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THE GINZBURG-LANDAU FUNCTIONAL WITH VANISHING MAGNETIC FIELD

We study the infimum of the Ginzburg-Landau functional in a two dimensional simply connected domain and with an external magnetic field allowed to vanish along a smooth curve. We obtain an energy asymptotics which is valid when the Ginzburg-Landau parameter is large and the strength of the external field is below the third critical field. Compared with the known results when the external magnetic field does not vanish, we show in this regime a concentration of the energy near the zero set of the external magnetic field. Our results complete former results obtained by K.

Introduction

The Ginzburg-Landau functional is a model describing the response of a superconducting material to an applied magnetic field through the qualitative behavior of the minimizing/critical configurations. The mathematically rigorous analysis of such configurations led to a vast literature and to many mathematically challenging questions, with the aim to recover what physicists have already observed through experiments or heuristic computations. (See [START_REF] De Gennes | Superconductivity of Metals and Alloys[END_REF] for an introduction to the physics of superconductivity, and the two monographs [START_REF] Fournais | Spectral Methods in Surface Superconductivity[END_REF][START_REF] Sandier | Vortices for the Magnetic Ginzburg-Landau Model[END_REF] for the mathematical progress on this subject).

Much of the mathematical literature concerns samples in the form of a long cylinder or a thin film subject to a constant magnetic field. The direction of the magnetic field is parallel to the cylinder's axis (for cylindrical samples) or perpendicular to the plane of the thin film (for thin film samples). For such samples, we have the following behavior (this is thoroughly reviewed in the two monographs [START_REF] Fournais | Spectral Methods in Surface Superconductivity[END_REF] and [START_REF] Sandier | Vortices for the Magnetic Ginzburg-Landau Model[END_REF]):

• For very large values of the intensity of the magnetic field, the magnetic field penetrates the sample which is in a normal (non-superconducting) state. • Decreasing the intensity of the magnetic field gradually past a critical value H c 3 , superconductivity nucleates along the boundary of the sample; the bulk of the sample remains in a normal state ; this is the phenomenon of surface superconductivity (see [START_REF] Saint-James | Onset of superconductivity in decreasing fields[END_REF]). • Decreasing the field further, superconductivity is restored in the bulk of the sample; the magnetic field may penetrate the sample along point defects called vortices; such vortices indicate regions of the sample that remain in the normal state (see [START_REF] Sandier | Vortices for the Magnetic Ginzburg-Landau Model[END_REF]). In this paper, we will consider samples submitted to a variable magnetic field (both the direction and the intensity of the field will be variable). Samples submitted to variable magnetic fields are considered in the physical literature, see [START_REF] Terentiev | Drift of Levitated YBCO superconductor induced by both a variable magnetic field and a vibration[END_REF][START_REF] Smolyak | Influence of a variable magnetic field on the stability of the magnetic suspension of high-Tc superconductors[END_REF].

For the sake of illustrating the results in this paper, let us consider a thin film sample placed horizontally (see Figure 1). The region occupied by the sample is decomposed into two subregions Ω 1 and Ω 2 separated by a smooth curve Γ. Now, we let the sample be submitted to a non-constant magnetic field such that the field is applied on Ω 1 from above, while it is applied from below on Ω 2 . We suppose that the magnetic field varies smoothly, hence it has to vanish along the smooth curve Γ. In such a situation, we have the following picture:

• For very large values of the intensity of the magnetic field, the sample is in a normal state [START_REF] Pan | Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains[END_REF] .

Figure 1. sample subject to a variable magnetic field that vanishes along the curve Γ

• Decreasing the intensity of the magnetic field gradually past a critical value H c 3 , superconductivity nucleates along the curve Γ; the rest of the sample remains in a normal state ; this is in contrast of the phenomenon of surface superconductivity observed for samples subject to a constant magnetic field (see [START_REF] Attar | The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field[END_REF] and the results in this paper) . • There are two regimes describing the concentration of the superconductivity along the curve Γ. In a first regime, the distribution of the superconductivity is displayed via a new limiting function E(•); this limiting function is defined via a simplified Ginzburg-Landau type functional with a magnetic field vanishing along a line. In another regime, the distribution of the superconductivity is displayed via a known limiting function g(•) ; surprisingly, the limiting function g(•) is defined via a simplified Ginzburg-Landau type functional with a constant magnetic field; the function g(•) displays the distribution of (bulk) superconductivity for samples submitted to a constant magnetic field [START_REF] Sandier | The decrease of bulk superconductivity close to the second critical field in the Ginzburg-Landau model[END_REF][START_REF] Fournais | The ground state energy of the three dimensional Ginzburg-Landau functional. Part I. Bulk regime[END_REF].

The rest of this introduction is devoted to precise statements displaying the picture that we have sketched previously.

In a two dimensional bounded and simply connected domain Ω with smooth boundary, the Ginzburg-Landau functional is defined over configurations (ψ, A) ∈ H 1 (Ω; C) × H 1 (Ω; R 2 ) by,

E(ψ, A) = Ω e κ,H (ψ, A) dx (1.1)
where

e κ,H (ψ, A) := |(∇ -iκHA)ψ| 2 -κ 2 |ψ| 2 + κ 2 2 |ψ| 4 + (κH) 2 | curl A -B 0 | 2 .
The modulus of the wave function function ψ measures the density of the superconducting electrons; the curl of the vector field A measures the induced magnetic field; the parameter H measures the intensity of the external magnetic field and the parameter κ (κ > 0) is a characteristic of the superconducting material; dx is the Lebesgue measure dx 1 dx 2 . The function B 0 represents the profile of the external magnetic field in Ω and is allowed to vanish nondegenerately on a smooth curve. We suppose that B 0 is defined and C ∞ in a neighborhood of Ω and satisfies,

|B 0 | + |∇B 0 | ≥ c > 0 in Ω , (1. 
2) and that the set Γ = {x ∈ Ω : B 0 (x) = 0} (1.3) consists of a finite number of simple smooth curves. We also assume that: Γ ∩ ∂Ω is a finite set .

(1.4)

The assumptions on Γ, together with (1.2), force the function B 0 to change sign. In physical terms, the set Γ splits the domain Ω into two parts Ω 1 = {B 0 (x) > 0} and Ω 2 = {B 0 (x) < 0} such that the magnetic field applied on Ω 1 is along the opposite direction of the magnetic field applied on Ω 2 (compare with Figure 1). The results in this paper do not cover the potentially interesting case where the magnetic field B 0 vanishes on isolated points; such an assumption displays different physics since the magnetic field can not change sign here.

The ground state energy of the functional is,

E gs (κ, H) = inf{E(ψ, A) : (ψ, A) ∈ H 1 (Ω; C) × H 1 (Ω; R 2 )} . (1.5)
We focus on the regime where H satisfies

H = σκ 2 , σ ∈ (0, ∞) . (1.6) 
Our results allow for σ to be a function of κ satisfying σ κ -1 . Earlier results corresponding to vanishing magnetic fields have been obtained recently in [START_REF] Attar | The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field[END_REF][START_REF] Attar | Energy and vorticity of the Ginzburg-Landau model with variable magnetic field[END_REF]. The assumption on the strength of the magnetic field was H ≤ Cκ, where C is a constant. In the regime of large κ, K. Attar has obtained in [START_REF] Attar | The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field[END_REF][START_REF] Attar | Energy and vorticity of the Ginzburg-Landau model with variable magnetic field[END_REF] parallel results to those known for the constant magnetic field in [START_REF] Sandier | The decrease of bulk superconductivity close to the second critical field in the Ginzburg-Landau model[END_REF]. However, it is proved in [START_REF] Attar | The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field[END_REF] that if H = bκ , (1.7) and b is a constant, then when b is large enough, the energy and the superconducting density are concentrated near the set Γ with a length scale 1 b . Essentially, that is a consequence of the following asymptotics of the energy (κ → ∞),

E gs (κ, H) = κ 2 Ω g H κ |B 0 (x)| dx + o κH ln κ H + 1 , (1.8) 
which is valid under the relaxed assumption that

Λ 1 κ 1/3 ≤ H ≤ Λ 2 κ , (1.9) 
Λ 1 and Λ 2 being positive constants.

In particular, the assumption (1.9) covers the situation in (1.7). The function g appears in the analysis of the two and three dimensional Ginzburg-Landau functional with constant magnetic field, [START_REF] Sandier | The decrease of bulk superconductivity close to the second critical field in the Ginzburg-Landau model[END_REF][START_REF] Fournais | The ground state energy of the three dimensional Ginzburg-Landau functional. Part I. Bulk regime[END_REF]. It is associated with some effective model energy. The function g will play a central role in this paper and its definition will be recalled later in this text (see (3.49)). One purpose of this paper is to give a precise description of the aforementioned concentration of the order parameter and the energy when σ 1, thereby leading to the assumption in (1.6). The leading order term of the ground state energy in (1.5) is expressed via the quantity E(•) introduced in Theorem 3.8 below. The function (0, ∞) L → E(L) is a continuous function satisfying the following properties:

• E(L) is defined via a reduced Ginzburg-Landau energy in the strip (this energy is introduced in (3.14)).

• E(L) = 0 iff L ≥ λ -3/2 0
, where λ 0 is a universal constant defined as the bottom of the spectrum of a Montgomery operator, see (3.4).

• As L → 0 + , the expected asymptotic behavior of E(L) is like L -4/3 . Through this text, we use the following notation. Suppose that H = b(κ)κ . Then, as κ → +∞, the ground state energy in (1.5) satisfies:

(1) If b(κ) κ 1/2 , then

E gs (κ, H) = κ Γ |∇B 0 (x)| H κ 2 1/3 E |∇B 0 (x)| H κ 2 ds(x) + o κ 3 H , (1.11) 
where ds denotes the arc-length measure in Γ.

(2) If b(κ) κ 1/2 , then E gs (κ, H) = κ 2 Ω g H κ |B 0 (x)| dx + o κ 3 H . (1.12) Remark 1.2. (About the critical field H c 3 )
As we shall see in Section 2, Pan and Kwek [START_REF] Pan | Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains[END_REF] prove that if H is larger than a critical value H c 3 (κ) , then the minimizers of the functional in (1.1) are trivial and the ground state energy is E gs (κ, H) = 0 . Furthermore, the value of H c 3 (κ) as given in [START_REF] Pan | Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains[END_REF] admits, as κ → ∞ , the following asymptotics

H c 3 (κ) ∼ c 0 κ 2 , (1.13 
) where c 0 is an explicit constant (determined by the function B 0 ). As such, the assumption on the magnetic field in Theorem 1.1 is significant when b(κ)κ ≤ H ≤ M κ 2 and M ∈ (0, c 0 ] is a constant. Note also that our theorem gives a bridge between the situations studied by Attar in [START_REF] Attar | The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field[END_REF][START_REF] Attar | Energy and vorticity of the Ginzburg-Landau model with variable magnetic field[END_REF] and Pan-Kwek in [START_REF] Pan | Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains[END_REF].

Remark 1.3. (The remainder terms in Theorem 1.1) As long as the intensity of the external magnetic field satisfies κ H ≤ M κ 2 and M ∈ (0, c 0 ), the remainder term appearing in Theorem 1.1 is of lower order compared with the principal term. The function g(b) is bounded and vanishes when b ≥ 1. Accordingly,

Ω g H κ |B 0 (x)| dx = {|B 0 (x)|< κ H } g H κ |B 0 (x)| dx ≈ κ H .
We shall see in Theorem 3.12 that,

|∇B 0 (x)| H κ 2 1/3 E |∇B 0 (x)| H κ 2 ≈ κ 2 H .
Remark 1.4. (The two regimes in Theorem 1.1) Theorem 1.1 display two regimes governing the behavior of the ground state energy. The two regimes appear as follows. In the regime H κ 3/2 , if we estimate E gs (κ, H) using the limiting function E(•), then we can not manage to prove that the error terms are of lower order compared to the term

κ Γ |∇B 0 (x)| H κ 2 1/3 E |∇B 0 (x)| H κ 2 ds(x) .
Surprisingly, when H κ 3/2 , the leading order behavior of the ground state energy E gs (κ, H) is governed by the limiting function g(•).

