1 2 , α2 n ≤ 7 4 + αn-1 < α2 n-1 .
Hence, αn < αn-1 which means that αn converges as a positive decreasing sequence, and necessarily to a limit smaller than 1/2 + √ 2. We thus conclude that lim sup

α n ≤ 1 + √ 2 , (4.22) 
and hence

lim sup a n ≤ C(1 + √ 2) δ 3/2 κ , (4.23) 
from which (4.16) can easily be deduced.

We next obtain the following improvement over (4.13) for ∇ κA κ ( ζψ κ ).

Proposition 4.4. Let p ≥ 2. For any δ > 0, there exists κ 0 (δ) and C(δ) such that for κ ≥ κ(δ) we have, with u = ζψ κ , the following estimate:

∇ κA κ u L p (t 0 ,t 0 +1;L p (Ω)) ≤ C(δ)κ 6(1-2/p) . (4.24)

Proof.

Step 1: Prove that for some C(δ) > 0 we have, for sufficiently large κ that u L 2 (t 0 -1,t 0 +1,H 2 (Ω)) ≤ Cκ 3 . (4.25)

We rewrite (4.1a, c, d) in the form

           ∂ψ κ ∂t -∆ψ κ = -2iκA κ • ∇ψ κ -|κA κ | 2 ψ κ + κ 2 ψ κ 1 -|ψ κ | 2 -iκφ κ ψ κ in (0, +∞) × Ω, ψ κ = 0 on (0, +∞) × ∂Ω c , ∂ψ κ ∂ν = iκA κ ψ κ • ν = 0 on (0, +∞) × ∂Ω i .
Clearly, by our choice of ζ,

     ∂u ∂t -∆u = ζ -2iκA κ • ∇ψ κ -|κA κ | 2 ψ κ + κ 2 ψ κ 1 -|ψ κ | 2 -iκφ κ ψ κ + 2∇ ζ • ∇ψ κ + ψ κ ∆ ζ in (0, +∞) × Ω , u = 0 on (0, +∞) × ∂Ω .
By [START_REF] Almog | Global Stability of the Normal State of Superconductors in the Presence of a Strong Electric Current[END_REF]Theorem C.1] (this time applied to the Dirichlet Laplacian in Ω) in the interval (t 0 -1, t 0 + 1)

u L 2 (t 0 ,t 0 +1,H 2 (Ω)) ≤ ζ -2iκA κ • ∇ψ κ -|κA κ | 2 ψ κ + κ 2 ψ κ 1 -|ψ κ | 2 -iκφ κ ψ κ L 2 (t 0 -1,t 0 +1,L 2 (Ω,R 2 )) + 2∇ ζ • ∇ψ κ + ψ κ ∆ ζ L 2 (t 0 -1,t 0 +1,L 2 (Ω,R 2 )) + C u(t 0 -1, •) 2 . (4.26) By (4.3) we have that 2∇ ζ • ∇ψ κ + ψ κ ∆ ζ L 2 (t 0 -1,t 0 +1,L 2 (Ω)) ≤ C(1 + ∇ψ κ L 2 (t 0 -1,t 0 +1,L 2 (Ω)) ) . (4.27) As ∇ψ κ L 2 (t 0 -1,t 0 +1,L 2 (Ω)) ≤ ∇ κA κ ψ κ L 2 (t 0 -1,t 0 +1,L 2 (Ω)) + κA κ ψ κ L 2 (t 0 -1,t 0 +1,L 2 (Ω)) ,
we obtain in view of (4.12) and (4.7) that

∇ψ κ L 2 (t 0 -1,t 0 +1,L 2 (Ω)) ≤ Cκ 2 .
(4.28)

Substituting the above into (4.27) yields

2∇ ζ • ∇ψ κ + ψ κ ∆ ζ L 2 (t 0 -1,t 0 +1,L 2 (Ω)) ≤ Cκ 2 . ( 4.29) 
We next observe that

