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Abstract

Cine-MRI is widely used for the analysis of cardiac function in clinical routine, 
because of its high soft tissue contrast and relatively short acquisition time in 
comparison with other cardiac MRI techniques. The gray level distribution 
in cardiac cine-MRI is relatively homogenous within the myocardium, and 
can therefore make motion quantification difficult. To ensure that the motion 
estimation problem is well posed, more image features have to be considered. 
This work is inspired by a method previously developed for color image 
processing. The monogenic signal provides a framework to estimate the local 
phase, orientation, and amplitude, of an image, three features which locally 
characterize the 2D intensity profile. The independent monogenic features 
are combined into a 3D matrix for motion estimation. To improve motion 
estimation accuracy, we chose the zero-mean normalized cross-correlation as 
a matching measure, and implemented a bilateral filter for denoising and edge-
preservation. The monogenic features distance is used in lieu of the color space 
distance in the bilateral filter. Results obtained from four realistic simulated 
sequences outperformed two other state of the art methods even in the presence 
of noise. The motion estimation errors (end point error) using our proposed 
method were reduced by about 20% in comparison with those obtained by the 
other tested methods. The new methodology was evaluated on four clinical 
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sequences from patients presenting with cardiac motion dysfunctions and one 
healthy volunteer. The derived strain fields were analyzed favorably in their 
ability to identify myocardial regions with impaired motion.

Keywords: cardiac motion estimation, cine-magnetic resonance imaging 
(cine-MRI), correlation transform, bilateral filtering, monogenic features, 
optical flow
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1. Introduction

The mechanical status of the pathological heart can be assessed by cardiac motion and strains 
measurements, which may be evaluated using cardiac imaging (D’Hooge et al 2000, Wang
and Amini 2012, Wang et al 2015). Cardiac magnetic resonance imaging (MRI) has become 
a standard diagnostic technique for the noninvasive assessment of cardiac function in the 
diagnosis of cardiovascular disease, as it allows for the measurement of both anatomical and 
functional myocardial parameters (White et al 1996, Axel et al 2005). Cardiac function mea-
surement is important for the evaluation of treatments in patients with heart failure; however, 
some of the measurements currently used, such as ejection fraction and segmental myocardial 
thickening, remain global and imprecise. Accurate local quantification of the motion would 
certainly allow a much more accurate characterization of the myocardial function (Werys et al 
2013).

Although tagged-MRI (T-MRI; Zerhouni et al 1988, Axel and Dougherty 1989) is con-
sidered the reference method for myocardial motion quantification, it is not part of the con-
ventional imaging protocol for LV function assessment. On the contrary, cine-MRI has been 
acquired routinely for years. Therefore, accurate regional strain assessment from cine-MRI 
would be extremely useful.

A few methods have been proposed to date for the quantification of myocardial motion 
based on cine-MRI (in a significantly lower number than for T-MRI). The main difficulty as 
compared to T-MRI is the lack of an intensity distribution structure within the myocardium 
(rather an homogeneous intensity distribution), which limits natural landmarks that would 
ease the temporal correspondence search. Basically, optical flow- (Amartu and Vesselle 1993, 
Xavier et  al 2012) or registration-based methods (Lamacie et  al 2016) and recent feature 
tracking (FT) methods (Hor et al 2010) have been proposed.

The FT method was initially introduced in cardiac ultrasound imaging and further applied 
to cardiac MRI (Hor et al 2010). It tracks selected endocardial contour points along 1D pro-
files by constructing an echographic T-mode-like image. Reasonable agreement with T-MRI 
for global circumferential strain values has been observed (Cowan et al 2015), but the limits 
of agreement were much wider for other strains (Augustine et al 2013). It should be noted 
that motion measurements are sparser with this type of approach than with optical flow- or 
registration-based methods. The pertinence of FT-derived strains continues to be debated in 
the literature (Augustine et al 2013, Wu et al 2014, Kuetting et al 2015).

Until now, there has been no consensus on a method for the quantification of the regional 
cardiac function from cine-MRI acquisitions. The present work introduces a new optical flow- 
and monogenic signal-based method for this purpose, which was originally proposed in a 
different context and has been shown to provide accurate quantification of myocardial dis-
placement and strains in our experiments on both simulated and clinical data as compared to 
other methods.



Optical flow estimation has gained a lot of attention because of its importance in video 
processing. It has also been experimented for cardiac motion analysis (Amartur and Vesselle 
1993, Gorce et  al 1997). The monogenic signal was introduced by Felsberg and Sommer 
(2001) and Felsberg (2007), to extend the analytic signal concept to multiple dimensions. In 
image processing situations where the traditional pixel intensity cannot be considered a reli-
able feature, the monogenic signal is a possible solution for a number of problematic issues. 
The monogenic phase has also been proposed for use in motion estimation tasks (Felsberg 
and Sommer 2001, Felsberg 2007). Due to the lack of image-texture and landmarks within 
the myocardium in cine-MR images, the phase information alone is insufficient for cardiac 
motion estimation. To introduce more features, we have constructed a 3D matrix combining 
local amplitude, local phase, and local orientation, which is used as the input image to an opti-
cal flow based approach.

Zero-mean normalized cross-correlation (ZNCC; Di Stefano et  al 2005, Drulea and 
Nedevschi 2013) of two signals, is the sum of the squared difference (SSD) of the distance 
between the correlation transforms of the signals (Drulea and Nedevschi 2013). In motion 
estimation, the ZNCC model is employed between the correlation transform of consecutive 
images. After this transformation, a traditional optical flow framework can be adopted.