As such, there is a small gap between the two regimes considered in Theorem 1.1. Hence it would be interesting to show that the two asymptotics match in this intermediate zone. A necessary step is to inspect whether there exists a relationship between the limiting functions E(•) and g(•).

Remark 1.5. (Curvature effects) By analogy with the existing results for the case of a constant magnetic field in [START_REF] Fournais | Energy asymptotics for type II superconductors[END_REF] and [START_REF] Correggi | Boundary behavior of the Ginzburg-Landau order parameter in the surface superconductivity regime[END_REF][START_REF] Correggi | On the Ginzburg-Landau functional in the surface superconductivity regime[END_REF], one expects that the ground state energy E gs (κ, H) behaves as follows. Let c 0 be the value in (1.13). We expect that:

• If H = c 0 κ 2 + o(κ 2 )
, then the curvature of Γ = {B 0 (x) = 0} will contribute to the leading order behavior of E gs (κ, H) .

• If κ 3/2
H ≤ M κ 2 and 0 < M < c 0 , then the second correction term in the aymptotics in Theorem 1.1 involves the curvature of Γ.

Along the proof of Theorem 1.1, we obtain: Theorem 1.6. Suppose that the function B 0 satisfies Assumptions (1.2) and (1.3). Let b : R + → R + be a function satisfying (1.10). Suppose that

H = b(κ)κ
and that (ψ, A) is a minimizer of the functional in (1.1). Then, as κ → ∞ , it holds:

(1) Estimate of the magnetic energy.

κ 2 H 2 Ω | curl A -B 0 | 2 dx = κ 3 H o (1) . 
(2) Estimate of the local energy.

Let D ⊂ Ω be an open set with a smooth boundary such that ∂D ∩ Γ is a finite set. (a) If b(κ) κ 1/2 , then E 0 (ψ, A; D) := D |(∇ -iκHA)ψ| 2 -κ 2 |ψ| 2 + κ 2 2 |ψ| 4 dx (1.14) = κ D∩Γ |∇B 0 (x)| H κ 2 1/3 E |∇B 0 (x)| H κ 2 ds(x) + κ 3 H o (1) . (b) If 1 b(κ) κ 1/2 , then E 0 (ψ, A; D) = κ 2 D g H κ |B 0 (x)| dx + κ 3 H o (1) . 
(3) Concentration of the order parameter.

Let D ⊂ Ω be an open set with a smooth boundary such that ∂D ∩ Γ is a finite set.

(a) If b(κ) κ 1/2 , then D |ψ(x)| 4 dx = - 2 κ D∩Γ |∇B 0 (x)| H κ 2 1/3 E |∇B 0 (x)| H κ 2 ds(x) + κ H o (1) . (b) If 1 b(κ) κ 1/2 , then D |ψ(x)| 4 dx = - D g H κ |B 0 (x)| dx + κ H o (1) 
.

Remark 1.7. In Theorem 1.6, the functions o(1) are controlled independently of the choice of the minimizer (ψ, A). In the first assertion, the expression of o(1) depends only on the domain Ω and the function B 0 , while in the second and third assertions, the expression depends additionally on the domain D.

Remark 1.8. In the two regimes displayed in Theorem 1.6, the mean term in the asymptotic expansions vanish when D ∩ Γ = ∅. It could be interesting to improve the remainder terms. In Theorem 6.3, we will prove that the L 2 -norm of the order parameter ψ is concentrated near the set Γ, and that ψ exponentially decays as κ → ∞, away from Γ.

Critical fields

The identification of the critical magnetic fields is an important question regarding the functional in (1.1). This question has an early appearance in physics (see e.g. [START_REF] De Gennes | Superconductivity of Metals and Alloys[END_REF]) and was the subject of a vast mathematical literature in the past two decades. The two monographs [START_REF] Fournais | Spectral Methods in Surface Superconductivity[END_REF][START_REF] Sandier | Vortices for the Magnetic Ginzburg-Landau Model[END_REF] contain an extensive review of many important results. In this section, we give a brief informal description of critical fields and highlight the importance of the case of a vanishing applied magnetic field.

2.1. Reminder: The constant field case. When the magnetic field B 0 is a (non-zero) constant, three critical values are assigned to the magnetic field H, namely H c 1 , H c 2 and H c 3 . The behavior of minimizers (and critical points) of the functional in (1.1) changes as the parameter H (i.e. magnetic field) crosses the values H c 1 , H c 2 and H c 3 . The identification of these critical values is not easy, especially the value H c 2 which is still loosely defined.

Let us recall that a critical point (ψ, A) of the functional in (1.1) is said to be normal if ψ = 0 everywhere. The critical field H c 3 (κ) is then defined as the value at which the transition from normal to non-normal critical points takes place.

The identification of the critical value H c 3 (κ) is strongly related to the spectral analysis of the magnetic Schrödinger operator with a constant magnetic field and Neumann boundary condition. Suppose that Ω ⊂ R 2 is connected, open, has a smooth boundary and the boundary consists of a finite number of connected components, A 0 a vector field satisfying curlA 0 = B 0 , the function B 0 is constant and positive, and λ(HκA 0 ) the lowest eigenvalue of the magnetic Schrödinger operator

-∆ κHA 0 = -(∇ -iκHA 0 ) 2 in L 2 (Ω) , (2.1 
) with Neumann boundary conditions. It has been proved that the function t → λ(tA 0 ) is monotonic for large values of t, see [START_REF] Fournais | Spectral Methods in Surface Superconductivity[END_REF] and the references therein. Grosso modo 1 the critical field H c 3 is the unique solution of the equation,

λ(H c 3 (κ)κA 0 ) = κ 2 .
(2.2)

In this case, it was shown by Lu-Pan [START_REF] Lu | Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity[END_REF] that, λ(HκA 0 ) ∼ (Hκ)B 0 Θ 0 , when Hκ 1 .

(2.3)

Further improvements of (2.3) are available, see [START_REF] Fournais | Spectral Methods in Surface Superconductivity[END_REF] for the state of the art in 2009 and references therein.

As a consequence of (2.2) and (2.3), we get for κ sufficiently large,

H c 3 (κ) ∼ κ/(Θ 0 B 0 ) . (2.4) 
The second critical field H c 2 (κ) is usually defined as follows

H c 2 (κ) = κ/B 0 . (2.5)
Notice that this definition of H c 2 is asymptotically matching with the following definition 2 ,

λ D (H c 2 (κ)κA 0 ) = κ 2 , (2.6) 
where λ D is the first eigenvalue of the operator in (2.1), but with Dirichlet boundary condition. Near H c 2 (κ), a transition takes place between surface and bulk superconductivity. At the level of the energy, this transition is described in [START_REF] Fournais | Nucleation of bulk superconductivity close to critical magnetic field[END_REF]. The bulk distribution of the superconductivity near H c 2 is computed in [START_REF] Kachmar | The Ginzburg-Landau order parameter near the second critical field[END_REF].

We recall that Θ 0 < 1 . Hence, as expected, H c 2 (κ) < H c 3 (κ) for κ sufficiently large. For the identification of the critical field H c 1 (κ), we refer to Sandier-Serfaty [START_REF] Sandier | Vortices for the Magnetic Ginzburg-Landau Model[END_REF]. A natural question is to extend this discussion in the variable magnetic field case (i.e. B 0 is a non-constant function).

1 Initially (see [START_REF] Lu | Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity[END_REF]), one should start by defining four critical values according to locally or globally minimizing solutions. Following the terminology of [START_REF] Fournais | Spectral Methods in Surface Superconductivity[END_REF], these are upper or lower, global or local fields. The four fields are proved to be equal in [START_REF] Fournais | Spectral Methods in Surface Superconductivity[END_REF].

2 Assuming the monotonicity of t → λ D (tA0) for t large.

2.2.

The case of a non vanishing exterior magnetic field. Here we discuss the situation where the magnetic field B 0 is a non-constant function such that B 0 (x) = 0 everywhere in Ω .

In this case, it is proved by Lu-Pan [25, Theorem 1] that,

λ(HκA 0 ) ∼ (Hκ) min inf x∈Ω |B 0 (x)|, Θ 0 inf x∈∂Ω |B 0 (x)| , (2.7) 
as Hκ → ∞ . Basically, this leads to consider two cases as follows.

Surface superconductivity. First, we assume that

inf x∈Ω |B 0 (x)| > Θ 0 inf x∈∂Ω |B 0 (x)| . (2.8)
In this case, the phenomenon of surface superconductivity observed in the constant magnetic field case is preserved. More precisely, superconductivity starts to appear at the points where (B 0 ) /∂Ω is minimal. The critical value H c 3 (κ) is still defined by (2.2). If the minima of (B 0 ) /∂Ω are nondegenerate, then the monotonicity of the eigenvalue λ(t A 0 ) for large values of t is established in [START_REF] Raymond | Sharp asymptotics for the Neumann Laplacian with variable magnetic field: case of dimension2[END_REF]Section 6]. Consequently, we get when κ is sufficiently large,

H c 3 (κ) ∼ κ Θ 0 inf x∈∂Ω |B 0 (x)| . (2.9)
Tentatively, one could think to define H c 2 (κ) either by

H c 2 (κ) = κ inf x∈Ω |B 0 (x)| , (2.10) 
or by

λ D (H c 2 (κ)κA 0 ) = κ 2 , (2.11) 
where λ D is the first eigenvalue of the operator in (2.1) with Dirichlet boundary condition. Notice that both formulas agree with their analogues in the constant magnetic field case (see (2.5) and (2.6)). Also, the values of H c 2 (κ) given in (2.10) or (2.11) asymptotically match as κ → ∞ .

In order that the definition of H c 2 (κ) in (2.11) be consistent, one should prove monotonicity of t → λ D (tA 0 ) for large of values of t. This will ensure that (2.11) assigns a unique value of H c 2 (κ). However, such a monotonicity is not proved yet. The definition in (2.10) was proposed in [START_REF] Fournais | Spectral Methods in Surface Superconductivity[END_REF]. Interior onset of superconductivity. Here we assume that

inf x∈Ω |B 0 (x)| < Θ 0 inf x∈∂Ω |B 0 (x)| .
(2.12)

In this case, the onset of superconductivity near the surface of the domain disappears. If one decreases gradually the intensity of the magnetic field H from ∞, then superconductivity will start to appear near the minima of the function |B 0 |, i.e. inside a compact subset of Ω.

In this situation, we need not distinguish between the critical fields H c 2 (κ) and H c 3 (κ), since surface superconductivity is absent here. Consequently, we expect that,

H c 2 (κ) = H c 3 (κ) ∼ κ inf x∈Ω |B 0 (x)| . ( 2 

.13)

A partial justification of this fact can be done using the linearized Ginzburg-Landau equation near a normal solution. Actually, we may also define H c 3 (κ) and H c 2 (κ) as the values verifying (2.2) and (2.6). It should be noticed here that the vector field A 0 satisfies curl A 0 = B 0 and B 0 cannot be constant. Under the assumption (2.12), the known spectral asymptotics (which are actually the same in this case) of the Dirichlet and Neumann eigenvalues will lead us to the asymptotics given in the righthand side of (2.13). Under the additional assumption that inf x∈Ω |B 0 (x)| is attained at a unique minimum in Ω and that this minimum is non degenerate, a complete asymptotics of λ N (tA 0 ) can be given (see , Helffer-Kordyukov [START_REF] Helffer | Semiclassical spectral asymptotics for a two-dimensional magnetic Schrödinger operator: The case of discrete wells. Spectral Theory and Geometric Analysis[END_REF][START_REF] Helffer | Accurate semiclassical spectral asymptotics for a two-dimensional magnetic Schrödinger operator[END_REF], Raymond-Vu Ngoc [START_REF] Raymond | Geometry and spectrum in 2D magnetic wells[END_REF] ) and the monotonicity/strong diamagnetism property holds for large values of t (see Chapter 3 in [START_REF] Fournais | Spectral Methods in Surface Superconductivity[END_REF]). Hence the definition of H c 3 (κ) is clear in this case.

Besides the aforementioned linearized calculations, the results of [START_REF] Attar | The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field[END_REF] can be used to justify the equality of the critical fields H c 2 (κ) and H c 3 (κ) as well as their definition in (2.13).