ζ|κA κ | 2 ψ κ L 2 (t 0 -1,t 0 +1,L 2 (Ω)) ≤ κ 2 A κ 2 L 4 (t 0 -1,t 0 +1,L ∞ (Ω,R 2 )) ζψ κ L 2 (t 0 -1,t 0 +1,L 2 (Ω)) .
Since ζ is supported in the set ω δ,j , we may use (4.16), which together with Agmon's inequality [1, Lemma 13.2], (4.5), and (4.7), yield, for t 0 large enough,

ζ|κA κ | 2 ψ κ L 2 (t 0 -1,t 0 +1,L 2 (Ω)) ≤Cκ A κ L ∞ (t 0 -1,t 0 +1,L 2 (Ω,R 2 )) A κ L 2 (t 0 -1,t 0 +1,H 2 (Ω,R 2 )) ≤Cκ 3 . (4.30) Similarly, ζκA κ • ∇ψ κ L 2 (t 0 -1,t 0 +1,L 2 (Ω)) ≤κ A κ L 4 (t 0 ,t 0 +1,L ∞ (Ω,R 2 )) u L 4 (t 0 -1,t 0 +1,H 1 (Ω)) + ψ κ ∇ ζ L 4 (t 0 -1,t 0 +1,L 2 (Ω)) ≤Cκ 2 + Cκ 2 u 1/2 L 2 (t 0 -1,t 0 +1,H 2 (Ω)) u 1 2 L ∞ (t 0 -1,t 0 +1,L 2 (Ω)) ≤C κ 2 + κ 3/2 u 1 2 L 2 (t 0 -1,t 0 +1,H 2 (Ω)) .
(4.31) Substituting (4.31) together with (4.29), and (4.30) into (4.26) yields with the aid of (4.3)

u L 2 (t 0 ,t 0 +1,H 2 (Ω)) ≤ C κ 3 + κ 3/2 u 1 2 L 2 (t 0 -1,t 0 +1,H 2 (Ω)) (4.32)
Proceeding as in the proof of Proposition 4.3, we can assume C ≥ 1 in (4.32) and set

α n = C -1 κ -3 2 u 1 2 L 2 (n,n+1,H 2 (Ω)) .
We now can rewrite (4.32) in the form

α 2 n ≤ (1 + α n-1 + α n ) ,
which is precisely (4.21). We can thus conclude (4.22), and hence, for a new value of C, (4.25) easily follows.

Step 2: Prove that

∇ κA κ u L 2 (t 0 ,t 0 +1,H 1 (Ω,R 2 )) ≤ Cκ 3 . (4.33)
It can be easily verified that

∇ κA κ u(t, •) 1,2 ≤ u(t, •) 2,2 + κ |A κ |∇u(t, •) 2 + κ u∇A κ (t, •) 2 .
(4.34) Furthermore, in the same manner we have obtained (4.31) we obtain, with the aid of (4.25)

κ |A κ |∇u L 2 (t 0 ,t 0 +1,L 2 (Ω,R 2 )) ≤ Cκ 3/2 u 1/2 L 2 (t 0 ,t 0 +1,H 2 (Ω,R 2 )) ≤ Cκ 3 .
By (4.3) and (4.7) we have that

κ u∇A κ L 2 (t 0 ,t 0 +1,L 2 (Ω,R 2 )) ≤ Cκ 2 .
We can now conclude (4.33) from (4.34).

Step 3: Prove (4.24).

In [3, (5.35)] it was shown that

∇ κA κ ψ κ L ∞ (t 0 ,t 0 +1;L 2 (Ω)) ≤ Cκ 3 .
(4.35) (Note that while the setting in [START_REF] Almog | Global Stability of the Normal State of Superconductors in the Presence of a Strong Electric Current[END_REF] is different then -in particular, we assume there J ∼ O(κ) -the estimate is still valid in the present case because c = 1.) Hence, we get

∇ κA κ u L ∞ (t 0 ,t 0 +1;L 2 (Ω)) ≤ Cκ 3 . (4.36)
We now use Gagliardo-Nirenberg interpolation inequality (see [START_REF] Nirenberg | On elliptic partial differential equations[END_REF]) to obtain

∇ κA κ u p L p (t 0 ,t 0 +1;L p (Ω)) ≤ C t 0 +1 t 0 ∇ κA κ u(t, •) p-2 1,2 ∇ κA κ u(t, •) 2 2 dt ≤ C ∇ κA κ u p-2 L 2 (t 0 ,t 0 +1;H 1 (Ω)) ∇ κA κ u 2 L 4 4-p (t 0 ,t 0 +1;L 2 (Ω))
.