Through a nonlinear combination of neighboring image values, bilateral filtering (Tomasi 
and Manduchi 1998, Lin et al 2010) can smooth images while preserving edges. The method 
is non-iterative, local and simple. It is based on both geometric closeness, and image similar-
ity features, and gives preference to close rather than distant values, in both the transform 
and spatial domains. In contrast with filters that operate separately on different features of an 
image, a bilateral filter can enforce the perceptual metric underlying the monogenic features 
space. Averaged or weighted summing of the combined data can provide more features for 
motion estimation, and therefore lead to more reliable results.

The methodological contribution of this paper is to construct a synthesis matrix of mono-
genic features as a pseudo-color image to be input into an optical flow operator. The ability 
of the proposed method to accurately quantify myocardial motion in 2D cine-MRI sequences 
is evaluated and compared with similar methods, using both simulated and clinical image 
sequences.

This paper is organized as follows. Section 2 details the computation of monogenic fea-
tures: ZNCC, the bilateral filter, and the projected proximal point algorithm (PPPA). These 
are outlined as the methodologies involved in the optical flow approach based on correlation 
transform. Section 3 introduces the generation of simulated data, region masks, and evalua-
tion of the methods with simulated sequences. Experiments on clinical data are described in 
section 4, and then discussed in section 5.

2. Methodology

Motion estimation methods generally estimate a displacement field between two consecutive 
images of a temporal sequence. Due to the textureless appearance of the myocardium in cine-
MRI, more features should be introduced into the optical flow framework. Monogenic phases 
were previously proposed for driving an optical flow method (Felsberg 2007). However, over 
nearly homogenous regions of the image, phases may be insufficient to estimate the local 
motion. The work in this study is inspired by the work of Drulea and Nedevschi (2013) on 
color image processing, where the RGB components of the color image are considered as 
three complementary images. In this study, the three monogenic features provided by the 
2D analytic signal of a cine MR image, namely the local amplitude, phase, and orientation, 



are combined into a pseudo-color image, and input into the optical flow equations. ZNCC is 
employed as a matching measure for the data fidelity term. Bilateral filtering of weighted coef-
ficients within a local window is applied for data regularization. The filtering operation with 
spatial averaging is nonlinear, and avoids smoothing across edges. A coarse-to-fine warping 
strategy, which allows for the detection of substantial motion, is implemented in the filtering 
operation. A minimization scheme based on the PPPA is employed to optimize the final result 
(Chambolle and Pock 2011, He and Yuan 2012).

2.1. Pseudo color matrix of the monogenic signal features

The monogenic model can be considered as a 2D generalization of an analytic signal. The 
information included in the monogenic signal is orthogonally decomposed into local ampl-
itude, local orientation, and local phase (Felsberg 2007); therefore, each presentation is also 
preserved with respect to energetic, geometric, and structural information (Felsberg and 
Sommer 2001). The three parts are regarded as the three components of a ‘pseudo color’
image.

In the definition of a monogenic signal, the amplitude, phase, and orientation are computed 
from the responses to three 2D spherical quadrature filters (SQFs; Felsberg and Sommer 2001, 
Alessandrini et al 2013). The SQFs consist of one even rotation invariant bandpass filter h xe( ),
and two odd bandpass filters h xo1( ), and h xo2( ), where x yx ,= ( ) designates the Cartesian coor-
dinates. These two filters represent quadrature phase shifting operations in the two orthogonal 
directions. The Riesz transform acts as a 2D equivalent of the Hilbert transform. The odd 
filters are calculated from the Riesz transform of the even filter (Felsberg and Sommer 2001, 
Felsberg 2007). In the frequency domain,
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employed in previous studies (Felsberg and Sommer 2001). A highpass filter determines the 
details of the image; a Butterworth filter is used here, in the modulation of the frequency 
domain (Yang et al 2015), and is expressed as

H
1

1
,

ne
c

2
( )

( / )ω
ω

ω
=
+

(2)

where cω  and n are the cutoff frequency and order respectively. From the three filter responses, 
the monogenic phase ϕ(x), orientation θ(x), and amplitude A(x), of an image I (Felsberg 2007), 
can be obtained as
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Ax x x xIm , , ,ϕ θ=( ) [ ( ) ( ) ( )] (4)

where ( )=p Ix x∗∗h( )e ( ) , 1( ) =q Ix x∗∗h( )o1 ( ) , 2( ) =q Ix x∗∗h( )o2 ( ) , q x( ) = [ ( ,q q1 2x x) ( )]T, and
the symbol ‘∗∗’ denotes a 2D convolution. Although ϕ(x), θ(x) and A(x) have different values,
we normalize each of them between 0 and 255 from minimum to maximum. The three nor-
malized results are considered, respectively, as red, blue, and green channels combined into a 
composite pseudo color image Im(x), as shown in figure 1 and equation (4).



Figure 1. 2D monogenic signal and composite pseudo color image: (a) original 
cine-MRI image, (b)–(d) images of local amplitude, phase, and orientation, and (e)
composite pseudo color image.



2.2. ZNCC based optical flow

Horn and Schunck proposed an approach to estimate optical flow within a variational scheme, 
using the minimization of a function that included a data fidelity term Ed, and a smoothness 
term Er (Horn and Schunck 1981). The data fidelity term measures the degree of similar-
ity between two pixels (or patches) in terms of intensity, color, or some other measure. The 
smoothness term actually is the regularity of the solution. The solution results from an optim-
ization, which is often expressed as the minimization of an energy combining the two terms: 
E V E V E Vd r( ) ( ) ( )ε= + ⋅ , where ε controls the regularization (Horn and Schunck 1981). The
two unknowns are the velocity components u v V,[ ]=  in the horizontal and vertical directions.