First, we observe that if C is a positive constant such that C <

1 inf x∈Ω |B 0 (x)|
, and if

H ≤ Cκ , then the open set D = {x ∈ Ω : |B 0 (x)| < 1 C } = ∅ is non-empty. Now, Theorem 1.4 of [3] asserts that, ∃ κ 0 > 0 , ∃ D > 0, D |ψ(x)| 4 dx ≥ D > 0 ,
for any κ ≥ κ 0 and any minimizer (ψ, A) of the functional in (1.1). Consequently, a minimizer can not be a normal solution.

Now, suppose that the constant C satisfies

C > 1 inf x∈Ω |B 0 (x)|
.

If H ≥ Cκ, then Theorem 1.4 of [START_REF] Attar | The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field[END_REF] asserts that any critical point (ψ, A) of (1.1) satisfies,

lim κ→∞ Ω |ψ(x)| 4 dx = 0 ,
hence, loosely speaking, critical points are nearly normal solutions. However, repeating the proof given in [8, Section 10.4] and using the asymptotics of the first eigenvalue in (2.7), one can get that such critical points are indeed normal solutions.

The foregoing discussion shows that the value appearing in the right hand side of (2.13) is indeed critical.

2.3.

The case of a vanishing exterior magnetic field. We now discuss the case when B 0 vanishes along a curve, first considered in [START_REF] Pan | Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains[END_REF] and then in [START_REF] Attar | The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field[END_REF]. We assume that

|B 0 | + |∇B 0 | = 0 in Ω , (2.14) 
which ensures that B 0 vanishes non-degenerately.

At each point of B -1 0 (0)∩Ω, Pan-Kwek [START_REF] Pan | Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains[END_REF] introduce a reduced model (a Montgomery operator parameterized by the intensity of the magnetic field at this point) whose ground state energy, denoted by λ 0 , captures the 'local' ground state energy of the Schrödinger operator in (2.1).

Similarly, at every point x of B -1 0 (0) ∩ ∂Ω, a toy operator is defined on R 2 + parameterized (up to unitary equivalence) by the intensity of B 0 (x) and the angle θ(x) ∈ [0, π/2) between the unit normal of the boundary and ∇B 0 (x). The ground state energy of this toy operator is denoted by λ 0 (R + , θ(x)).

The leading order behavior of the ground state energy of the operator in (2.1) is now described as follows [START_REF] Pan | Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains[END_REF],

λ(HκA 0 ) ∼ (Hκ) 2/3 α 2/3 1 , (2.15) 
as Hκ → ∞ .

Here

α 1 = min λ 3/2 0 min x∈Γ blk |∇B 0 (x)| , min x∈Γ bnd λ 0 (R + , θ(x))|∇B 0 (x)| , (2.16 
) and

Γ blk = {x ∈ Ω : B 0 (x) = 0} (2.
Γ bnd = {x ∈ ∂Ω : B 0 (x) = 0} . (2.18)
The critical value H c 3 (κ) could tentatively be defined as the solution of the equation in (2.2). However, when B 0 = curl A 0 vanishes, monotonicity of t → λ(tA 0 ) is not a direct application of Chapter 3 in [START_REF] Fournais | Spectral Methods in Surface Superconductivity[END_REF] (see the discussion below). Nevertheless, for the various definitions of H c 3 (κ) proposed in [START_REF] Pan | Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains[END_REF], one always get that, for large values of κ, 

H c 3 (κ) ∼ κ 2 α 1 . ( 2 
λ 0 (R + , θ(x))|∇B 0 (x)| , (2.20) 
the phenomenon of surface superconductivity is observed in decreasing magnetic fields. Superconductivity will nucleate near the minima of the function

Γ bnd x → λ 0 (R + , θ(x))|∇B 0 (x)| .
In this case, a natural definition of H c 2 (κ) can be,

H c 2 (κ):= κ 2 α 2 , (2.21) 
for large values of κ .

Here

α 2 = λ 3/2 0 min x∈Γ blk |∇B 0 (x)| .
The methods in [START_REF] Fournais | Strong diamagnetism for general domains and application[END_REF] suggest that the monotonicity3 of the eigenvalue λ(tA 0 ) for large values of t can be obtained in the case when (2.20) is satisfied. A necessary step is to find the second correction term in (2.15). The work in [START_REF] Miqueu | Equation de Schrödinger avec un champ magnétique qui s'annule[END_REF] is along this direction. (Recall that λ(tA 0 ) is the eigenvalue of the operator in (2.1) with Neumann condition).

Clearly, the condition in (1.9) is violated when the intensity of the magnetic field H is comparable with the critical value H c 3 (κ) ≈ κ 2 , thereby preventing the application of the results of Attar [START_REF] Attar | The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field[END_REF]. The case with pinning will be analyzed in [START_REF] Attar | Pinning with a variable magnetic field of the two dimensional Ginzburg-Landau model[END_REF].

The limiting problems

In this section, we define the two limiting functions E(•) and g(•) appearing in Theorem 1.1. The limiting function g(•), that we might call the bulk energy, is defined previously in [START_REF] Sandier | The decrease of bulk superconductivity close to the second critical field in the Ginzburg-Landau model[END_REF][START_REF] Fournais | The ground state energy of the three dimensional Ginzburg-Landau functional. Part I. Bulk regime[END_REF]. It is a characteristic of superconducting samples subject to a constant magnetic field. The limiting function E(•) arises as the limit of a certain simplified Ginzburg-Landau functional with a magnetic field vanishing along a line. The construction of the limiting function E(•) occupies most of this section.

This section contains three important theorems:

• Theorem 3.8 contains the definition of the limiting function E(•) .

• Theorem 3.11 displays a relationship between the limiting function E(•) and the energy of a simplified functional defined in a disc domain. • Theorem 3.12 contains a remarkable property of the function E(•). The proof of this property uses the function g(•) ;

The conclusions in the above three theorems will be used along the rest of this paper.

The Montgomery operator.

Consider the self-adjoint operator in L 2 (R 2 )

P = -∂ x 1 -i x 2 2 2 2 -∂ 2 x 2 . (3.1)
The ground state energy

λ 0 = inf σ(P ) (3.2)
of the operator P is described using the Montgomery operator as follows.

If τ ∈ R, let λ(τ ) be the first eigenvalue of the Montgomery operator [START_REF] Montgomery | Hearing the zero locus of a magnetic field[END_REF],

P (τ ) = - d 2 dx 2 2 + x 2 2 2 + τ 2 , in L 2 (R) . (3.3) 
Notice that the eigenvalue λ(τ ) is positive, simple and has a unique positive eigenfunction ϕ τ of L 2 norm 1. There exists a unique τ 0 ∈ R such that

λ 0 = λ(τ 0 ) . (3.4) 
Hence λ 0 > 0. We write

ϕ 0 = ϕ τ 0
Clearly, the function

ψ 0 (x 1 , x 2 ) = e -iτ 0 x 1 ϕ 0 (x 2 ) , (3.5) 
is a bounded (generalized) eigenfunction of the operator P with eigenvalue λ 0 . Moreover (see [START_REF] Helffer | The Montgomery operator revisited[END_REF] and references therein) the minimum of λ at τ 0 is non-degenerate.

We collect some important properties of the family of operators P (τ ).

Theorem 3.1.

([18]) (1) τ 0 < 0 . (2) lim τ →±∞ λ(τ ) = ∞ . ( 3 
)
The function λ(τ ) is increasing on the interval [0, ∞) .

A one dimensional energy.

Let b > 0 and α ∈ R. Consider the functional

E 1D α,b (f ) = ∞ -∞ |f (t)| 2 + t 2 2 + α 2 |f (t)| 2 -b |f (t)| 2 + b 2 |f (t)| 4 dt , (3.6) 
defined over configurations in the space

B 1 (R) = {f ∈ H 1 (R; R) : t 2 f ∈ L 2 (R)} .
In light of Theorem 3.1, we may define two functions z 1 (b) and z 2 (b) satisfying,

z 1 (b) < τ 0 < z 2 (b) , λ -1 [τ 0 , b) = (z 1 (b), z 2 (b)) . (3.7) Notice that, if b < λ(0) , then z 2 (b) < 0 . This follows from (3) in Theorem 3.1. Theorem 3.2. ([8, Sec. 14.2]) (1)
The functional E 1D α,b has a non-trivial minimizer in the space B 1 (R) if and only if λ(α) < b . Furthermore, a non-trivial minimizer f α can be found which is a positive function and ±f α are the only real-valued minimizers.

(

2) Let b(α, b) = inf{E 1D α,b (f ) : f ∈ B 1 (R)} . (3.8)
There exists

α 0 ∈ (z 1 (b), z 2 (b)) such that, b(α 0 , b) = inf α∈R b(α, b) . (3.9) (3) If b < λ(0), then α 0 < 0 . ( 4 
) (Feynman-Hellmann) ∞ -∞ t 2 2 + α 0 |f α 0 (t)| 2 dt = 0 . (3.10)
The proof of this theorem can be obtained by adapting the analysis of [8, Sec. 14.2] devoted to the functional

F 1D α,b (f ) = ∞ 0 |f (t)| 2 + (t + α) 2 |f (t)| 2 -b|f (t)| 2 + b 2 |f (t)| 4 dt . (3.11)
We note for future use that a minimizer of E 1D α,b satisfies the Euler-Lagrange equation:

-f (t) + ( t 2 2 + α) 2 f (t) -bf (t) + bf (t) 3 = 0 , (3.12) 
and that f ∈ S(R) .

According to Theorem 3.2, we observe that the functional

E 1D α,b has non-trivial minimizers if and only if α ∈ (z 1 (b), z 2 (b)). 3.3. Reduced Ginzburg-Landau functional. Let L > 0, R > 0, S R = (-R, R) × R and A app (x) = - x 2 2 2 , 0 , x = (x 1 , x 2 ) ∈ S R = (-R, R) × R . (3.13)
Consider the functional

E L,R (u) = S R |(∇ -iA app )u| 2 -L -2/3 |u| 2 + L -2/3 2 |u| 4 dx , (3.14) 
and the ground state energy

e gs (L; R) = inf{E L,R (u) : (∇ -iA app )u ∈ L 2 (S R ) , u ∈ L 2 (S R ) , and u = 0 on ∂S R } . (3.15)
Following the analysis in [START_REF] Pan | Surface superconductivity in applied magnetic fields above HC 2[END_REF] and [START_REF] Fournais | The ground state energy of the three dimensional Ginzburg-Landau functional. Part II. Surface regime[END_REF]Theorem 3.6], we can prove that the functional in (3.14) has a minimizer. If ϕ L,R denotes such a minimizer, then we will prove in Theorem 3.3,

|x 2 | 3/2 (∇ -iA app )ϕ L,R ∈ L 2 (S R ) , |x 2 | 1/2 ϕ L,R ∈ L 2 (S R ) and |x 2 | 3/2 |ϕ L,R | 2 ∈ L 2 (S R ) .
(3.16) Useful properties of the minimizer ϕ L,R are collected in the next theorem. They give a rough description of the decay of the minimizer ϕ L,R at infinity. Most importantly, the estimates in (3.20) and (3.18) describe the decay at infinity and are valid when R → ∞ and L → 0.

The estimates obtained in Theorem 3.3 will serve in computing various quantities involving ϕ L,R . With these estimates in hand, one can cut the domain of the variable x 2 at the price of a small controlled error (see the proof of Theorem 3.11).

Theorem 3.3. Let L > 0, R > 0 and ϕ L,R be a minimizer of the functional E L,R in (3.14). It holds, ϕ L,R ∞ ≤ 1 . (3.17)
Furthermore, there exists a universal positive constants C such that the minimizer ϕ L,R satisfies the following inequalities:

S R ∩{|x 2 |≥4L -2/3 } |x 2 | |ϕ L,R | 2 dx ≤ CL 2/3 R , (3.18) S R ∩{|x 2 |≥6L -2/3 } |x 2 | 3 |ϕ L,R | 4 dx ≤ CL 4/3 R , (3.19) 
and

S R ∩{|x 2 |≥6L -2/3 } |x 2 | 3 (∇ -iA app )ϕ L,R | 2 dx ≤ C L 2/3 R , (3.20) 
Proof.

