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Abstract—We consider the scalar Gaussian channel with power
constraint P . A gap exists between the channel capacity and
the highest achievable rate of equiprobable uniformly spaced
signal. Several approaches enable to overcome this limitation such
as constellations with non-uniform probability or constellation
shaping. In this short paper, we focus on constellation shaping.
We present a method to construct one-dimensional constellations
with equiprobable signaling that achieve the Gaussian capacity
as the number of signal points goes to infinity.

I. INTRODUCTION

We consider the scalar additive white Gaussian noise
(AWGN) channel with signal-to-noise ratio (SNR) P/N0,
where P is the average power constraint of the input signal
and N0 the noise variance. Let snr = P/N0, the Gaussian
channel capacity is

C =
1

2
log2 (1 + snr) bits/dimension, (1)

and the optimal input distribution is Gaussian with zero mean
and variance P [1].

Approaching the Gaussian capacity is a challenging problem
in digital communications systems. Indeed the optimal input
distribution is continuous while in practice the signal is chosen
from a finite constellation of points. Several approaches enable
to overcome this limitation such as constellation shaping or
constellations with non-uniform probabilities [2]. In this letter,
we focus on the former solution as it is more attractive for
practical systems that mainly use equiprobable signaling.

Sun and van Tilborg were the first to present a sequence
of random variables equiprobably distributed over a finite
support that achieves the Gaussian capacity (in one dimension)
as the signal set cardinality tends to infinity [3]. Until then,
the traditional rule of designing constellations for the AWGN
channel was to maximize the squared Euclidean distance
between the signal points under the power constraint. In one
dimension, this results in uniformly spaced signal sets that,
when combined with equiprobable signaling, exhibit a gap
of πe

6 ≈ 1.53 dB with the Gaussian capacity at large SNR
[4]. Sun and van Tilborg shows how to close this gap in one
dimension. In higher dimensions, this shaping gain can be
obtained by choosing the signal points on an N -dimensional
rectangular lattice from within an N -sphere rather than an N -
cube [4]. However this is impractical when N increases.

The result in [3] was extended by Schwarte that provided
sufficient conditions for equiprobable input distributions with
finite support to approach the Gaussian capacity in any dimen-
sion [5]. Similar conditions are given in [6, Theorem 9].

A recent work by Wu and Verdú studied the AWGN
channel capacity with finite signal set [7]. They showed that
as the input signal cardinality grows, the constellation capacity
approaches the Gaussian capacity exponentially fast. They also
introduced a family of constellation, based on the Hermite
polynomials roots, achieving exponential convergence. The
resulting modulations combine constellation shaping with non-
uniform probabilities.

If the channel inputs are also subject to peak power con-
straints, the capacity and the optimal input distribution were
studied for the scalar Gaussian channel in [8]. Smith showed
that the capacity is achieved by a unique discrete random
variable taking on a finite number of values. It was later
extended to the quadrature Gaussian channel [9]. In two
dimensions, the optimal distribution is discrete along the radial
direction and continuous in the angular direction.

A very interesting paper by Huang and Meyn studies the
structure of capacity-achieving input distributions [10]. One
of the result is that discrete distribution can nearly reach the
capacity even if the optimal distribution is continuous.

In this work, our main contribution (presented in Section II)
is the construction of one dimensional constellations with
equiprobable signaling that achieve the Gaussian capacity as
the number of constellation points goes to infinity. To that
end, we rely on a shaping function to produce signal sets
with a Gaussian shape, the key ingredient to approach the
AWGN channel capacity. This is an alternative to the previous
solutions [3], [5]. We illustrate our result by evaluating the
performance of a capacity-approaching constellation obtained
from our proposal. We conclude the paper by discussing
several research directions in Section III.

II. CAPACITY-APPROACHING CONSTELLATIONS

A. Preliminary remarks

Approaching the AWGN channel capacity with equiproba-
ble Gaussian-shaped discrete distributions was first proposed
by Sun and van Tilborg [3]. Based on this result, we recently
introduced the concept of shaping function that aims to give
a Gaussian shape to a finite constellation of points [11]. We978-1-5090-0314-3/16/$31.00 c© 2016 IEEE



proposed the Box-Muller transform as shaping function for the
quadrature channel, resulting in capacity-achieving amplitude
and phase-shift keying constellations [11].

Our current work focuses on the one-dimensional case
and provides a general method to generate capacity-achieving
signal sets with equiprobable signaling. Our choice of the
shaping function relies on the following lemma:
Lemma 1. Let U be the continuous uniform distribution in
the interval (0, 1) and ΦP the cumulative density function of
the normal distribution with zero mean and variance P , then
Φ−1P (U) ∼ N (0, P ).

Based on the previous lemma, our idea is to consider Φ−1P
as the shaping function for the one-dimensional case.

B. Main result

The following theorem explains how to generate capacity-
approaching signal sets for the scalar AWGN channel. It is the
main contribution of this letter.
Theorem. Let (Un)n>1 be a sequence of discrete random
variables that converge weakly to U , the continuous uniform
distribution over (0, 1), such that supn Var(Φ−1P (Un)) < ∞.
The signal defined by Xn = Φ−1P (Un) achieves the AWGN
channel capacity with power constraint P as n → ∞. More
formally,

I(Xn;Xn + N) −→
n→∞

1

2
log2(1 + snr), (2)

where I denotes the mutual information [1] and N ∼
N (0, N0) is the Gaussian noise with variance N0.