Consequently, ψκ and integrating over Ω we obtain for the real part that

∇ κA κ u p L p (t 0 ,t 0 +1;L p (Ω)) ≤C ∇ κA κ u p-2 L 2 (t 0 ,t 0 +1;H 1 (Ω)) ∇ κA κ u 4-p L 2 (t 0 ,t 0 +1;L 2 (Ω)) ∇ κA κ u p-2 L ∞ (t 0 ,t 0 +1;L 2 (Ω)) . ( 4 
∇ κA κ (t,•) u(t, •) 2 2 ≤ κ 2 u(t, •) 2 2 - 1 2 d u(t, •) 2 2 dt + ψ κ (t, •)∇ ζ 2 2 ,
Integrating over (t 0 , t 0 +1) and using (4.16) we then obtain, for sufficiently large t 0 ,

∇ κA κ u 2 L 2 (t 0 ,t 0 +1;L 2 (Ω)) ≤ C .
Substituting the above, (4.33), and (4.36), into (4.37) we then obtain (4.24).

We can now obtain the following improved regularity for B 1,κ Proposition 4.5. Let 2 < p ≤ 12/5. For 0 < δ < δ 0 , there exists a constant C = C(Ω, δ) > 0 such that for all t 0 > 1 and κ > κ 0 (δ) we have

B 1,κ L p (t 0 ,t 0 +1,W 1,p (ω δ,j )) ≤ C . ( 4 

.38)

Proof. Taking the curl of (4.6) yields that B 1,κ is a weak solution of

∂B 1,κ ∂t -∆B 1,κ = 1 κ curl Im ( ψκ ∇ κA κ ψ κ ) in (0, +∞) × Ω B 1,κ = 0 on (0, +∞) × ∂Ω . (4.39) Let B ζ = ζB 1,κ ,
where the cutoff function ζ is defined by (4.18). Let further Ω(δ) ⊂ Ω be smooth and satisfy supp ζ ⊂ Ω(δ) .

As for any

V ∈ H 1 (Ω, R 2 ) we have that curl V = div V ⊥ ,
it can be easily verified from (4.39) that In order to apply [8, Theorem 1.6] which is devoted to the case of parabolic operators written in divergence form and with zero initial condition we first decompose the solution of (4.40) into two Cauchy-Dirichlet problems. The first of them is:

∂B ζ ∂t -∆B ζ = 1 κ ζdiv Im ( ψκ ∇ κA κ ψ κ ) ⊥ -2div (B 1,κ ∇ ζ)) + B 1,κ ∆ ζ . Consequently,            ∂B ζ ∂t -∆B ζ = 1 κ ζ div Im ( ψκ ∇ κA κ ψ κ ) ⊥ -div (2B 1,κ ∇ ζ + ∇∆ -1 D (B 1,κ ∆ ζ)) in (t 0 -1, t 0 + 1) × Ω B ζ = 0 on (t 0 -1, t 0 + 1) × ∂ Ω B ζ (t 0 -1, •) = ζ B 1,κ (t 0 -1, •) in Ω . ( 4 
     ∂U 1 ∂t -∆U 1 = div f 1 in (t 0 -1, t 0 + 1) × Ω , U 1 = 0 on (t 0 -1, t 0 + 1) × ∂ Ω , U 1 (t 0 -1, •) = 0 in Ω , (4.41) 
in which

f 1 = 1 κ ζ Im ( ψκ ∇ κA κ ψ κ ) ⊥ -2B 1,κ ∇ ζ -∇∆ -1 D (B 1,κ ∆ ζ) . (4.42)
The second one is:

     ∂U 2 ∂t -∆U 2 = F 2 in (t 0 -1, t 0 + 1) × Ω , U 2 = 0 on (t 0 -1, t 0 + 1) × ∂ Ω , U 2 (t 0 -1, •) = ζ B 1,κ (t 0 -1, •) in Ω , (4.43) 
where

F 2 := - 1 κ Im ( ψκ ∇ ζ • (∇ κA κ ψ κ ) ⊥ ) . ( 4 

.44)

By uniqueness of the weak solution, we have

B ζ = U 1 + U 2 in (t 0 -1, t 0 + 1) × Ω . ( 4 

.45)

We now separately estimate U 1 and U 2 in L p (t 0 , t 0 + 1, W 1,p ( Ω)) .

Estimate of U 1

We apply [8, Theorem 1.6] to obtain

U 1 L p (t 0 ,t 0 +1,W 1,p (Ω)) ≤ C f 1 L p (t 0 ,t 0 +1,L p (Ω,R 2 ) . ( 4 

.46)

It can be easily verified, by the Gagliardo-Nirenberg interpolation inequality [START_REF] Nirenberg | On elliptic partial differential equations[END_REF] that, for all 2 < p < 4, there exists a constant C such that, for any φ ∈ L 2 (t 0 , t 0 + 1, H 1 (Ω)) ∩ L ∞ (t 0 , t 0 + 1, L 2 (Ω)), we have 

φ p L p (t 0 ,t 0 +1,L p (Ω,R 2 )) ≤ C t 0 +1 t 0 φ(τ, •) 2 2 φ(τ, •) p-2 1,2 dτ ≤ C φ 2 L 4 4-p (t 0 ,t 0 +1,L 2 (Ω,R 2 )) φ p-2 L 2 (t 0 ,t 0 +1,H 1 (Ω,R 2 )) . ( 4 
B ζ (t 0 , •) p + B 1,κ ∇ ζ L p (t 0 ,t 0 +1,L p (Ω)) + B 1,κ ∆ ζ W -1,p (t 0 ,t 0 +1,L p (Ω,R 2 )) ≤ C . ( 4 
.48) Furthermore, by (4.3) we have that

ζIm ( ψκ ∇ κA κ ψ κ ) L p (t 0 ,t 0 +1,L p (Ω,R 2 )) ≤ ψ κ ∇ ζ L p (t 0 ,t 0 +1,L p (Ω,R 2 )) + ∇ κA κ ( ζψ κ ) L p (t 0 ,t 0 +1,L p (Ω,R 2 )) ≤ ∇ κA κ ( ζψ κ ) L p (t 0 ,t 0 +1,L p (Ω,R 2 )) + C .
Substituting the above together with (4.48) into (4.46) yields for t 0 large enough

U 1 L p (t 0 ,t 0 +1,W 1,p (Ω)) ≤ C 1 + 1 κ ∇ κA κ ( ζψ κ ) L p (t 0 ,t 0 +1,L p (Ω,R 2 
)) . (4.49) Substituting (4.24) into (4.49) yields

U 1 L p (t 0 ,t 0 +1,W 1,p (Ω)) ≤ C(1 + κ 5-12/p ) ≤ C , (4.50) 
since 2 < p ≤ 12/5.