The minimizer ϕ L,R satisfies the Ginzburg-Landau equation,

-(∇ -iA app ) 2 ϕ L,R = L -2/3 (1 -|ϕ L,R | 2 )ϕ L,R . (3.21) 
Hence (3.17) results from the strong maximum principle.

In the sequel, if x denotes a variable point in S R , then the coordinates of x will be denoted

(x 1 , x 2 ) so that x 1 ∈ (-R, R) and x 2 ∈ (-∞, +∞). For m > 4L -2/3 , we construct η m ∈ C ∞ c (R) and ζ as functions satisfying supp η m ⊂ (-2m, 2m) , η m = 1 in (-m, m) , |η m | ≤ C m in R , and 
ζ = 0 in [-2L -2/3 , 2L -2/3 ] , ζ = 1 in R \ [-4L -2/3 , 4L -2/3 ] , |ζ | ≤ CL 2/3 in R 2 ,
where C is a constant independent of m and L.

Below, ζ and η m will denote the associated functions on R 2 , i.e.

(x 1 , x 2 ) → η m (x 2 ) and (x 1 , x 2 ) → ζ(x 1 , x 2 ).
We have the simple decomposition formula,

S R |(∇ -iA app )(ζη m ϕ L,R )| 2 -L -2/3 |ζη m ϕ L,R | 2 + L -2/3 2 ζ 2 η 2 m |ϕ L,R | 4 dx = S R |(ζη m ) ϕ L,R | 2 dx ≤ CR m + CRL 2/3 . (3.22)
The upper bound for the integral in the r.h.s. follows of the condition on the support of η m , ζ , the bounds

|η m | ≤ C/m, |ζ | ≤ CL 2/3 and ϕ L,R ∞ ≤ 1 (see (3.17)). Since ζη m ϕ L,R ∈ H 1 0 (S R ) and ζ = 0 in {|x 2 | ≤ 2L -2/3 }, then we can write, S R |(∇ -iA app )(ζη m ϕ L,R )| 2 dx ≥ S R | curl A app | |ζη m ϕ L,R | 2 dx = {|x 2 |≥2L -2/3 } |x 2 | |ζη m ϕ L,R | 2 dx . (3.23)
In that way, we infer from (3.22),

{x∈S R : |x 2 |≥2L -2/3 } |x 2 | 2 |ζη m ϕ L,R | 2 dx ≤ CR m + CRL 2/3 .
Sending m to +∞ (and using monotone convergence), we arrive to

{x∈S R : |x 2 |≥2L -2/3 } |x 2 | 2 |ζϕ L,R | 2 dx ≤ CL 2/3 R . Since ζ = 1 in {|x 2 | ≥ 4L -2/3 }, we get further, {x∈S R : |x 2 |≥4L -2/3 } |x 2 | 2 |ϕ L,R | 2 dx ≤ CL 2/3 R . (3.24) This proves that |x 2 | 1/2 ϕ L,R ∈ L 2 (S R
) and the estimate in (3.18).

Next we prove that

|x 2 | 3/2 |ϕ L,R | 2 ∈ L 2 (S R ). To that end, let χ ∈ C ∞ (R) be a function (of the variable x 2 ) satisfying, χ(x 2 ) = 0 if |x 2 | ≤ 4L -2/3 , χ(x 2 ) = |x 2 | 3/2 if |x 2 | ≥ 6L -2/3 ,
and |χ (x 2 )| ≤ CL -1/3 if |x 2 | ≤ 6L -2/3 .
We have the decomposition formula,

S R |(∇-iA app )(η m χϕ L,R )| 2 -L -2/3 |η m χϕ L,R | 2 + L -2/3 2 η 2 m χ 2 |ϕ L,R | 4 dx = S R |(η m χ) ϕ L,R | 2 dx .
(3.25) Using the bounds satisfied by η m , χ and η m , the condition on the support of η m and the inequality in (3.24), we may write, for all m > 6L -4/3 ,

S R |(η m χ) ϕ L,R | 2 dx ≤ C {x∈S R : m≤|x 2 |≤2m} |x 2 | 3 (η m (x 2 )) 2 |ϕ L,R | 2 dx + C S R |χ (x 2 )| 2 η 2 m |ϕ L,R | 2 dx ≤ C {x∈S R : |x 2 |≥4L -2/3 } |x 2 | |ϕ L,R | 2 dx + L -2/3 {x∈S R : |x 2 |≥4L -2/3 } |ϕ L,R | 2 dx ≤ CL 2/3 R . (3.26)
Next, we use the inequality

S R |(∇ -iA app )(η m χϕ L,R )| 2 dx ≥ S R | curl A app | |η m χϕ L,R | 2 dx = S R |x 2 | |η m χϕ L,R | 2 dx ,
the fact that χ = 0 for |x 2 | ≤ 4L -2/3 to infer from (3.25) and (3.26) ,

L -2/3 2 S R η 2 m χ 2 |ϕ L,R | 4 dx ≤ CL 2/3 R . Sending m to +∞, we get that |x 2 | 3/2 |ϕ L,R | 2 ∈ L 2 (S R
) and the estimate in (3.19). Also, we infer from (3.25) that,

3 4 S R |(∇ -iA app )(η m χϕ L,R )| 2 dx ≤ CL 2/3 R . (3.27)
Using a simple commutator argument, we write,

S R |(∇-iA app )(η m χϕ L,R )| 2 dx ≥ 1 2 S R (η m χ) 2 |(∇-iA app )ϕ L,R | 2 dx-4 S R |(η m χ) ϕ L,R (x)| 2 dx .
By (3.26), we get further,

S R |(∇ -iA app )(η m χϕ L,R )| 2 dx ≥ 1 2 S R (η m χ) 2 |(∇ -iA app )ϕ L,R | 2 dx -CL 2/3 R .
We insert this into (3.27) to get,

3 4 S R (η m χ) 2 |(∇ -iA app )ϕ L,R | 2 dx ≤ CL 2/3 R . Sending m to +∞, we deduce that |x 2 | 3/2 (∇ -iA app )ϕ L,R ∈ L 2 (S R
) and the estimate in (3.20).

Remark 3.4. We can bootstrap the argument in the proof of Theorem 3.3 to get the following improvement of (3.18): For all n ∈ N, there exists C n > 0 such that, for all L > 0,

S R ∩{|x 2 |≥4nL -2/3 } |x 2 | |ϕ L,R | 2 dx ≤ C n L 2n/3 R .
As a consequence of Theorem 3.3, we can obtain a uniform estimate of the energy components of a minimizer ϕ L,R . Proposition 3.5. Let Λ > 0 . There exists a positive constant C Λ such that, for all L ∈ (0, Λ) and R > 0 ,

S R |ϕ L,R (x)| 2 dx ≤ C Λ L -2/3 R and S R |(∇ -iA app )ϕ L,R | 2 dx ≤ C Λ L -4/3 R .
Proof. As a consequence of the inequalities in (3.17) and (3.18), we have,

S R |ϕ L,R (x)| 2 dx = S R ∩{|x 2 |≤4L -2/3 } |x 2 ||ϕ L,R (x)| 2 dx + S R ∩{|x 2 |≥4L -2/3 } |x 2 ||ϕ L,R (x)| 2 dx ≤ 8L -2/3 R + CL 4/3 = L -2/3 (8 + CL 2 ) . Since L -2/3 (1 + CL 2 ) ∼ 8L -2/3 when L → 0 + , we get a constant C Λ > 0 such that, for all L ∈ (0, Λ), S R |ϕ L,R (x)| 2 dx ≤ C Λ L -2/3 .
To finish the proof of the theorem, we multiply both sides of (3.21) by ϕ L,R and integrate by parts. In that way we obtain

S R |(∇ -iA app )ϕ L,R | 2 dx ≤ L -2/3 S R |ϕ L,R (x)| 2 dx ≤ C Λ L -4/3 R .
The value of the ground state energy defined in (3.15) is related to the eigenvalue λ 0 in (3.4). We will find that the energy vanishes when L ≥ λ -3/2 0 , and we will give a rough estimate of the energy when L → λ -3/2 0 . Proposition 3.6. For R > 0, L > 0, if e gs (L; R) denotes the ground state energy in (3.15), it holds:

(1)

If L ≥ λ -3/2 0 , then e gs (L; R) = 0 . (2) There exist positive constants C 1 , C 2 and C 3 such that, if L < λ -3/2 0 and R > 0, then -C 1 L -4/3 R ≤ e gs (L; R) (1 -λ 0 L 2/3 ) ≤ -C 2 L -2/3 R + C 3 R . (3.28) Proof. Suppose that L ≥ λ -3/2 0 . Let u ∈ H 1 0 (S R ).
The min-max principle and the condition on L tell us that E L,R (u) ≥ 0 and consequently e gs (L; R) ≥ 0 . But e gs (L; R) ≤ E L,R (0) = 0 . This proves the statement in [START_REF] Aftalion | Lowest Landau level approach in superconductivity for the Abrikosov lattice close to Hc2[END_REF]. Now, suppose that L < λ

-3/2 0 . Let θ ∈ C ∞ c (R) be a function satisfying, supp θ ⊂ (-1, 1) , 0 ≤ θ ≤ 1 , θ = 1 in (-1/2, 1/2) , and let θ R (x) := θ(x/R) . Let t > 0 and u(x 1 , x 2 ) = t θ R (x 1 ) ψ 0 (x 1 , x 2 ) ,
where ψ 0 is the function in (3.5).

Recall that ψ 0 satisfies -(∇ -iA app ) 2 ψ 0 = λ 0 ψ 0 . An integration by parts yields,

S R |(∇ -iA app )u| 2 dx = t 2 θ R (x 1 ) 2 ψ 0 , -(∇ -iA app ) 2 ψ 0 + S R |φ 0 (x 2 )θ R (x 1 )| 2 dx = t 2 θ R (x 1 ) 2 ψ 0 , -(∇ -iA app ) 2 ψ 0 + 1 R θ (x 1 ) 2 dx 1 = t 2 λ 0 S R |θ R (x 1 )ψ 0 (x)| 2 dx + C R .
As a consequence, we get that,

e gs (L, R) ≤ E L,R (u) ≤ t 2 λ 0 -L -2/3 S R |θ R ψ 0 | 2 dx + t 2 C R + t 4 L -2/3 2 S R |θ R (x 1 )ψ 0 (x)| 4 dx . ≤ t 2 R λ 0 -L -2/3 + C R + RνL -2/3 t 4 .
Here

ν = R |ϕ 0 (x 2 )| 4 dx 2
and ϕ 0 is the L 2 -normalized function introduced in (3.17). Selecting t such that

λ 0 -L -2/3 + νL -2/3 t 2 = 1 2 λ 0 -L -2/3
finishes the proof of the upper bound. The lower bound is obtained as follows. Let ϕ L,R be the minimizer in Theorem 3.3. It follows from the min-max principle that,

e gs (L; R) = E L,R (ϕ L,R ) ≥ L -2/3 (λ 0 L 2/3 -1) S R |ϕ L,R (x)| 2 dx .
Under the assumption L < λ

-2/3 0 , Proposition 3.5 tells us that S R |ϕ L,R (x)| 2 dx ≤ C 1 L -2/3 R .
As a consequence, we get the lower bound.

Remark 3.7. In light of Propositions 3.5 and 3.6, we observe that:

(1) If L ≥ λ -2/3 0
, then ϕ L,R = 0 is the minimizer of the functional in (3.14) realizing the ground state energy in (3.15)

. (2) If L ≤ λ -2/3 0 , every minimizer ϕ L,R satisfies, S R |(∇ -iA app )ϕ L,R (x)| 2 dx ≤ CL -4/3 , S R |ϕ L,R (x)| 2 dx ≤ CL -2/3 R , (3.29)
where C is a universal constant.