The matching criterion used for the data term in dense optical flow estimation, is com-
monly defined as the pixel intensities and/or the intensity gradients conserved during motion. 
Other criteria may be desirable to increase the accuracy and robustness.

The correlation criterion quantifies the similarity between the reference and target patches. 
One basic method for signal matching is to calculate the sum of the SSD between two signals 
in a window (Okutomi and Kanade 1992). In SSD intensity matching, robustness against 
noise is increased. The SSD is expressed as
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where R and T are two patches having the same dimension. The index j addresses the N pixel 
locations within the patch.

The ZNCC can improve the patch pairing accuracy, as it is known to be robust to noise 
and illumination changes. It can also provide better fidelity in textureless regions. The ZNCC 
operator is defined as the correlation transform
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where N  represents the cardinal number of the squared patches R and T. The values Xμ  and 
Xσ  are the mean and standard deviation of X R T,{ }∈ . The symbol ,  represents the standard

dot product. If R and T are identical, this measure takes the value of 1. The best match for the
patches R and T maximizes the function R TZNCC ,( ).

The ZNCC of two signals is in fact the SSD distance between their correlation transforms 
(Drulea and Nedevschi 2013). We therefore consider the difference of the correlation trans-
form descriptor C as the ZNCC measurement used in the optical flow method.

As in the methods of Drulea and Nedevschi (2013), the image I is first converted to C by 
the following correlation transform:
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where μ i( )  and σ i( )  are the mean value and standard deviation of the block Ni, where Ni con-
tains the indices around pixel i.

Let ,I I1 2  be two consecutive images of a sequence. Given the image I1 and the warped 
second image I2, their descriptors C1, C2 (pixel-wise; equation (7)) are matched through equa-
tion (7). The displacement dV , should satisfy the equation C di Vi( )2 1+ = C i( ) , which trans-
lates the invariance in C, instead of the intensity used in the classical optical flow method.

On the basis of this assumption, we can define the total matching error (or data error) by 
accumulating the distances between descriptors:
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where Ω is the whole m n×  image. Each pixel has a 2D index i∈Ω, and its neighborhood 
is denoted as Ni. The two adjacent images can directly take measured data as arguments. 
However, the values at these locations are computed using interpolation for precise displace-
ment estimation. The displacement Vd i, denotes the flow at location i in the image.

The residual at location i and component index k are evaluated. The total matching energy 
error (Drulea and Nedevschi 2013) is defined as the following convex function
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where C i k,( ) is the descriptor C i( ) in the different components of the pseudo color image,
and k  =  1–3 is the index of the components of the pseudo color image corresponding to the
monogenic components. The term C i k C i k C i k, , ,t 2 1( ) ( ) ( )= −  represents the temporal gra-
dient approximation and C i k C i k C i k, , , 21 2∇ = ∇ +∇( ) ( ( ) ( ))/  is used as a blend derivative
(Wedel et al 2009). There are therefore two main steps to establish the feature similarity of 
two images: (1) construction of the descriptors of image characteristics C (equation (7)), and 
(2) estimation of the distance expressing motion through the minimization of equation (9).

2.3. Data regularization with bilateral filtering

Bilateral filtering is a robust edge-preserving operation proposed by Tomasi and Manduchi 
(1998). The operator is nonlinear, and can smooth a signal while preserving strong edges. It 
has been used for many issues in computer vision and graphics. In this study, bilateral filtering 
is adopted to reduce over-smoothing across region edges. Two types of bilateral filters (Tomasi 
and Manduchi 1998, Zhang and Gunturk 2008, Lin et al 2010, Drulea and Nedevschi 2013) 
have been introduced: a spatial filter, and a transform domain filter. These are determined by 
the computed distance between the center pixel and its neighbors. The two filter kernels are 
traditionally based on a Gaussian distribution weighting. In addition, the weight depends on the 
difference of the monogenic features between a pixel and the center of the corresponding block.

While spatial filtering merely spatially smooths the monogenic feature map of an image, 
filtering in both spatial and frequency domains can enrich the features of an image. This is 
especially the case if the bilateral filter is just a synthesis method. The filtering can be applied 
to 2D data for the determination of distance. Here, the bilateral filter is applied to monogenic 
features, and the coefficient of bilateral filtering is expressed as:
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where Δm ,( )i s  represents the distance between the monogenic features of the pixels i and
s computed in the monogenic features space. The function Δd i s( ) =, ,i s 2 is simply the
Euclidean distance between two pixels. The parameters σd and σm control the respective 
weight of the two distance measurements. The pixel s belongs to the neighborhood Ni of the 
pixel at location i.

In this work, bilateral filtering is used for the regularization of displacement fields. The 
motion estimation is based on the assumption of the spatial coherence of the monogenic fea-
tures of the underlying image. The pixels representing rigid objects should have almost the 
same velocity. The deviation from this constancy assumption is evaluated by the following 
error metrics:
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where BFi,s measures how likely the pixels i and s belong to the same moving object. BFi,s 
tends towards zero when the monogenic features in i and s are close to each other. Therefore, 
the regularity metric Eregular combines the velocity differences at locations sharing the same 
monogenic signature.