Estimate of U 2

Here we apply first L 2 estimates and then combine them with Sobolev's estimates. It is in this part that we need the information on F 2 and U 2 in [t 0 -1, t 0 + 1) × Ω in order to bound the various norms on (t 0 , t 0 + 1) × Ω. We begin by applying once again [3, Theorem C.1] (combining (C.1) and (C.2) there) to obtain

U 2 L 2 (t 0 ,t 0 +1,H 2 ) + U 2 L ∞ (t 0 ,t 0 +1,H 1 ) ≤ C F 2 L 2 ((t 0 -1,t 0 +1)× Ω) + U 2 (t 0 -1, •) L 2 ( Ω) ,
where F 2 and U 2 (t 0 -1, •) given in (4.44) and (4.43). Applying Gagliardo-Nirenberg's inequality yields, for 2 < p < 4,

U 2 L p (t 0 ,t 0 +1,W 1,p ) ≤ C F 2 L 2 ((t 0 -1,t 0 +1)× Ω) + U 2 (t 0 -1, •) L 2 ( Ω) , ( 4 
.51) By (4.13) we have that

F 2 L 2 ((t 0 -1,t 0 +1)× Ω) ≤ C .
Furthermore, using (4.7), with Remark 4.2 in mind yields

U 2 (t 0 -1, •) 2 ≤ C .
Consequently, by (4.51), there exist, for any 2 < p < 4 and any δ > 0 , constants C(δ) and κ(δ) such that for any κ ≥ κ 0 (δ) and any t 0 > 1 we have U 2 L p (t 0 ,t 0 +1,W 1,p ) ≤ C(δ) .

(4.52)

The combination of (4.50) and (4.52) together with (4.45) completes the proof of the proposition.

We can now establish the exponential decay of ψ κ .

Proposition 4.6. Let ω δ,j (j ∈ {1, 2}) be given by (3.37). Suppose that for some k ∈ {1, 2} (4.15) is satisfied. Then, there exist C > 0 and δ 0 > 0, and, for any 0 < δ < δ 0 , κ 0 (δ), such that for any κ ≥ κ 0 (δ) we have Proof. Without loss of generality we may, as before, assume h j > 0. Let χ and ζ be defined by (3.41) and (3.42).

Step 1: Prove that ζψ κ (t, •) where C is independent of κ .

To estimate the last term on the right-hand-side of (4.54) we first write t 0 e -2γκ 2 (t-τ ) κB 1,κ ζψ κ , ζψ κ (τ ) dτ ≤ κ t t-1 e -2γκ 2 (t-τ ) B 1,κ (τ, •) L ∞ (ω δ/2,j ) dτ • ζψ κ L ∞ (t-1,t;L 2 (Ω)) + κ t-1 0 e -2γκ 2 (t-τ ) B 1,κ (τ, •) 1 dτ ζψ κ L ∞ (0,t-1;L 2 (Ω)) .

For the last term on the right-hand-side we have in view of Remark 4.2, (3.41), (3.42), and (4.3) that κ t-1 0 e -2γκ 2 (t-τ ) B 1,κ (τ, •) 1 dτ ζψ κ L ∞ (0,t-1;L 2 (Ω)) ≤ Ce -2γκ 2 e Cκ .

Hence for sufficiently large κ we have t 0 e -2γκ 2 (t-τ ) κB 1,κ ζψ κ , ζψ κ (τ ) dτ ≤ κ t t-1 e -2γκ 2 (t-τ ) B 1,κ (τ, •) L ∞ (ω δ/2,j ) dτ • ζψ κ L ∞ (t-1,t;L 2 (Ω)) +Ce -γκ 2 . Substituting the above into (4.58) yields t 0 e -2γκ 2 (t-τ ) κB 1,κ ζψ κ , ζψ κ dτ ≤Cκ -(p-2)/p ζψ κ L ∞ (t-1,t;L 2 (Ω)) + Ce -1 4 δκ 2 , which, when substituted into (4.54), yields (4.57).

Step 3: Prove (4.53).

Let now b n = ζψ κ (τ, •) 2 L ∞ (t * +n-1,t * +n,L 2 (Ω)) . ¿From (4.57) we get that if p = 12/5 then for sufficiently large κ it holds that b n ≤ C κ -1/6 (b n-1

+ b n ) + 1 ,
where C is independent of κ. For another constant C, we get for sufficiently large κ, b n ≤ C(κ -1/6 b n-1 + 1) .