Notice that the energy E L,R (u) in (3.14) is invariant under translation along the x 1 -axis. This allows us to follow the approach in [START_REF] Fournais | The ground state energy of the three dimensional Ginzburg-Landau functional. Part I. Bulk regime[END_REF][START_REF] Pan | Surface superconductivity in applied magnetic fields above HC 2[END_REF] and obtain that the limit of

egs(L;R) R as R → ∞ exists. The precise statement is: Theorem 3.8. Given L > 0, there exists E(L) ≤ 0 such that, lim R→∞ e gs (L; R) 2R = E(L) .
The function (0, ∞) L → E(L) ∈ (-∞, 0] is continuous, monotone increasing and

E(L) = 0 if and only if L ≥ λ -3/2 0 . Furthermore, ∀ R > 0 , ∀L > 0 , E(L) ≤ e gs (L; R) 2R , (3.30) 
and there exists a constant C such that

∀ R ≥ 2 , ∀L > 0 , e gs (L; R) 2R ≤ E(L) + C 1 + L -2/3 R -2/3 . (3.31) Proof.
There is nothing to prove when L ≥ λ -3/2 0 , hence we assume that

0 < L < λ -3/2 0 .
Step 1. Let n ≥ 2 be a natural number, a ∈ (0, 1) and consider the family of strips

I j = -n 2 -1 -a + (2j -1)(1 + a 2 ) , -n 2 -1 + (2j + 1)(1 + a 2 ) × R , (j ∈ Z) .
Notice that the width of each strip in the family (I j ) is 2(1 + a), and if two strips in the family overlap, then the width of the overlapping region is a. Consider a partition of unity of R 2 such that,

j |χ j | 2 = 1 , 0 ≤ χ j ≤ 1 , j |∇χ j | 2 ≤ C a 2 , supp χ j ⊂ I j ,
where C is a universal constant. Define χ R,j (x) = χ j (x/R). That way we obtain the new partition of unity,

j |χ R,j | 2 = 1 , 0 ≤ χ R,j ≤ 1 , j |∇χ R,j | 2 ≤ C a 2 R 2 , supp χ R,j ⊂ I R,j , where I R,j = {R x : x ∈ I j }. Notice that (I R,j ) j∈{1,2,••• ,n 2 } is a covering of S n 2 R = (-n 2 R, n 2 R) × R by n 2 strips, each having side-length 2(1 + a)R . Let ϕ L,n 2 R ∈ H 1 0 (S n 2 R
) be the minimizer in Theorem 3.3. It holds the decomposition, e gs (L;

n 2 R) = E L,n 2 R (ϕ L,n 2 R ) ≥ n 2 j=1 E L,n 2 R (χ R,j ϕ L,n 2 R ) -|∇χ R,j | ϕ L,n 2 R 2 L 2 (S n 2 R ) =   n 2 j=1 E L,n 2 R (χ R,j ϕ L,n 2 R )   - S n 2 R   n 2 j=1 |∇χ R,j | 2   | ϕ L,n 2 R | 2 dx ≥   n 2 j=1 E L,n 2 R (χ R,j ϕ L,n 2 R )   - Cn 2 L -2/3 a 2 R [By Remark 3.7] .
The function χ R,j ϕ L,n 2 R is supported in an infinite strip of width 2(1 + a)R . Since the energy E L,R (u) is (magnetic) translation-invariant along the x 1 direction, we get

∀ j , E L,n 2 R (χ R,j ϕ L,n 2 R ) ≥ e gs (L; (1 + a)R)
and consequently,

e gs (L; n 2 R) ≥ n 2 e gs (L; (1 + a)R) -C n 2 L -2/3 a 2 R .
Dividing both sides of the above inequality by n 2 R and using the estimate in Proposition 3.6, we get e gs (L;

n 2 R) n 2 R ≥ e gs (L; (1 + a)R) R -C aL -2/3 + L -2/3 a 2 R 2 .
Using the trivial inequality (1 + a) ≤ (1 + a) 2 , we finally obtain:

e gs (L; n 2 R) n 2 R ≥ e gs (L; (1 + a) 2 R) (1 + a) 2 R -C aL -2/3 + L -2/3 a 2 R 2 . (3.32)
Step 2. Let > 0 . Let us define,

d( , L) = e gs (L; 2 ) 2 , f ( , L) = d( , L) 2 .
Clearly, the function → d( , L) is decreasing. Thanks to Proposition 3.6, we observe that d( , L) ≤ 0 and f ( , L) is bounded. Furthermore, (3.32) used with R = 2 tells us that,

f (n , L) ≥ f (1 + a) , L -C aL -2/3 + 1 a 2 2 .
By [16, Lemma 3.10], we get the existence of E(L) such that Step 3. Using a comparison argument and the translation invariance of the energy E L,R (u) , we observe that, ∀ n ∈ N , e gs (L; n 2 R) ≤ n 2 e gs (L; R) . Dividing both sides of the above inequality by 2n 2 R and taking n → ∞ , we get,

lim →∞ f ( , L) = E(L) .
E(L) = lim n→∞ e gs (L; n 2 R) 2n 2 R ≤ e gs (L; R) 2R .
The matching lower bound for E(L) is obtained by taking n → ∞ in (3.32), selecting a = R -2/3 and replacing R by (1 + a) 2 R .

Step 4. Proposition 3.6 tells us that

E(L) = 0 if and only if L ≥ λ -3/2 0
. The continuity and monotonicity properties of E(L) are easily obtained through the study of the energy E L,R (u) as a function of L along the same methods used in [START_REF] Fournais | The ground state energy of the three dimensional Ginzburg-Landau functional. Part II. Surface regime[END_REF]Thm 3.13].

It would be desirable to establish a simpler expression of E(L) when L ∈ (λ(0) -3 2 , λ

-3 2 0 ) : Conjecture 3.9. Let λ be the function introduced in (3.3). If λ 0 < L -2/3 < λ(0) , (3.33) then E(L) = E 1D (L -2/3 ) . Here, for b > 0, E 1D (b) = b(α 0 , b) and b(α 0 , b) is defined in (3.9).
In the case of a constant magnetic field, a similar statement to Conjecture 3.9 has been conjectured in [START_REF] Pan | Surface superconductivity in applied magnetic fields above HC 2[END_REF]. A partial affirmative answer was given in [START_REF] Almog | The distribution of surface superconductivity along the boundary: On a conjecture of X[END_REF] and [START_REF] Fournais | Superconductivity between HC2 and HC3[END_REF]. The conjecture has been proved recently in [START_REF] Correggi | Boundary behavior of the Ginzburg-Landau order parameter in the surface superconductivity regime[END_REF][START_REF] Correggi | On the Ginzburg-Landau functional in the surface superconductivity regime[END_REF]. The methods in [START_REF] Correggi | Boundary behavior of the Ginzburg-Landau order parameter in the surface superconductivity regime[END_REF][START_REF] Correggi | On the Ginzburg-Landau functional in the surface superconductivity regime[END_REF] do not yield an affirmative answer for Conjecture 3.9.

Remark 3.10. In [START_REF] Helffer | The Montgomery operator revisited[END_REF], the following numerical estimate is given: λ 0 ≈ 0.57 . Furthermore, the lower bound:

λ(0) ≤ 3 4 4 3 < 1 , (3.34) 
is proved. Finally the strict inequality λ 0 < λ(0) is a consequence of the uniqueness of the point of minimum of the function λ(τ ).

3.4. The approximate functional. Let ν ∈ [0, 2π) be a given angle. Define the magnetic potential:

A app,ν (x) = - |x| 2 2 n , n = (cos ν, sin ν) , x = (x 1 , x 2 ) ∈ R 2 . (3.35)
Clearly, ν is the angle between the x 1 -axis and the line {curl A app,ν = 0}. Let κ > 0, ∈ (0, 1), D = D(0, ) the disc centered at 0 and of radius , and L > 0. Consider the functional:

G(ψ) = D |(∇ -iLκ 3 A app,ν )ψ| 2 -κ 2 |ψ| 2 + κ 2 2 |ψ| 4 dx , (3.36) 
together with the ground state energy

E gs,r (κ, L, ν; ) = inf{G(ψ) : ψ ∈ H 1 0 (D )} . (3.37) The change of variable x → √ m κ x yields E gs,r (κ, L; ) = e gs,disc (ν, L; R) , (3.38) 
where

m = L 2/3 , R = √ m κ , D R = D(0, R), E ν,L,R (u) = D R |(∇ -iA app,ν )u| 2 -L -2/3 |u| 2 + L -2/3 2 |u| 4 dx , (3.39) 
and e gs,disc (ν,

L; R) = inf{E ν,L,R (u) : u ∈ H 1 0 (D R )} . (3.40)
We now show that the ground state energy e gs,disc (ν, L; R) is independent of ν. Let u be a given function in H 1 0 (D R ). We perform the rotation

(x 1 , x 2 ) → x 1 cos ν + x 2 sin ν , -x 1 sin ν + x 2 cos ν ,
which transforms the function u to a new function u, then the gauge transformation u → v = e ix 3 1 /6 u and get

E ν,L,R (u) = D R |(∇ -iA app )v| 2 -L -2/3 |v| 2 + L -2/3 2 |v| 4 dx =: G L,R (v) ,
where A app is introduced in (3.13).

Hence we get, e gs,disc (ν, Moreover, there exists a constant C such that, for L > 0, a ∈ (0, 1/2), and

L; R) = inf{G L,R (v) : v ∈ H 1 0 (D R )} . ( 3 
R > 4 max a -1/2 L -2/3 , 1 ,
we have

e gs,disc (0, L; R) ≤ e gs L; (1 -a)R + C a 1/2 1 + L 2/3 aR 2 . (3.43)
Proof.

The independence of ν was observed in (3.41). From now on we can take ν = 0 .

Lower bound. Let u ∈ H 1 0 (D R ) be a minimizer of the functional G L,R . The function u can be extended by 0 to a function in H 1 0 (S R ). Thus, e gs,disc (0,

L; R) = G L,R (u) = E L,R (u) ≥ e gs (L; R) . Upper bound. Let a ∈ (0, 1 2 ), R = (1 -a)R and v = ϕ L, R ∈ H 1 0 (S R ) a minimizer of G L, R . Remember that ϕ L, R = 0 when L ≥ λ -3/2 0 (Proposition 3.6). We impose the condition √ a R > 4L -2/3 . (3.44) Consider a test function χ ∈ C ∞ c (R) such that,      0 ≤ χ ≤ 1 , suppχ ⊂ (-a(2 -a) R, a(2 -a) R) , χ = 1 in (-a(1 -a) R, a(1 -a) R) , |χ | ≤ C √ a R and |χ | ≤ C a R 2 . Let u(x 1 , x 2 ) = χ(x 2 ) v(x 1 , x 2 ) , (x 1 , x 2 ) ∈ R 2 .
Clearly, u ∈ H 1 0 (D R ). Thus, e gs,disc (0,

L; R) ≤ G L,R (u) = E L,R (u) = S R χ(x 2 ) 2 |(∇ -iA app )v| 2 -χ(x 2 )χ (x 2 )|v| 2 -L -2/3 |χ(x 2 )v| 2 + L -2/3 2 |χ(x 2 )v| 4 dx ≤ S R |(∇ -iA app )v| 2 -L -2/3 |v| 2 + L -2/3 2 |v| 4 dx + L -2 3 S R (1 -χ 2 )|v| 2 dx + CL 2/3 a 3/2 R 2 = S R |(∇ -iA app )v| 2 -L -2/3 |v| 2 + L -2/3 2 |v| 4 dx + L -2/3 S R (1 -χ 2 )|v| 2 dx+ CL 2/3 a 3/2 R 2 ≤ e gs (L; R) + C a 1/2 + CL 2/3 a 3/2 R 2 .
The two terms

L -2 3 S R (1 -χ(x 2 ) 2 )|v(x 1 , x 2 )| 2 dx and S R χ(x 2 )χ (x 2 ) |v(x 1 , x 2 )| 2
dx have been controlled by using the decay of v = ϕ L, R established in Theorem 3.3 (Formula (3.18)). Here, we have used Assumption (3.44) (and (3.18)) to write,

{|x 2 |≥ √ a R} |v(x 1 , x 2 )| 2 dx ≤ CL 2/3 R × ( √ a R) -1 = CL 2/3 a 1/2 .
Remembering that R = (1 -a)R , this achieves the proof of Theorem 3.11.

Bulk energy.