For the whole image, the total smoothness error is calculated as:
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Like most variational approaches, the presented model relies on the first-order Taylor series 
expansion of the data matching term (equation (9)), but based on the image descriptor C. It 
is also integrated into a coarse-to-fine strategy in order to deal with large displacements (see 
 figure  2). Bilinear interpolation is used as a downsampling operator to build the pyramids 
from the finest (original image) to the coarsest level. The bilateral coefficients and the cor-
relation transform for optical flow are computed for the two pyramids. Bicubic interpolation 
is used as the upsampling operator to project the flow from the current level to the finer one 
(coarse-to-fine). We also tried bicubic downsampling to build the pyramid, but we found it 
affected the bilateral coefficients (Drulea and Nedevschi 2013). In our experiments, 0.3 is 
employed as the pyramid factor.

2.4. Algorithm optimization and synthesized optical flow scheme

The considered optical flow model includes a fast and parallelizable minimization proce-
dure, based on the PPPA (Drulea and Nedevschi 2013). The strength of this model will be 
confirmed experimentally. PPPA is notably used for solving variational inequalities (Drulea 
and Nedevschi 2013), and the method can be seen as a regularization technique for the 
ill-posed motion estimation problem. In this study, an improved version of PPPA (Xia and 
Huang 2011) for solving a class of generalized variational inequalities, has been considered 
for optimization of the evaluated displacement. The discretized optical flow can be adapted 
to a convex–concave problem. The proximal point strategy (Chambolle and Pock 2011)
implies the min-maximization theory of convex–concave functions. It results in a system of
linear equations, which are simple to solve (Drulea and Nedevschi 2013). The workflow for 
the proposed motion estimation method, based on the operators detailed above, is illustrated 
in figure 2.

Figure 2. Flowchart of the proposed motion estimation method.



2.5. Lagrangian displacement and strain estimation

Identification, localization, and grading of abnormal cardiac regions are of high clinical value. 
Myocardial strain patterns from MRI can be used to identify and locate regional abnormalities 
in cardiac function in human subjects (Qian et al 2011, Sadeghpour 2013). A methodology 
to obtain the Green–Lagrange strain tensor, with end-diastole taken as the reference state, is
briefly outlined below.

The Lagrangian motion field (Oubel et al 2012, Wang et al 2015) represents the spatio-
temporal displacement of sampled material points in a reference frame (end-diastole time 
point). This spatio-temporal Lagrangian displacement field d x y d x y, , ,Lx Ly[ ( ) ( )] can be recov-
ered through the accumulation of the Eulerian motion field d x y d x y, , ,Ex Ey[ ( ) ( )] between
every two successive frames. Given a motion field between time t and t  +  1, the Lagrangian 
motion field d x y t d x y t, , 1 , , , 1Lx Ly[ ( ) ( )]+ +  is computed from the Lagrangian motion field
d x y t d x y t, , , , ,Lx Ly[ ( ) ( )] at time t, and the Eulerian motion field d x y t d x y t, , 1 , , , 1Ex Ey[ ( ) ( )]+ +  
at time t  +  1 as follows:

d x y t d x y t d x y t, , 1 , , , , 1 ,Lx Lx Ex( ) ( ) ( )+ = + + (13)

d x y t d x y t d x y t, , 1 , , , , 1 ,Ly Ly Ey( ) ( ) ( )+ = + + (14)

Myocardial strains can be computed from smooth spatial derivatives of the Lagrangian accu-

mulated motion field = ( ) ( )⎡⎣ ⎤⎦d x y t d x y tD , , , , ,Lx Ly  with respect to time. The Green–Lagrange
strain tensor is defined as:

E D D D D
1

2
,T T( )= ∇ +∇ +∇ ∇ (15)

where ∇ is the spatial derivative operator. The vector DT stands for the transpose of D. 
Furthermore, the radial deformation Err and circumferential deformation Ecc can be obtained 
by:

= =E r Er E c Ec, ,T T
rr cc (16)

where r and c are the local radial and circumferential directions respectively.
In practice, smooth Gaussian based derivation is used with sigma  =  3.3, to ensure the ten-

sor map is smooth. However, the quality of myocardial strains requires an accurate estimation 
of displacement from the cine-MR images.

3. Simulated data and evaluation methods

This section describes the procedure to evaluate the estimated displacement fields from 2D 
simulated cardiac MRI sequences in the short axis view, including data simulation, mask 
design, and evaluation metrics.

3.1. Simulated data

The results were tested on several realistic simulated cine cardiac MR image sequences 
covering a cardiac cycle, in which the benchmark motion was known. Simulated cine-MRI 
sequences were generated from the realistic warping of a cine MR image using the ASSESS 
software tool (Clarysse et al 2011).

With this simulator, a combination of thickenings and rotations simulate the myocardial 
contraction over time within a short-axis MRI slice. It is also possible to introduce a local 



motion anomaly by reducing the myocardium contraction magnitude within a myocardial 
sector (Clarysse et al 2000). Therefore, the exact displacement at each pixel and time step is 
known, and is used as a reference to evaluate the proposed method. Several simulations were 
obtained by acting on the simulator parameters.

In the following, the name of each sequence reflects the values of the parameters used for
its generation, namely contraction/expansion (D), rotation (R), frame-rate (F), and healthy 
(P0), or pathological (P3) state. Several sequences were simulated with increasing motion 
complexity, ranging from simple thickening to more realistic deformations with and without 
a local anomaly.

The first simulated cine-MRI had the following parameters: contraction/expansion: 30%, 
rotation: 20°, frame number: 34, number of systolic time points: 14, number of diastolic
time points: 20, image dimensions: 160  ×  160. The sequence was named as D30R20P0F34 
where P0 indicates the absence of a contractile anomaly. A sequence with the highest degree 
of myocardial motion abnormality was also generated (named D30R20P3F34). Two other 
sequences with 20 frames (end-systole at frame 7) were generated and named D30R20P0F20 
and D30R20P3F20, respectively. The displacement field between every pair of neighboring 
frames in the sequences was computed using our method and two alternative methods (see 
result section 4).