This immediately implies, for κ large enough so that Cκ - 

Large domains

The main goal of this section is to prove Proposition 1.4. To this end it is more convenient to consider (1.28) in a fixed domain. Assuming that 0 ∈ Ω we set = 1/R (hence we have 1) and apply the transformation,

ψ ( x) = ψ(x) , A(x) = -1 A ( x) , φ(x) = φ ( x) , (5.1) 
If we write y = x, we have:

curl 2 x A = curl 2 y A ; ∇ x φ = ∇ y φ ; ∇ A ψ = ∇ -2 A ψ ,
upon which we use again the weak maximum principle.

To prove (5.11) we first obtain for φ , in the same manner used to derive (3.7), the following problem: (5.13)

             -∆φ +
Then, we follow the same steps as in the proof of (3.8) to obtain the bound φ ∞ ≤ Cf ( ). Multiplying (5.13) by φ and integrating by parts yields, using the preceding L ∞ bound (5.10), that

∇φ 2 2 ≤ ∂Ω φ ∂φ ∂ν ds ≤ C[f ( )] 2 .
As a corollary of Lemma 5.2 we get: Proof. By (5.10) and the maximum principle we have that

B -1 ∞ ≤ w ∞ + 1 2 ≤ max(|b 1 |, b 2 )f ( ) - 1 2 ,
which readily yields (5.14).

We continue with the following auxiliary estimate:

Lemma 5.4. Let Ω and J satisfy (1.6)-(1.9), and w be a solution of (5.9). There exist positive constants C and 0 , such that, for all 0 < < 0 , ∇w ∞ ≤ C f ( ) .

(5.15)

  ∂Ω i and ∂Ω c are of class C 3 ; (b) Near each corner, ∂Ω i and ∂Ω c are flat and meet with an angle of π 2 .

Figure 1 :

 1 Figure 1: Typical superconducting sample. The arrows denote the direction of the current flow (J in for the inlet, and J out for the outlet).

  From the definition of Θ 0 it follows, however, that Θ DN π ≥ Θ 0 , and hence, Θ DN α ≥ Θ 0 for all α ∈ (0, π]. The proof of (2.1) now easily follows from the proof of Persson's Theorem [13, Appendix B] providing the upper bound Θ 0 for the essential spectrum of the magnetic Dirichlet-Neumann Laplacian in S α .

  .[START_REF] Saint-James | Onset of superconductivity in decreasing fields[END_REF] ¿From(3.26) and (3.5) we then obtain that1 c ∇φ 1,κ p + ∇B 1,κ p ≤ C κ 3(p-2)/p . (3.28) Upon (3.28) and (3.6) we use the Poincaré inequality together with Sobolev embeddings to conclude that

  .40) In the above ∆ -1 D denotes the inverse Dirichlet Laplacian in Ω.

lim sup t→∞ ω δ,j exp δ 1 / 2

 12 κd(x, Γ δ,j ) |ψ κ | 2 (t, x) dx ≤ C . (4.53)

- 1 e

 1 embeddings B 1,κ L p (t-1,t,L ∞ (ω δ/2,j )) ≤ C B 1,κ L p (t-1,t,W 1,p (ω δ/2,j )) ,we can use (4.38) to obtain, for sufficiently large t and κ, and for any 2 < p ≤ 12/5 ,t t-2γκ 2 (t-τ ) B 1,κ (τ, •) L ∞ (ω δ/2,j ) dτ ≤ B 1,κ (τ, •) L p (t-1,t;L ∞ (ω δ/2,j ))

Corollary 5. 3 .