In this subsection, we recall the construction of a function that describes the energy of the Ginzburg-Landau model with constant magnetic field [START_REF] Aftalion | Lowest Landau level approach in superconductivity for the Abrikosov lattice close to Hc2[END_REF][START_REF] Fournais | The ground state energy of the three dimensional Ginzburg-Landau functional. Part I. Bulk regime[END_REF][START_REF] Sandier | The decrease of bulk superconductivity close to the second critical field in the Ginzburg-Landau model[END_REF]. Consider b ∈ (0, ∞), r > 0 , and Q r = (-r/2, r/2) × (-r/2, r/2) . Define the functional,

F b,Qr (u) = Qr b|(∇ -iA 0 )u| 2 -|u| 2 + 1 2 |u| 4 dx , for u ∈ H 1 (Q r ) . (3.45)
Here, A 0 is the magnetic potential,

A 0 (x) = 1 2 (-x 2 , x 1 ) , x = (x 1 , x 2 ) ∈ R 2 . (3.46)
Define the two ground state energies,

e D (b, r) = inf{F b,Qr (u) : u ∈ H 1 0 (Q r )} , (3.47) e N (b, r) = inf{F b,Qr (u) : u ∈ H 1 (Q r )} . (3.48)
It is known [START_REF] Attar | Energy and vorticity of the Ginzburg-Landau model with variable magnetic field[END_REF][START_REF] Fournais | The ground state energy of the three dimensional Ginzburg-Landau functional. Part I. Bulk regime[END_REF][START_REF] Sandier | The decrease of bulk superconductivity close to the second critical field in the Ginzburg-Landau model[END_REF] that, ] , then

∀ b > 0 , g(b) = lim r→∞ e D (b, r) |Q r | = lim r→∞ e N (b, r) |Q r | , (3.49 
-C 1 (1 -λ 0 L 2/3 ) L -4/3 ≤ E(L) ≤ -C 2 (1 -λ 0 L 2/3 ) L -4/3 .
Proof. The lower bound follows immediately by sending R to ∞ in the lower bound in Proposition 3.6 (see also Theorem 3.8). The upper bound in the second item of Proposition 3.6 gives us the upper bound

E(L) ≤ -C (1 -λ 0 L 2/3 ) L -2/3 , (3.52) 
for all L ∈ (0, λ -3/2 0

) . We have just to improve it as L → 0 . The improved upper bound with order L -4/3 follows from the construction of a test function as follows. Let us cover R 2 by a lattice of squares Q ,j , where Q ,j = (-+ a j , + a j ) and = mL 1/3 .

(3.53)

The choice of the positive constant m will be specified later. Notice that the magnetic potential A app (cf (3.13)) satisfies

B app = curl A app = x 2 .
Let A 0 be the magnetic potential in (3.46), a j = (a j,1 , a j,2 ) be the center of the square Q ,j and

F j (x 1 , x 2 ) = -1 3 (x 2 -a j,2 ) 2 , 1 3 (x 2 -a j,2 )(x 1 -a j,1 ) . It is easy to check that curl A app = curl a j,2 A 0 + F j in Q ,j .
Since the square Q ,j is a simply connected domain in R 2 , then there exists a real-valued smooth function φ j defined in Q ,j such that

A app = a j,2 A 0 + F j -∇φ j in Q ,j .
Thanks to the definition of F j , we have,

|F j (x)| ≤ 2 in Q ,j .
Thus, for any j, we can select a gauge φ j , such that, in the square Q ,j , we have,

A app (x) -a j,2 A 0 (x -a j ) -∇φ j ≤ 2 .
Now, we define the test function as follows, We will use the notation

v(x) =              e iφ j (x) u r √ a j,2 (x -a j ) if a j,2 > 0 and x ∈ Q ,j ⊂ {|x 1 | < R and 2 L -2/3 < x 2 < L -2/3 } , e iφ j (x) u r |a j,2 | (x -a j ) if a j,2 < 0 and x ∈ Q ,j ⊂ {|x 1 | < R and 2 L -2/3 < -x 2 < L -2/3 } , 0 otherwise , (3.54 
E L,R (v; Q ,j ) = Q ,j |(∇ -iA app )v| 2 -L -2/3 |v| 2 + 1 2 L -2/3 |v| 4 dx .
Notice that, if a j,2 > 0 and

Q ,j ⊂ {|x 1 | < R and 2 L -2/3 < |x 2 | < L -2/3 }, then, for all η > 0, E L,R (v; Q ,j ) ≤ L -2/3 Q ,j L 2/3 (1 + η)|(∇ -ia j,2 A 0 (x -a j ))v| 2 -L -2/3 |v| 2 + 1 2 L -2/3 |v| 4 dx + Cη -1 6 = L -2/3 a j,2   Q √ a j,2 L 2/3 a j,2 (1 + η)|(∇ -iA 0 (x))u r (x)| 2 -L -2/3 |v| 2 + 1 2 L -2/3 |v| 4 dx   + Cη -1 6 ≤ L -2/3 a j,2 g L 2/3 a j,2 (1 + η) |a j,2 | 2 + C L 2/3 a j,2 (1 + η) √ a j,2 + Cη -1 6 .
To write the last inequality, (3.51) is used with b = L 2/3 a j,2 (1 + η) and r = √ a j,2 . (Thanks to the condition (3.55), we have r ≥ 1 ). Similarly, if a j,2 < 0 and

Q ,j ⊂ {|x 1 | < R and 2 L -1/3 < |x 2 | < L -2/3 }, then, E L,R (v; Q ,j ) ≤ L -2/3 |a j,2 | g L 2/3 |a j,2 |(1 + η) |a j,2 | 2 + C L 2/3 (1 + η) |a j,2 | + Cη -1 6 .
Notice the simple decomposition of the energy of v,

E L,R (v) = j∈J E L,R (v; Q ,j ) ,
where

J = j : Q ,j ⊂ {|x 1 | < R and 2 L -2/3 < |x 2 | < L -2/3 } . Let n = Card J .
The numbers L and are small enough such that,

4 L -2/3 R ≤ n 2 ≤ 2 L -2/3 R < L -2/3 R .
Now, we have the following upper bound on the energy of v ,

E L,R (v) ≤ L -2/3   j g L 2/3 |a j,2 |(1 + η) 2 + C n L 2/3 (1 + η)   + C n η -1 6 .
We select η = 1 2 . Having in mind (3.50) we can select sufficiently small such that

g(t) ≤ - 1 4 , ∀ t ∈ [0, 2 ] . (3.56) 
Observing

L 2/3 |a j,2 | (1 + η) ≤ 2 , we get, for R ≥ n 2 L 2 3 , e gs (L; R) R ≤ E L,R (v) R ≤ L -2/3 - 16 L -2/3 + 2CL 1/3 L -2/3 -1 + 2CL -2/3 4 .
Sending R → ∞ , we deduce that,

E(L) ≤ - 32 L -4/3 + C L -1 -1 + CL -2/3 4 .
Having in mind (3.53), we get In that way, (3.57) gives us the existence of a constant C > 0 such that, for sufficiently small values of L,

E(L) ≤ - 32 + C m L -4/3 + Cm 4 L 2/3 . ( 3 
E(L) ≤ -C L -4/3 .
Since L is sufficiently small, we may write

-C = (1 -Lλ 0 L 2/3 ) -C 1 -Lλ 0 L 2/3 ≤ -C (1 -Lλ 0 L 2/3 ) ,
and get the upper bound in Theorem 3.12 when L → 0 + .

A priori estimates and gauge transformation

Let κ > 0, H > 0 and (ψ, A) be a critical point of the functional in (1.1), i.e. (ψ, A) satisfies,

-(∇ -iκHA) 2 ψ = κ 2 (1 -|ψ| 2 )ψ , (4.1) 
-∇ ⊥ curl(A -F) = 1 κH ψ (∇ -iκHA)ψ in Ω , (4.2) 
and the two boundary conditions

ν • (∇ -iκHA)ψ = 0 and curl(A -F) = 0 on ∂Ω ,
where ν is the unit exterior normal vector of ∂Ω.

We note for further use the following identity. Multiplying both the equation in (4.1) by ψ then integrating over Ω, we get,

E 0 (ψ, A; Ω) := Ω |(∇ -iκHA)ψ| 2 -κ 2 |ψ| 2 + κ 2 2 |ψ| 4 dx = - κ 2 2 Ω |ψ| 4 dx ≤ 0 . (4.3)
We need the following estimates on ψ and A that we take from [START_REF] Fournais | Spectral Methods in Surface Superconductivity[END_REF]. Earlier versions of these estimates are given in [START_REF] Lu | Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity[END_REF] when the magnetic field is constant. Proposition 4.1. Let α ∈ (0, 1). There exists a constant C = C(α, Ω) > 0 such that, if κ > 0, H > 0 and (ψ, A) a critical point of the functional in (1.1), then,

ψ ∞ ≤ 1 , (4.4 
)

curl(A -F) 2 ≤ C H ψ 2 , (4.5) 
(∇ -iκHA)ψ 2 ≤ κ ψ 2 , (4.6) 
A -F C 1,α (Ω) ≤ C 1 + κH + κ 2 κH ψ ∞ ψ 2 . (4.7)
Using the regularity of the curl-div system, we obtain the following improved estimates of A -F. Proposition 4.2. Let α ∈ (0, 1) . There exists a constant C = C(α, Ω) > 0 such that, if κ > 0 , H > 0 and (ψ, A) a critical point of the functional in (1.1), then,

A -F C 0,α (Ω) ≤ C curl(A -F) 2 + 1 κH (∇ -iκHA)ψ 2 ψ ∞ .
Proof. Let a = A -F. Notice that a satisfies div a = 0 in Ω and ν • a = 0 on ∂Ω . Thus, there exists C(Ω) > 0 such that for all a satisfying the previous condition

a H 2 (Ω) ≤ C(Ω) curl a H 1 (Ω) .
Since (ψ, A) is a critical point of the functional in (1.1), then

∇ ⊥ curl a = 1 κH Im (ψ (∇ -iκH)ψ) .
Consequently, we get

a H 2 (Ω) ≤ C curl(A -F) 2 + 1 κH (∇ -iκHA)ψ 2 ψ ∞ .
This finishes the proof of the proposition in light of the continuous embedding of H 2 (Ω) in C 0,α (Ω) .

In the subsequent sections, we will need to approximate the magnetic potential F generating a non-constant magnetic field by a simpler magnetic potential generating a constant magnetic field. The approximation will be done in domains with small area and in general will lead to large errors. By applying a suitable gauge transformation, one can absorb the large errors and be left with small errors. The next proposition provides us with useful gauge transformations. Proposition 4.3. Given Ω and B 0 as in the introduction, there exists a constant C > 0 such that the following is true.

(1) Let > 0, a j ∈ Ω, D(a j , ) ⊂ Ω and x j ∈ D(a j , ). There exists a function ϕ j ∈ C 1 (D(a j , )) such that, for all x ∈ D(a j , ) ,

|F(x) -(B 0 (x j )A 0 (x -a j ) + ∇ϕ j ) | ≤ C 2 . ( 4.8) 
(2) Let > 0, a j ∈ Γ and x j ∈ D(a j , ) ∩ Γ. There exist ν j ∈ [0, 2π) and a function φ j ∈ C 1 (D(a j , ) ∩ Ω) such that, , for all x ∈ D(a j , ) ∩ Ω ,

|F(x) -|∇B 0 (x j )|A app,ν j (x -a j ) + ∇φ j | ≤ C 3 . (4.9) Proof.
The function ϕ j in ( 1) is constructed in [START_REF] Attar | The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field[END_REF]. We give the construction of the function φ j announced in (2). The vector field F and the function B 0 are defined in a neighborhood of Ω (w.l.o.g. we can even assume that they are defined in R 2 ). In particular, F(x) and B 0 (x) are defined in D(a j , ) even when D(a j , ) ⊂ Ω.

Select ν j ∈ [0, 2π) such that, ∇B 0 (a j ) = |∇B 0 (a j )|(cos ν j , sin ν j ) .