The noise in magnitude reconstructed MRI images follows a Rician distribution, as dem-
onstrated in Gudbjartsson and Patz (1995) and Cárdenas-Blanco et al (2008). In Ding et al
(2009), Rician noise in the image simulation was introduced by:

A M N N ,r
2

i
2( )= + + (17)

where A is the magnitude of image signal corrupted by noise, M is the true image signal, Nr and 
Ni are real and imaginary zero-mean Gaussian white noise with identical standard deviation.

When a sequence of frames is available, an idealized description of the image signal inten-
sity In in the presence of noise in a sequence of K frames is given by

I k I N kr r r, , ,n( ) ( ) ( )= + (18)

where I r( ) is the original image intensity and N kr,( ) is the additive noise governed by
repeated Rician distributions k K1= …  at position x yr ,= ( ). For simplicity, we will assume
that N kr,( ) is normally distributed in space and time with standard deviation (SD) σ.

A common SNR measurement in the multi-frame case is the SNRmult defined as Dietrich 
et al (2007),
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which has no particular requirement on the statistical and spatial distribution of the noise. The 
functions mean() and std() return the mean and STD values over all pixels within an ROI and 
K repetitions. Here, the ROI is restricted to the LV masks defined in the section 3.2.

The sensitivity of the proposed method to noise was tested and compared with the sensitiv-
ity obtained with the Sun (Sun et al 2014) and LK methods (Lucas and Kanade 1981). The 
images in a simulated sequence D30R20P3F20 were normalized from 0 to 255 and corrupted 
with 3 Rician noise characteristics (σ equals 10, 15 and 20, respectively); those values are 
commonly used σ values for Rican noise distribution in MRI (Riji et al 2014). We named 
the three sequences as D30R20P3F20_N10, D30R20P3F20_N15, and D30R20P3F20_N20 
respectively. These lead to SNRmult values of 4.3, 3.1 and 2.6 respectively (see figure 3).



3.2. Myocardial region mask

The proposed method provides an estimated displacement field over the whole image domain 
and cardiac cycle. As our objective is to accurately estimate motion in the myocardium, an 
image mask was defined where pixels belonging the LV wall were set to 1 and the others to 
0. In fact, the mask is predefined as part of the image sequence simulation described in sec-
tion 3.1; it is an annulus centered in the middle of the cavity in the first frame, and has internal
and external radii of 22 and 35 pixels, respectively. It circumscribes the LV myocardium over
its course during the whole cardiac cycle (see figure 4).

3.3. Evaluation method

The accuracy of the estimations performed by our method was evaluated against the reference 
methods using average end-point error (AEE) and average angular error (AAE) statistics. The 
state-of-the-art Sun algorithm (Sun et al 2014), and the Lucas–Kanade algorithm (Lucas and
Kanade 1981), were used as the reference methods.

Figure 3. (a) Original cine-MRI image, (b)–(d) corrupted cine-MRI image with Rician
noise, standard deviation (STD) equals to 10, 15 and 20, respectively.



The angular error between two motion vectors, V u vp ,0 0 0( ) ( )=  and V u vp ,1 1 1( ) ( )= , at pixel
p, is simply defined as the angle between V0 and V1 in 2D space

=( ) ( )p v vAE arccos , ,0 1 (20)

AAE is the average value of pAE( ) over the whole LV myocardium for the considered time
step. This metric alone, does not take into account large magnitude velocity differences. 
Therefore, the endpoint error (EE) is introduced as the distance between velocity endpoints 
(Baker et al 2011)

= − + −( ) ( ) ( )p u u v vEE .0 1
2

0 1
2 (21)

Average endpoint error (AEE) is the average EE value for all pixels in the LV ROI at a given 
time step.

In our experiments, both AAE and AEE metrics and their STDs (standard deviations) were 
used to evaluate the accuracy and stability of the results.

4. Experiments and results

4.1. Results and discussion

Most optical flow methods for cardiac motion analysis are based on tagged-MRI. As myocar-
dium appears homogeneous in cine-MRI, the number of methods discussing dense myocar-
dial motion estimation is low (Wang and Amini 2012). Although incompressible deformable, 
and registration based methods, could be considered as a reference, they generally require 3D 
or 4D data.

The performance of our estimator is therefore compared with other reported optical flow 
methods. The first one is the classical method developed by Lucas and Kanade (1981), and 
the second is the method developed by Sun et al (2010), which makes some improvements, 
based on the combination of a local and a global method for optical flow assessment. It was 
declared the best optical flow algorithm in the 2010 Middlebury evaluation ranking (Baker 
et al 2011), and in an expanded literature review in 2014 (Sun et al 2014). Hence, this method 
can be considered as a suitable reference, and will be referred to as the Sun method hereafter.

We used a window size of 11  ×  11 pixels in the LK method. In the Sun method, where the 
use of median filtering to denoise the flow is the key to improving accuracy, the mask 

size 

Figure 4. (a) Superimposed ROI (gray region), (b) intensities within the myocardial 
ROI.



and neighborhood size were set to 5  ×  5 pixels and 15  ×  15 pixels respectively, to obtain the 
optimal results on the test sequences in table 1. These parameters were the best suited to our 
cardiac application.

In our new method, the wavelength and order of the highpass Butterworth filter for the 
computation of monogenic features were optimized as 5 pixels and 3, respectively. We used 
a pyramid factor of 0.3 for the coarse to fine multi-resolution strategy, and set the size of the 
neighborhood to 5  ×  5. We chose a scalar weight of ε  =  6 for the optical flow correlation 
transform.