 3 B ∞ ≤ max(|b 1 |, b 2 )f (

  .47) By (4.47), (4.7), Remark 4.2, and Sobolev embeddings we have:

  ∇ κA κ (t,•) ( ζψ κ (t, •)) 2 2 ≤ κ 2 ζψ κ (t, •) 2 2 + ψ κ (t, •)∇ ζ 2 2 .By Theorem 2.9 in[START_REF] Avron | Schrödinger operators with magnetic fields I[END_REF] we have∇ κA κ ( ζψ κ ) 2 2 ≥ κB κ (t, •) ζψ κ (t, •), ζψ κ (t, •) = κ 2 B n ζψ κ , ζψ κ + κB 1,κ ζψ κ , ζψ κ -κB 1,κ (t, •) ζψ κ (t, •), ζψ κ (t, •) . (4.55) By (4.16), for every 0 < δ ≤ δ 0 , we haveψ κ (t, •)∇η 2 2 + χ ψ κ (t, •) ∇η δ -κB 1,κ (t, •) ζψ κ (t, •), ζψ κ (t, •) ,(4.56) where γ = δ/4. We now get (4.54) from (4.56). Prove that, for all n ≥ 2,ζψ κ (τ, •) 2 L ∞ (t * +n-1,t * +n,L 2 (Ω))≤Cκ -(p-2)/p ζψ κ (τ, •)2 L ∞ (t * +n-2,t * +n,L 2 (Ω)) +

	We can thus write		
		1 2	d dt	ζψ κ (t, •) 2 2 + κ 2 δ 2	-	δ 4	ζψ κ (t, •) 2 2
		≤ ψ κ (t, •)∇η 2 2 + χ ψ κ (t, •)∇η δ	2 2 2 2 ≤	C κ 2 ,
	which when substituted into (4.55) yields
	1 2	d dt κ 2 Step 2: C ζψ κ (t, •) 2 2 +κ 2 γ ζψ κ (t, •) 2 C 2 ≤ κ 4 ,	(4.57)
				2 2 ≤ ζψ 0	2 2 e -2γκ 2 t +	C(δ) κ 4 +
							(4.54)
		Multiplying (4.1a) by ζ2 ψ and integrating by parts yields
	1 2	d dt	ζψ κ (t, •) 2 2 + ≥ κ 2 1 +	δ 2	ζψ κ

t 0 e -2γκ 2 (t-τ ) κB 1,κ ζψ κ , ζψ κ (τ ) dτ .

  κd(x, ∂ω δ,j ) |ψ κ (t, x)| 2 dx ≤ C 0 ,which readily yields (4.53).

				1 6 ≤ 1 2 , the
	upper bound		
		lim sup	b n ≤ C 0 ,
			n→∞
	where C 0 is independent of κ. Consequently,
	lim sup	exp δ	1 2
	t→∞	ω δ,j	

+ κB 1,κ ζψ κ , ζψ κ .
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leading to the following system for (ψ , A , φ )

curl 2 A + ∇φ = Im ψ ∇ -2 A ψ in Ω , (5.2b) ψ = 0 on ∂Ω c , (5.2c)

)

(5.2g)

In the above

It follows from (1.12) that

where b j is independent of for j = 1, 2 .

We assume that A is in the Coulomb gauge space (1.11), and suppose that a weak solution (ψ , A , φ ) ∈ H 1 (Ω, C) × H 1 (Ω, R 2 ) × L 2 (Ω) exists. Proposition 1.4 can now be reformulated in the following way: Proposition 5.1. Assume that (1.5)-(1.17) hold and let (ψ , A , φ ) denote a solution of (5.2). Let h be given by (1.15) and suppose that for some positive 0 and b we have bf ( ) < h , ∀ 0 < < 0 .

Then, there exists a compact set K ⊂ Ω with non empty interior, C > 0, and α > 0, such that for any 0 < < 0 we have

(5.3)

We split the proof of Proposition 5.1 into several steps, to each of them we dedicate a separate lemma. We begin by observing, as in Section 3, that ψ ∞ ≤ 1 .

(5.4)

Set further B 1, = curl A 1, ; B = curl A .

(5.6) By (5.2b) and (1.18a), we then have

(5.7b) (

where

). Note that since ∂B 1, /∂τ = ∂φ 1, /∂ν = 0 on ∂Ω we have by (5.7c) B 1, ∂Ω ≡ 0 .

(5.8)

We begin with the following auxiliary estimate.