We apply Taylor's formula to the function B 0 near a j . Since a j ∈ Γ, we get,

B 0 (x) = |∇B 0 (a j )|(cos ν j , sin ν j ) • (x -a j ) + f j (x) , (4.10) 
where

|f j (x)| ≤ C|x -a j | 2 ≤ C 2 , (x ∈ D(a j , )) .
Taylor's formula applied to the function |∇B 0 | near a j yields,

|∇B 0 (x j )| = |∇B 0 (a j )| + e j ,
where

|e j | ≤ C|x j -a j | ≤ C .
In that way, (4.10) becomes,

B 0 (x) = |∇B 0 (x j )|(cos ν j , sin ν j ) • (x -a j ) + g j (x) , (4.11) 
where g j (x) = f j (x) + e j (cos ν j , sin ν j ) • (x -a j ) and satisfies

|g j (x)| ≤ C 2 .
Define the vector field:

G j (y) = 1 0
sg j (sy + a j ) ds (-y 2 , y 1 ) , for y = (y 1 , y 2 ) .

Clearly, |G j (y)| ≤ C 3 , when y ∈ D(0, ) and y + a j ∈ Ω . We perform the translation y = x -a j and define F(y) = F(y + a j ) , for y ∈ D(0, ) .

In that way, the formula in (4.11) reads as follows,

curl F -|∇B 0 (x j )|A app,ν j = curl G j in D(0, ) ,
where A app,ν j is introduced in (3.35). Consequently, we deduce the existence of a function φ j ∈ C 1 (D(0, )) such that,

F -|∇B 0 (x j )|A app,ν j = G j + ∇ φ j , in D(0, ) .
The function φ j is defined by φ j (x) = φ j (x -a j ) , for x ∈ D(a j , ).

Energy upper bound

In this section, we determine an asymptotic upper bound of the energy in (1.5). The upper bound is valid under the assumptions κ 1 and κ H κ 2 , and matches with the asymptotic expansions announced in Theorem 1.1. The conclusion in Theorem 1.1 displays two regimes for the behavior of the energy in (1.5),

Regime I :

κ 3/2 H κ 2 , Regime II : κ H κ 3/2 .
As such, this section will present two independent constructions devoted to the aforementioned two regimes (Regime I and Regime II). Each construction will be the subject of an independent subsection. 5.1. Upper bound: Regime I. This subsection is devoted to the proof of: If (κ)κ 2 ≤ H ≤ Λκ 2 , then the ground state energy in (1.5) satisfies,

E gs (κ, H) ≤ κ Γ |∇B 0 (x)| H κ 2 1/3 E |∇B 0 (x)| H κ 2 ds(x) + o κ 3 H , (κ → ∞) , (5.1) 
where ds is the arc-length measure on Γ.

The proof of Proposition 5.1 consists of computing the energy of a relevant test configuration. The construction of this test configuration hints at the actual behavior of the minimizing configurations.

The conclusion in Proposition 5.1 is a straightforward application of Lemma 5.2 below. One part of Lemma 5.2 is devoted to the construction of a test configuration. The construction requires that we cover the curves where the magnetic field vanishes by a collection of discs satisfying

• The centers of the discs are in the set Γ = {B 0 (x) = 0} ;

• the interiors of the discs are disjoint ;

• all the discs have equal radii ;

• if D is a disc in this collection, then the arc-length of the curve D ∩ Γ is approximately the diameter of D. The proof of Lemma 5.2 contains the detailed construction of these discs with precise statements of their properties.

The statement of Lemma 5.2 below requires to introduce the quantity ψ(µ 1 , µ 2 , a) which is defined for µ 1 > 0, µ 2 > 0, and a ∈ (0, 1) by Suppose that a ∈ (0, 1/2) , ∈ (0, 0 ) , δ ∈ (0, 1) , κ ≥ κ 0 , H > 0 satisfy,

ψ(µ 1 , µ 2 , a) := max 4 a -1/2 µ -1 1 , 4µ -1/3 2 Lemma 5.2. Let Λ > 0, η ∈ (0,
κ ≥ ψ H κ 2 inf x∈Γ |∇B 0 (x)| , H κ 2 inf x∈Γ |∇B 0 (x)| , a , (5.2 
)

and b(κ)κ 3/2 ≤ H ≤ Λκ 2 .
Then, the ground state energy in (1.5) satisfies,

E gs (κ, H) ≤ κ Γ |∇B 0 (x)| H κ 2 1/3 E |∇B 0 (x)| H κ 2 ds(x) + C(α + β) , (5.3) 
where

• ds is the arc-length measure on Γ,

• α = H -5/9 κ 13/9 -2/3 + a -1/2 -1 + a -1 κ -2 -3 + δκ 2 + δ -1 κ 2 H 2 6 , • β = (η + δ + a) κ 3 H .
Proof.

Step 1. Existence of 0 . This step is devoted for the definition of the constant 0 appearing in the statement of Proposition 5.1. Recall the assumption that Γ is the union of a finite number of simple smooth curves and Γ ∩ ∂Ω is a finite set. Given η > 0, there exists a constant 1 ∈ (0, 1) such that, for all a ∈ Γ and ∈ (0, 1 ) with D(a, ) ⊂ Ω, then D(a, ) ∩ Γ is connected and .

2 - η 2 ≤ D(a, )∩Γ ds(x) ≤ 2 + η 2 . ( 5 
If ∈ (0, 0 ), then, on the one hand,

2 |Γ i | < η 4 , (1 + η) < 1 4 , (5.5) 
and, on the other hand, < 1 and (5.4) is satisfied.

Step 2. A covering of Γ.

In the sequel, we suppose that ∈ (0, 0 ). Consider i ∈ {1, • • • , k} and the curve Γ i . Let n i ∈ N be the unique natural number satisfying

|Γ i | 2 1 + η 4 -1 -1 < n i ≤ |Γ i | 2 1 + η 4 -1
.

(5.6)

Select n i distinct points (b j,i ) j on Γ i such that, ∀ j , dist Γ i (b j,i , b j+1,i ) = |Γ i | n i ,
where dist Γ i is the arc-length measure on Γ i . Obviously, the Euclidean distance e j := |b j+1,i -b j,i | satisfies e j ≤ dist Γ i (b j,i , b j+1,i ) = |Γ i | n i . Thanks to (5.6) and (5.5), we have,

e j ≤ 2 (1 + η) < 1 .
Thus, if D(b j,i , e j ) ⊂ Ω, we can use (5.4) with = e j and get,

2e j 1 - η 4 ≤ 2 |Γ i | n i ≤ 2e j 1 + η 4 .
Thanks to (5.6), this leads to

e j ≥ |Γ i | n i 1 - η 4 ≥ 2 .
Now, define the index set

J i = {j : D(b j,i , e j ) ⊂ Ω} ,
and N i = Card J i . Notice that, if j ∈ J i , then e j ≥ 2 and D(b j,i , ) ⊂ D(b j,i , e j /2) ⊂ Ω. The sets (D(b j,i , )) j∈J i are pairwise disjoint. Since Γ i ∩ ∂Ω is a finite set, then there exists a constant c such that,

If a ∈ Γ i and dist(a, ∂Ω) ≥ c , then D(a, ) ⊂ Ω .
Consequently, the number N i satisfies

n i -C ≤ N i ≤ n i ,
where C > 0 is a constant. Thus, thanks to (5.6) and (5.5),

|Γ i | 1 + η 4 -1 -C ≤ N i × 2 ≤ |Γ i | 1 + η 4 -1
.

Now, collecting the points (b j,i ) j∈J i ,i∈{1,••• ,k} , we get the collection of points on Γ,

(a j ) j∈J = (b j,i ) j∈J i ,i∈{1,••• ,k} , such that, ∀ j ∈ J , a j ∈ Γ and D(a j , ) ⊂ Ω , N = Card J = k i=1 N i and |Γ| = k i=1 |Γ i | , |Γ| 1 + η 4 -1 -C ≤ N × 2 ≤ |Γ| 1 + η 4 -1
.

(5.7)

Notice that j Γ ∩ D(a j , ) ⊂ Γ .

and the arc-length measure

j Γ ∩ D(a j , ) = j Γ∩D(a j , ) ds(x) = j Γ∩D(a j , ) ds(x) satisfies |Γ| -Cη ≤ j Γ ∩ D(a j , ) ≤ |Γ| + Cη .
Thus, the arc-length measure of the set Γ \ j Γ ∩ D(a j , ) satisfies,

Γ \ j Γ ∩ D(a j , ) ≤ Cη .
(5.8)

Step 3. Construction of a test configuration. For each j, select an arbitrary point x j ∈ D(a j , ) ∩ Γ and write ∇B 0 (x j ) = |∇B 0 (x j )|(cos ν j , sin ν j ) , with ν j ∈ [0, 2π). Define

L = L j = |∇B 0 (x j )| H κ 2 , R = R j = L 1/3 κ .
(5.9)

Thanks to the assumption in (5.2), the following condition holds, R ≥ 4 max a -1/2 L -2/3 , 1 .

(5.10)

We can apply the result of Theorem 3.11. We define a function w ∈ H 1 (Ω) as follows. Consider the set of indices J = {j : D(a j , ) ⊂ Ω} . Let x ∈ Ω and j ∈ J . If x ∈ D(a j , ) , define, w(x) = e iκHφ j u L, ,ν j (x -a j ) , (5.11) where u R,L,ν j ∈ H 1 0 (D(0, )) is a minimizer of the functional in (3.36) with ν = ν j , and φ j is the function constructed in Proposition 4.3. If x ∈ j ∈J D(a j , ) , we set w(x) = 0 .

Clearly, w ∈ H 1 (Ω) .

Step 4. Upper bound of E(w, F).

Notice that curl F = B 0 and that the magnetic energy term in (1.1) vanishes for A = F. Thus, we have,

E(w, F) = E 0 (w, F; Ω) = j E 0 (w, F; D(a j , )) ,
(5.12)

where the functional E 0 is defined in (1.14).

Recalling the definition of w, we observe that,

E 0 (w, F; D(a j , )) = E 0 (u L, ,ν j (x -a j ), F -∇φ j ; D(a j , )) .
Thanks to the choice of φ j , we infer from Proposition 4.3,

|∇B 0 (x j )|A app,ν j (x -a j ) -(F -∇φ j ) ≤ C 3 . (5.13)
As a consequence, applying the Cauchy-Schwarz inequality, we get that, for any δ > 0 , E 0 (w, F; D(a j , )) ≤ (1 + δ)E 0 (u L, ,ν j (x -a j ), |∇B 0 (x j )|A app,ν j (x -a j ); D(a j , )) + r 1 ,

where

r 1 = C δκ 2 + δ -1 κ 2 H 2 6 D(a j , ) |u L, ,ν j (x -a j )| 2 dx .
Recall that u L, ,ν j being a minimizer, it satisfies

|u L, ,ν j | ≤ 1 . Thus, r 1 ≤ C δκ 2 + δ -1 κ 2 H 2 6 2 . (5.14)
Now, performing the translation x → x -a j , we observe that,

E 0 (w, F; D(a j , )) ≤ (1 + δ)E 0 (u L, ,ν j , |∇B 0 (x j )|A app,ν j ; D(0, )) + r 1 .
With L = L j and R = R j in (5.9), we get in light of Theorem 3.11:

E 0 (w, A; D(a j , )) ≤ (1 + δ)e gs L j ; 1 -a R j + C a 1/2 1 + L 2/3 j aR 2 j + r 1 .
Thanks to Theorem 3.8, we deduce that,

E 0 (w, F; D(a j , )) ≤ 2(1 + δ) 1 -a R j E(L j ) + C (1 + L -2/3 j )R 1/3 j + C a 1/2 1 + L 2/3 j aR 2 j + r 1 . (5.15)
Recall the definition of L j and R j in (5.9), and that the number of discs D(a j , ) is inversely proportional to , i.e. of order -1 .