These values were obtained through a series of tests on the sequences listed in table 1, for 
which the optimal motion field was known. The methods’ parameters were tested in the fol-
lowing ranges: wavelength: 3, 5, 7, 9, and 11 pixels; order of Butterworth filter: 3, 5, and 7; 
size of the neighborhood: 3  ×  3, 5  ×  5, 7  ×  7 pixels; scalar weight ε: from 3 to 20.

The parameters for all the methods were determined on the basis of the analysis of the 
sequences in table 1.

All the methods were implemented in MATLAB (R2013a, The Math-Works, Natick, MA, 
USA), on a desktop computer (CPU: Intel(R) Core(TM) i3-2120 @ 3.3 GHz, RAM: 4.0GB), 
using Microsoft Windows 7 64 bit operating system.

Table 1 shows the means and standard deviations for AEE and AAE for all three methods 
and the four noise-free simulated sequences (containing 34 and 20 frames, which are common 
frame numbers in a cardiac MRI sequence). On the basis of the summation of the AEE and 
AAE results from the four sequences (D30R20P3F34, D30R20P0F34, D30R20P3F20 and 
D30R20P0F20), the errors with our proposed method are reduced in comparison with the Sun 
and LK methods.

As seen from table 1 also, the proposed method is less impacted by Rician noise than the 
Sun’s and LK methods when the noise level σ is in the range 10–15 (sequences N10 and N15).
In the sequence with σ  =  20, all the three methods are affected by the noise and have poor 
performances.

Figures 5(a) and (b) show that the results of the proposed method lead to the smallest end 
point and angular errors on most frames. For the Lagrangian endpoint errors (figure 5(c)) at 
the beginning of the systolic phase, the proposed method provides similar performance to 

Table 1. Mean AEE and AAE (μ  ±  σ) in pixels over the four noise-free simulated 
sequences and three noise corrupted simulated sequences.

Sequence Name Proposed Sun LK

D30R20P3F34 AEE  ±  std 0.08  ±  0.05 0.10  ±  0.06 0.13  ±  0.09
AAE  ±  std 3.59  ±  2.03 4.41  ±  2.59 5.83  ±  3.98

D30R20P0F34 AEE  ±  std 0.07  ±  0.05 0.08  ±  0.05 0.12  ±  0.11
AAE  ±  std 3.02  ±  1.89 3.36  ±  2.06 5.06  ±  5.04

D30R20P3F20 AEE  ±  std 0.07  ±  0.05 0.11  ±  0.08 0.16  ±  0.12
AAE  ±  std 3.01  ±  1.88 4.61  ±  3.25 7.02  ±  4.53

D30R20P0F20 AEE  ±  std 0.08  ±  0.06 0.12  ±  0.09 0.17  ±  0.13
AAE  ±  std 3.41  ±  2.06 4.93  ±  3.09 7.48  ±  4.55

D30R20P3F20_N10 AEE  ±  std 0.23  ±  0.16 0.36  ±  0.20 0.43  ±  0.27
AAE  ±  std 9.19  ±  7.10 16.33  ±  9.26 19.69  ±  9.81

D30R20P3F20_N15 AEE  ±  std 0.32  ±  0.21 0.48  ±  0.26 0.50  ±  0.31
AAE  ±  std 15.22  ±  8.50 22.15  ±  12.53 23.19  ±  11.55

D30R20P3F20_N20 AEE  ±  std 0.44  ±  0.25 0.55  ±  0.29 0.54  ±  0.33
AAE  ±  std 20.38  ±  12.52 25.50  ±  13.29 25.61  ±  12.43



Figure 5. Box and whiskers plots of (a) Eulerian endpoint errors, (b) Eulerian angular 
errors, and (c) Lagrangian endpoint errors for sequence D30R20P3F20 (with pathology). 
Frame numbers in the red box correspond to end-systole. Each rectangle corresponds 
to the statistical distribution of all AEE or AAE values at one frame. The center bar of 
each box represents the median value. The circle indicates the average value, and the 
box body extends from the 25th to the75th percentile of one frame of metric values.



the Sun method. From the 1st to 16th frames, the proposed method is more accurate than 
the other two methods. This is especially the case between the 6th and 10th frames (around 
end-systole), where the LV expresses a larger deformation, and the proposed method strongly 
outperforms the Sun method. The LK method, however, performs slightly better at the end of 
the motion cycle, from the 17th to 20th frames.

Figure 6. Results of the Eulerian endpoint errors (pixels) for three methods tested on 
sequence D30R20P3F20 (with pathology). First row: 7th frame close to end-systole; 
second row: 17th frame close to end-diastole; first column: proposed method; second 
column: Sun method; third column: LK method. The location of the pathology is 
indicated by red arrows.

Figure 7. Lagrangian displacement for the sequence D30R20P3F20 (with pathology), 
at frame #7. First row: Lagrangian displacement in the x direction (Lx); second row: 
Lagrangian displacement in the y direction (Ly); first column: ground truth; second 
column: proposed method; third column: Sun method; fourth column: LK method.



The results of the Eulerian Endpoint Errors for the three methods applied to sequence 
D30R20P3F20, at a frame close to end-systole and a frame close to end-diastole, are com-
pared in figure 6. The proposed method resulted in smaller error values, and much smoother 
maps for both the systolic and diastolic frames.

The Lagrangian displacement results for the three methods at frame #7 (close to end-
systole) of sequence D30R20P3F20 are compared in figure 7. The proposed method results in 
smoother maps, which are more similar to the ground truth map.