Proof: The idea is to show that the sequence (Xn)n>1

satisfies the two conditions given in [6, Theorem 9].
The first condition requires that (Xn)n>1 verifies

supn Var(Xn) <∞, which is true by hypothesis.
Next we prove that (Xn)n>1 converges weakly to the distri-

bution of a Gaussian variable with zero mean and variance P .
By assumption, we have that Un

L−→ U (weak convergence).
The function Φ−1P is continuous on (0, 1), thus the continuous
mapping theorem can be applied [12]. We obtain

Xn = Φ−1P (Un)
L−→ Φ−1P (U) . (3)

Lemma 1 ensures that Φ−1P (U) ∼ N (0, P ).
Thus the signal defined by Xn = Φ−1P (Un) satisfies both

conditions in [6, Theorem 9]. We conclude that the signal
(Xn)n>1 approaches the Gaussian channel capacity with
power constraint P as n→∞.

In the theorem, the assumption supn Var(Φ−1P (Un)) <∞ is
required to control the signal energy. This prevents to generate
signals that approach the Gaussian distribution but may not
have a finite variance. Another consequence is that Un can
not take the values 0 or 1, as in that case Φ−1P is not defined.

C. Application

To illustrate our result, we construct a capacity-achieving
constellation with equiprobable signaling and evaluate its
performance on the AWGN channel.
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Fig. 1: Proposed Gaussian-shaped constellation for n = 10 and
P = 4. On the vertical axis, the squares represent the support
of Un. On the real axis, the circles represent the support of
Φ−1P (Un), in other words the constellation Cn.

Let n > 1 be an integer and Nn = {0, 1, 2, . . . , n− 1} the
set of integers from 0 to n− 1. We consider the discrete set

Sn =

{
1

2n
+

k

n

∣∣ k ∈ Nn
}
, (4)

that verifies |Sn| = n and Sn ⊂ (0, 1). We introduce Un
the discrete random variables uniformly distributed on Sn and
the proposed signal is Xn = Φ−1P (Un). As Un is uniformly
distributed on Sn, the random variable Xn is uniformly
distributed on a set Cn of n points. The points in Cn exhibit
a Gaussian shape as depicted in Fig. 1 for n = 10 and
P = 4. This illustrates the objective of the shaping function:
applying the shaping function to a set of uniformly spaced
points generates a Gaussian-shaped constellation.

In order to show that the proposed constellations achieve the
AWGN channel capacity, we prove that the two assumptions
in the theorem are satisfied. The following lemma studies the
convergence of (Un)n>1.
Lemma 2. The sequence (Un)n>1 converges weakly to U , the
uniform distribution over (0, 1).

Proof: The characteristic function of Un is

E
[
eitUn

]
=

1

n

n∑
k=0

eit(
1
2n+ k

n ) (5)

=
e

it
2n

n
× 1− eit

1− e
it
n

−→
n→∞

eit − 1

it
= E

[
eitU

]
. (6)

Using the continuity theorem [13, Theorem 26.3], we conclude
that (Un)n>1 converges weakly to U .

Next we study the variance of the sequence (Xn)n>1.
Lemma 3. (Xn)n>1 verifies supn Var(Xn) <∞.

Proof: The variance of Xn is equal to Var(Xn) =
E[X2

n]−E[Xn]2. By construction of Sn, Xn is symmetrically
distributed about the origin (see Fig. 1). Combined with the
equiprobable signaling, this results in E[Xn] = 0.

Then we consider the term E[X2
n] in the variance. First it

is important to note that (Φ−1P )2 is Riemann integrable over
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Fig. 2: Gap to the Gaussian capacity for the uniformly spaced signal with equiprobable signaling and the proposed constellation

(0, 1). Indeed, we have∫ 1

0

Φ−1P (t)2dt =

∫
R
u2Φ′P (u)du = P, (7)

where we use the substitution u = Φ−1P (t). By definition,

E[X2
n] =

n−1∑
k=0

1

n
Φ−1P

(
1

2n
+

k

n

)2

. (8)

The right term in (8) is a Riemann sum, therefore

E[X2
n] −→

n→∞

∫ 1

0

Φ−1P (t)2 = P. (9)

This concludes the proof that supn Var(Xn) <∞.
Previous lemmas show that the sequence (Un)n>1 satis-

fies both assumptions in the theorem. Thus, the Gaussian-
shaped signal with equiprobable signaling Xn asymptotically
approaches the AWGN channel capacity. Fig. 2 depicts the
gap to Gaussian capacity for the uniformly spaced signal
with equiprobable signaling and the proposed constellation
for various SNR values and 2 6 n 6 35. As expected,
the capacity gap vanishes for the proposed constellation as
n → ∞. However the convergence speed remains an open
question.

III. CONCLUDING REMARKS

Based on a shaping function, we introduce a constellation
design enabling to achieve the Gaussian capacity as the signal
cardinality grows to infinity. In that sense, the proposed
constellations are better than uniformly spaced signals with
equiprobable signaling. We illustrate our result by presenting
and evaluating the performance of a sequence of capacity-
approaching signals. It is important to note that the design
is not unique as modifying the set Sn, with respect to the
assumptions given in the theorem, may generate other con-
stellations that asymptotically achieve the Gaussian capacity.
Our last remark is to point out that our solution can produce
capacity-approaching constellations in higher dimensions. For
instance in two dimensions, we can take two capacity-
achieving signals (for the one-dimensional case) transmitted
on two quadrature carriers.

Future work will focus on three main directions. First, we
plan to study the convergence speed of the proposed constel-
lations. For the scalar AWGN channel with input cardinality
n, Wu and Verdú showed that the achievable rate approaches
exponentially fast the Gaussian capacity as n grows [7].
However their solution combine constellation shaping and
non-uniform probabilities, while we restrict our work to con-
stellation shaping which is more attractive from a practical
point of view. Then, we will seek the optimal constellations
in terms of capacity (for a given SNR) or convergence speed.
Finally, we will investigate if the representation of the input
signal Xn using Un may accelerate the decoding process.
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