Lemma 5.2. Let w denote the solution of

(5.9)

Under the assumptions on J and Ω in (1.6)-(1.9) we have

(5.10)

Furthermore, we have

Proof. As can be easily verified from (5.2a) we have (see in [START_REF] Almog | Non-linear surface superconductivity for type II superconductors in the large domain limit[END_REF] (formula (2.4) in the case when φ = 0),

(5.12)

Furthermore, taking the curl of (5.2b) yields ∆B -

Let

Combining the above and (5.12) yields that (cf. also [START_REF] Almog | Non-linear surface superconductivity for type II superconductors in the large domain limit[END_REF])

By the weak maximum principle (cf. for instance [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]Theorem 8.1]) and (5.4) we obtain that for sufficiently small

The lower bound in (5.10) follows easily by setting

Proof. For convenience of notation we drop the subscript in the proof and bring only its main steps, as it rather standard. We first apply the inverse transformation of (5.1) to (5.9) to obtain

where B = curl A.

We distinguish in the following between interior estimates and boundary estimates. Let x 0 ∈ ∂Ω R and D r = D r (x 0 ) = B(x 0 , r) ∩ Ω R . By the standard elliptic estimates we then have, in view of (5.4),

(5.16)

In the above, the constant C depends on Ω, R, and r but is independent of . To obtain the above we first observe that B = f ( )B n on the boundary, and then use the fact that the trace of B n lies in H 3 2 (∂Ω) and is therefore bounded from above by a proper H 2 norm.

Similarly,

(5.17) Using Kato's inequality and (1.28a) yields

then we obtain by (5.10) that w H 3 (D r ) ≤ Cf ( ) .

(5.18)

An interior estimate is even easier. Consider x 0 ∈ Ω R such that D(x 0 , 2r) ⊂ Ω R . There is no need in this case to include a boundary term in (5.16) and (5.17). We then obtain (5.18) in this case in a similar manner.

The proof of (5.15) now follows from Sobolev embeddings and (5.1).

We next define the following subdomain of Ω:

where, as in the introduction, {∂Ω i,j } 2 j=1 denotes the set of connected components of ∂Ω i . We now obtain a lower bound of

(5.19)

Under the conditions of Lemma 5.4, there exists, for any 0 < δ < δ 0 , a positive constant C δ such that for sufficiently small we have 

Combining the above with (5.22) yields

which readily yields (5.21).

Next we show

Lemma 5.6. Under the conditions of Lemma 5.4, there exist C > 0, 0 > 0 and δ 0 > 0 such that, for 0 < ≤ 0 and 0 < δ ≤ δ 0 ,

With the aid of (5.15) and (5.10), it can be easily verified, for some C = C(p, J, Ω) > 0 which is independent of both δ and , that for all 0 < δ < δ 0 we can construct η with the additional property |∇η| ≤ C δ .

Let further ζ = χη ,

where

We leave the determination of α δ to a later stage. Multiplying (3.1a) by ζ 2 ψ and integrating by parts yields

By (2.5) we have that for sufficiently small

where Θ 0 is defined in (2.2). Consequently,

(5.24) ¿From (5.24) we learn that

where we have used the fact that |∇d(x, D δ ( ))| ≤ 1 a.e.

Choosing

we obtain that for sufficiently small

The proof of (5.23) now follows from (5.4).

We now obtain an improved lower bound.

Proposition 5.7. Let δ 0 be given by (5.20). Under the conditions of Lemma 5.4, for any 0 < δ < δ 0 , there exist positive constants C δ and δ such that for 0 < ≤ δ we have

Proof. We begin by noticing that by (5.2b), (5.11), and (5.23) we have ∇B L 2 (Ω\D δ ( )) ≤ ∇φ L 2 (Ω\D δ ( )) + Ce -1/ ≤ Cf ( ) .

Then, we write (δ 0 -δ)f ( ) ≤ ∇B L 1 (Ω\D δ ( )) ≤ Cd By (5.25), it follows that there exists a closed ball K of radius C δ 2 in the complementary of ∪ 0< < 0 D δ ( ).

Proposition 5.1 now follows from (5.23).