Figure 8 shows the radial and circumferential strains for the pathological case in sequence 
D30R20P3F20 at frame #7 (close to end-systole). A region of simulated pathology is located 
in the lower left region of the myocardium, indicated by a red arrow.

Radial deformations computed with the three methods are able to highlight the location 
of the pathology (radial deformations should be mostly positive in systole because of the 
predominant radial expansion), although the radial deformation from the proposed method is 
closer to the ground truth data, when compared with the other two methods. Circumferential 
deformation is, however, not accurately recovered by any of the three methods (circumfer-
ential deformations should be mostly negative in systole because of circumferential shorten-
ing). This demonstrates the limit of the motion quantification from such images. As can be 
observed in figure 1(a), the gray level distribution within the myocardial wall of the cine-MR 
image is quite homogeneous, making the motion estimation problem highly ill-posed. It is 
therefore most likely that better estimations will be obtained in the radial direction than in the 
circumferential one, as is the case with the human eye. Recovery of the pathological region 
from the circumferential strain map is slightly better in our method.

4.2. Analysis of a healthy case and four clinical pathological cases

The analysis of material point trajectories has been discussed previously (Wang et al 2015). 
The motion curves of healthy myocardium are generally longer and more uniform than those 
in pathological myocardium, while the kinetics in an impaired region are reduced. Most of 
the negative and weak positive Err strain values can be detected in the pathological regions.

Figure 8. Estimated systolic myocardial strains for the pathological sequence 
D30R20P3F20 at frame #7 (~end-systole). First row: Err results; second row: Ecc 
results for the three methods; first column: ground truth; second column: proposed 
method; third column: Sun method; fourth column: LK method. The location of the 
pathology is indicated by red arrows.



Figure 9. (a) and (b) First frames (end-diastole) of a short-axis cine-MRI sequence 
and a tagged-MRI sequence for the healthy volunteer. (c) and (d) Lagrangian motion 
field at end-systolic frame from the cine-MRI sequence and tagged-MRI sequence 
obtained with the proposed and Wang’s methods respectively. (e) and (f) Trace of
myocardial point displacements over the whole cine-MRI and tagged-MRI sequences. 
The mean length  ±  the standard deviation of the trajectories for each sector are 
provided. (g) and (h) Radial strain Err at end-systole of cine-MRI and tagged-MRI 
sequences corresponding to contraction maximum. The mean strain values  ±  the 
standard deviation are provided for each standard sector of the myocardium. Sector 
location is defined as: A  =  anterior; AS  =  anteroseptal; IS  =  inferoseptal; I  =  inferior; 
IL  =  inferolateral; AL  =  anterolateral. The dysfunctional segments are identified with 
red labels.



Figure 10. (a) and (b) First frames (end-diastole) of a short-axis cine-MRI sequence 
and a tagged-MRI sequence for patient #1. (c) and (d) Lagrangian motion field at 
end-systolic frame from the cine-MRI sequence and tagged-MRI sequence obtained 
with the proposed and Wang’s methods respectively. (e) and (f) Trace of myocardial
point displacements over the whole cine-MRI and tagged-MRI sequences. The mean 
length  ±  the standard deviation of the trajectories for each sector are provided. (g) and (h) 
Radial strain Err at end-systole of cine-MRI and tagged-MRI sequences corresponding 
to contraction maximum. The mean strain values  ±  the standard deviation are provided 
for each standard sector of the myocardium.



Figure 11. (a) First frame (end-diastole) of a short-axis cine-MRI sequence of patient 
#2. (b) Lagrangian motion field at an end-systolic frame. (c) Trace of myocardial 
point displacements over the whole sequence. The mean length  ±  the standard 
deviation of the trajectories for each sector are provided (d) radial strain Err at end-
systole for pathological case #2 corresponding to the maximum contraction. The mean 
strain values  ±  the standard deviation are provided for each standard sector of the 
myocardium. The dysfunctional segments are identified with red labels.

Table 2. Cine MRI parameters for all clinical cases (1.5T MRI scanner) and 
dysfunctional segments of pathological cases.

Clinical  
case names Sex Age

TE 
(ms)

TR 
(ms)

Flip 
angle

Spatial 
resolution 
(mm) Frames

Temporal 
resolution 
(ms)

Dysfunctional 
segments

Healthy case M 44 1.28 49.28 71° 1.17  ×  1.17 25 49.28 none

Pathological 
case

#1 M 64 1.74 38.28 70° 1.5  ×  1.5 21 38.28 I, IS, and IL

#2 M 65 1.74 45.24 70° 1.5  ×  1.5 20 45.24 AS, IS, and I

#3 M 73 1.51 30.2 70° 1.5  ×  1.5 21 30.2 I and IL

#4 F 53 1.51 17.5 70° 1.5  ×  1.5 29 17.5 I



For one healthy case and one pathological case, we compared the results obtained with 
the proposed method applied to a clinical cine-MRI sequence, and those obtained with the 
Wang’s method (Wang et al 2015) applied to a clinical tagged-MRI sequence from the same
subject. As demonstrated in Wang et al (2015), their method performs well in tagged-MRI 
in comparison with other motion estimators, and is therefore used as a reference for our pro-
posed method. The essential difference between cine-MRI and tagged-MRI is that the latter 
contains tag patterns that help motion assessment (see figures 9 and 10). For those 2 cases and 
additional 3 pathological cases, a median short axis (SA) slice were performed in cine MR 
imaging on a Siemens Avento 1.5T MR scanner. Cine-MRI parameters are given in table 2 for 
all the cases. An experienced physician diagnosed dysfunctional segments for the pathological 
cases. Those are also indicated in table 2.

Healthy case: a 44 year-old male healthy volunteer.
First frame of the SA cine sequence is shown in figure 9(a). A tagged MRI sequence of 

the same volunteer was acquired on a Siemens Avento 1.5T in short-axis views, with the 

Figure 12. (a) First frame (end-diastole) of a short-axis cine-MRI sequence of patient 
#3. (b) Lagrangian motion field at an end-systolic frame. (c) Trace of myocardial 
point displacements over the whole sequence. The mean length  ±  the standard 
deviation of the trajectories for each sector are provided (d) radial strain Err at end-
systole for pathological case #3 corresponding to the maximum contraction. The mean 
strain values  ±  the standard deviation are provided for each standard sector of the 
myocardium. The dysfunctional segments are identified with red labels.



following parameters: gradient echo (GRE) sequence with a 45° spatial modulation of magnet-
ization (SPAMM) tagging pattern, TE  =  1.23 ms, TR  =  34.68 ms, flip angle  =  20°, tag spac-
ing  =  7 mm, spatial resolution  =  1.3  ×  1.3 mm, 31 frames, temporal resolution  =  34.68 ms. 
The first frame of this sequence is shown in figure 9(b).

Pathological case #1: a 64 year-old male patient. First frame of the SA cine sequence is 
shown in figure 10(a). A tagged MRI sequence of the same patient was acquired on a Siemens 
Avento 1.5T in short-axis views, with the following parameters: GRE sequence with a 45°
SPAMM tagging pattern, TE  =  1.53 ms, TR  =  36.4 ms, flip angle  =  20°, tag spacing  =  6 mm, 
spatial resolution  =  1  ×  1 mm, 21 frames, temporal resolution  =  36.4 ms.

As shown in figures 9(a)–(h) and 10(a)–(h), similar results at end-systole were obtained for
the Lagrangian motion field, trace of the myocardial point displacements, and radial strain Err, 
using both the cine and tagged MRI, for both the healthy and the pathological case. The strain 
maps are formed from displacement fields obtained from the data of cine and tagged images.

Figure 13. (a) First frame (end-diastole) of a short-axis cine-MRI sequence of patient 
#4. (b) Lagrangian motion field at an end-systolic frame. (c) Trace of myocardial 
point displacements over the whole sequence. The mean length  ±  the standard 
deviation of the trajectories for each sector are provided (d) radial strain Err at end-
systole for pathological case #4 corresponding to the maximum contraction. The mean 
strain values  ±  the standard deviation are provided for each standard sector of the 
myocardium. The dysfunctional segments are identified with red labels.



In the healthy case, we observe that all the tracked points represent the same tendency (see 
figure 9), which is different from the motion behavior observed with the pathological case #1 
and the additional cases studied hereafter (figures 10–13).

In pathological case #1, the amplitude of the movement in the IS, I, and IL segments (red 
labels), is visibly smaller than in the other segments, which is in concordance with the location 
of the pathology (see figures 10(c) and (d)). From the MR based material point trajectories 
shown in figures 10(e) and (f), a reduced magnitude in the motion of the point trajectory is 
observed in the IS, I, and IL segments, in accordance with the identified pathological seg-
ments. Also, the regions with reduced and negative values in radial strain Err, shown in fig-
ures 10(g) and (h), closely match the location of infarcted segments.

This indicates that the correlation between the Lagrangian motion field, Lagrangian tra-
jectories, and strain images identified in Wang et al (2015), also holds for the cardiac motion 
quantification from cine-MRI analyzed with the method proposed in this study.

Other pathological cases: results obtained for other 3 pathological cases are given in fig-
ures 11–13, respectively.

The dysfunctional AS, IS, and I segments in pathological case #2 (figures 11 (a)–(d), red
labels), the dysfunctional I and IL segments in pathological case #3 (figures 12(a)–(d), red
labels), and the dysfunctional I segment in pathological case #4 (figures 13(a)–(d), red labels)
exhibit decreased motion in comparison with the other segments in adjacent or remote myocar-
dium. A reduced motion magnitude and incoherent outward motion direction of the point tra-
jectories can also be observed in these segments, as well as a clear reduction of radial strain Err.

5. Discussions and conclusion

This work proposes a new method for the quantification of myocardial motion from cine-MRI 
sequences. It is based on the building of a 3D matrix of monogenic features and a correlation 
transform of optical flow, inspired by the method introduced by Drulea and Nedevshci (2013). 
We have adopted an approach to optical flow estimation using zero-mean normalized cross-
correlation as a matching measurement. The bilateral filtering acts as a regularization process. 
The required optimization issue is based on the PPPA strategy.

The results obtained on synthetic data show that the proposed algorithm led to more accu-
rate and smoother motion estimation than that achieved with the standard LK and recent Sun 
methods. This improvement is mainly due to the introduction of monogenic features into the 
motion estimation scheme. Synthetic experiments show also a better behavior of the proposed 
method in the presence of MRI noise.

Preliminary results obtained from cine-MRI sequences from one healthy case and four 
clinical cases, tend to show that the estimated motion fields obtained with the proposed 
method are close to the ones obtained using the corresponding tagged-MRI sequences, and 
can therefore provide reliable myocardial strain estimates that are likely to highlight cardiac 
motion anomalies. A qualitative analysis of the Lagrangian motion trajectories demonstrated 
that their shape in pathological sectors was globally different from healthy regions. However, 
a study on a larger database is necessary to confirm these fi rst fin dings and constitutes a 
perspective of this work. Future developments also include the introduction of new texture 
descriptors and an extension to 3D data.
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