Substituting (5.15) into (5.12) yields,

E(w, F) ≤ 2κ (1 + δ) 1 -a   j |∇B 0 (x j )| H κ 2 1/3 E |∇B 0 (x j )| H κ 2   + C H -5/9 κ 13/9 -2/3 + Ca -1/2 -1 + a -1 κ -2 -3 + C r 1 -1 . (5.16)
Thanks to (5.7) and the upper bound on E(•) obtained in Theorem 3.12, the term

j 2 |∇B 0 (x j )| H κ 2 1/3 E |∇B 0 (x j )| H κ 2 (5.17)
is of order κ 2 /H. Thus, (5.16) becomes,

E(w, F) ≤ κ   j 2 |∇B 0 (x j )| H κ 2 1/3 E |∇B 0 (x j )| H κ 2   + C δ + a κ 3 H + C H -5/9 κ 13/9 -2/3 + Ca -1/2 -1 + a -1 κ -2 -3 + C r 1 -1 . (5.18)
In (5.17), replacing 2 by the arc-length measure of D(a j , ) ∩ Γ produces an error η /2 and the sum becomes a Riemann sum over V = j∈J Γ ∩ D(a j , ) . The points x j can be selected such that the Riemann sum is a lower Riemann sum. Thus,

j 2 |∇B 0 (x j )| H κ 2 1/3 E |∇B 0 (x j )| H κ 2 ≤ V |∇B 0 (x)| H κ 2 1/3 E |∇B 0 (x)| H κ 2 ds(x) + Cη κ 2 H .
Inserting this into (5.18), we get,

E(w, F) ≤ κ V |∇B 0 (x)| H κ 2 1/3 E |∇B 0 (x)| H κ 2 ds(x) + C η + δ + a κ 3 H + C H -5/9 κ 13/9 -2/3 + Ca -1/2 -1 + a -1 κ -2 -3 + C r 1 -1 .
As pointed earlier, the arc-length measure of the set Γ \ V does not exceed Cη. Recall the upper bound on E(•) obtained in Theorem 3.12. In that way, we get,

Γ\V |∇B 0 (x)| H κ 2 1/3 E |∇B 0 (x)| H κ 2 ds(x) ≤ Cη κ 2 H .
Consequently, we deduce the following upper bound,

E(w, F) ≤ κ Γ |∇B 0 (x)| H κ 2 1/3 E |∇B 0 (x)| H κ 2 ds(x) + C η + δ + a κ 3 H + C H -5/9 κ 13/9 -2/3 + Ca -1/2 -1 + a -1 κ -2 -3 + C r 1 -1 .
The definition of the ground state energy in (1.5) tells us that E gs (κ, H) ≤ E(w, F). Recalling the definition of r 1 in (5.14) finishes the proof of (5.3).

Proof of Proposition 5.1. We use the upper bound in Lemma 5.2 with the following choice of the parameters:

= κ 5/8 H -3/4 , δ = κ 9/8 H -3/4 . (5.19)
Clearly, the parameters δ and satisfy as κ → +∞ << δ << 1 .

Let us show that the two conditions in (5.2) are satisfied. Observing that the parameter a ∈ (0, 1/2) is fixed, i.e. independent of κ., the conditions in (5.2) will follow from

κ = κ 13/8 H -3/4 max{a -1/2 κ 2 H -1 , H -1 3 κ 2 3 } ,
a consequence of the assumption that we are in Regime I. Now, since (5.2) is satisfied, we can apply Lemma 5.2. By comparison of each term, the remainder α in Lemma 5.2 satisfies α κ 3 H -1 .

Sending κ → +∞, the upper bound in Lemma 5.2 becomes,

lim sup κ→∞ H κ 3 E gs (κ, H) -2κ Γ |∇B 0 (x)| H κ 2 1/3 E |∇B 0 (x)| H κ 2 ds(x) ≤ C(η + a) .
Since this is true for all η ∈ (0, 1/2) and a ∈ (0, 1/2), we get by sending η → 0 + and a → 0 + ,

lim sup κ→∞ H κ 3 E gs (κ, H) -2κ Γ |∇B 0 (x)| H κ 2 1/3 E |∇B 0 (x)| H κ 2 ds(x) ≤ 0 ,
and the conclusion in Proposition 5.1 follows.

Upper bound: Regime II.

In the next proposition, we give an upper bound of the ground state energy in (1.5) valid in the regime κ -1 H κ 3/2 . If (κ)κ ≤ H ≤ Λκ 3/2 , then the ground state energy in (1.5) satisfies,

E gs (κ, H) ≤ κ 2 Ω g H κ |B 0 (x)| dx + o κ 3 H , (5.20) 
where g(•) is the function introduced in (3.49).

Proof. Here, we construct a test function as in (5.21) below. Let ζ = κ -1/16 H -1/2 and (Q k,ζ ) be the lattice of squares generated by the square

Q ζ = - ζ 2 , ζ 2 × - ζ 2 , ζ 2 . Notice that ζ satisfies ζ κ H 1. Define I = k : Q k,ζ ⊂ {dist(x, Γ) ≤ M κ H } and dist(Q k,ζ , Γ) ≥ M ζ ,
where M > 0 is a constant selected sufficiently large so that, if dist(x, Γ)

> M κ H , then |B 0 (x)| ≥ κ H . Notice that, since B 0 vanishes non-degenerately on Γ, if k ∈ I, then |B 0 (x)| ≥ M ζ > 0 in Q k,ζ .
For all k ∈ I, let a k be the center of the square Q k,ζ and select an arbitrary point 

x k ∈ Q k,ζ . If r > 0 and b > 0, let u r ∈ H 1 0 (Q r )
|F(x) -B 0 (x k )A 0 (x -a k ) + ∇ϕ k | ≤ Cζ 2 , in Q k,ζ .
Define the test function v as follows,

v(x) =    e -iφ k (x) u k r k ζ (x -a k ) if x ∈ Q k,ζ ⊂ {B 0 (x) > 0} , e -iφ j (x) u k r k ζ (x -a k ) if x ∈ Q k,ζ ⊂ {B 0 (x) < 0} , 0 otherwise .
(5.21)

We outline the computation of E 0 (v, F). The details of the computations are given in [START_REF] Attar | The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field[END_REF]. In every square Q k,ζ , we have,

E 0 (v, F; Q k,ζ ) ≤ (1 + κ -1/16 ) F b k ,Qr k (u k ) b k + κ 1/16 κ 2 H 2 ζ 6 .
Thanks to the assumption on H and the definition of ζ = κ -1/16 H -1/2 , we have r k 1. Thus, we may use (3.51) and write,

E 0 (v, F; Q k,ζ ) ≤ (1 + κ -1/16 ) r 2 k b k g(b k ) + C √ b k r k + κ 1/16 κ 2 H 2 ζ 6 = (1 + κ -1/16 )ζ 2 κ 2 g H κ |B 0 (x k )| + C 1 ζκ + κ 1/16 κ 2 H 2 ζ 6 .
We sum over k and select the points x k as follows

|B 0 (x k )| = min{|B 0 (x)| : x ∈ Q k,ζ } .
In that way, we obtain,

E 0 (v, F) = k∈I E 0 (v, F; Q k,ζ ) ≤ (1 + κ -1/16 )κ 2 k∈I Q k,ζ g H κ |B 0 (x)| + C 1 ζκ + κ 1/16 H 2 ζ 4 dx ≤ (1 + κ -1/16 )κ 2 k∈I Q k,ζ g H κ |B 0 (x)| dx + Cκ 1/16 κ 2 Hζ + M κ -1/16 κ 3 H .
Notice that, since g(b) = 0 for b ≥ 1 and B 0 vanishes non-degenerately on Γ, then

k∈I Q k,ζ g H κ |B 0 (x)| dx ≤ Ω g H κ |B 0 (x)| dx + κ H o (1) . 
Thus,

E 0 (v, F) ≤ (1 + κ -1/16 )κ 2 Ω g H κ |B 0 (x)| dx + Cκ 1/16 κ 2 Hζ + M κ -1/16 κ 3 H + κ 3 H o (1) 
.

Since H κ 3/2 , then

κ 1/16 κ 2 Hζ = κ 1/8 H 1/2 κ κ 3 H 1 and E 0 (v, F) ≤ (1 + κ -1/16 )κ 2 Ω g H κ |B 0 (x)| dx + κ 3 H o (1) 
.

Since E gs (κ, H) ≤ E(v, F) = E 0 (v, F
), then we get the upper bound in (5.20).

Exponential decay of the order parameter

The aim of this section is to prove that the order parameter ψ is exponentially small (in the L 2 -norm) away from the curves where the magnetic field vanishes. This bound is needed in Section 7 to obtain a lower bound of the ground state energy in (1.5).

6.1.

A rough bound. In this subsection we give a rough bound valid for any order parameter ψ. Theorem 6.1. Let Λ > 0 and : R → R + such that lim κ→∞ κ (κ) = ∞ and lim κ→∞ (κ) = 0 . There exist constants C and κ 0 such that, if (ψ, A) is a critical point of the functional in (1.1), κ ≥ κ 0 and (κ)κ 2 ≤ H ≤ Λκ 2 , (6.1) then

ψ 2 ≤ C κ H 1/6 , (6.2) 
curl(A -F) 2 ≤ C H κ H 1/6 , (6.3) 
and

(∇ -iκHA)ψ 2 ≤ Cκ κ H 1/6 . (6.4) 
An important ingredient in the proof of this theorem is: Proposition 6.2. Let Λ > 0 and : R → R + such that lim κ→∞ κ (κ) = ∞ and lim κ→∞ (κ) = 0 . There exist positive constants C, 0 and κ 0 such that the following is true:

For ∈ (0, 0 ) , a ∈ (0, 1] and h ∈ C ∞ c (Ω) such that supp h ⊂ {x ∈ Ω : dist(x, ∂Ω) > & dist(x, Γ) > √ a } and h ∞ ≤ 1 , if (ψ, A) is a critical point of the functional in (1.1), κ ≥ κ 0 and (κ)κ 2 ≤ H ≤ Λκ 2 , then Ω |(∇ -iκHA)hψ| 2 dx ≥ 1 C κ H √ a -C 2 Ω |hψ| 2 dx -Cκ Ω (1 -h 2 )|ψ| 2 dx . (6.5) 
Proof.

The support of the function hψ does not meet the boundary of Ω and Γ. We can use the celebrated inequality

Ω |(∇ -iκHA)hψ| 2 dx ≥ κH Ω | curl A| |h ψ| 2 dx .
The simple decomposition curl A = curl F + curl(A -F) and the triangle inequality yield,

Ω |(∇ -iκHA)hψ| 2 dx ≥ κH Ω | curl F| |hψ| 2 dx -κH Ω | curl A -curl F| |hψ| 2 dx . (6.6) 
By assumption ∇B 0 does not vanish on Γ, hence

| curl F| = |B 0 (x)| ≥ 1 M √ a in {dist(x, Γ) ≥ √ a } , (6.7) 
for some constant M > 0 . Thus,

Ω | curl F| |hψ| 2 dx ≥ 1 M √ a Ω |hψ| 2 dx . (6.8) 
Next we use the Cauchy-Schwarz inequality and the inequality in (4.5) as follows

κH Ω | curl A -curl F| |hψ| 2 dx ≤ κH curl A -curl F 2 Ω |hψ| 4 dx 1/2 ≤ Cκ ψ 2 Ω |hψ| 4 dx 1/2
.

Since ψ ∞ ≤ 1 and h ∞ ≤ 1, we get further,

ψ 2 Ω |hψ| 4 dx 1/2 ≤ Ω |ψ| 2 dx = Ω |hψ| 2 dx + Ω (1 -h 2 )|ψ| 2 dx .
Therefore, we have,

κH Ω | curl A -curl F| |hψ| 2 dx ≤ Cκ Ω |hψ| 2 dx + Cκ Ω (1 -h 2 )|ψ| 2 dx . (6.9) 
Inserting (6.9) and (6.8) into (6.6) finishes the proof of the proposition.

Proof of Theorem 6.1. Let > 0 and

Ω = {x ∈ Ω : dist(x, ∂Ω) > & dist(x, Γ) > }. Select a function h ∈ C ∞ c (Ω) satisfying 0 ≤ h ≤ 1 in Ω , h = 1 in Ω 2 , h = 0 in Ω \ Ω , and 
|∇h| ≤ C in Ω ,
where C is a constant. Thanks to the bound ψ ∞ ≤ 1 and the assumptions on h, we have,

Ω |ψ| 2 ≤ |hψ| 2 + C , (6.10 
)

Ω |(∇ -iκHA)ψ| 2 dx ≥ Ω |h(∇ -iκHA)ψ| 2 dx (6.11) ≥ 1 2 Ω |(∇ -iκHA)hψ| 2 dx -C Ω |∇h| 2 |ψ| 2 dx . (6.12) 
Thanks to the estimate on the gradient of h, we may write,

1 2 Ω |(∇ -iκHA)hψ| 2 dx -κ 2 Ω |hψ| 2 dx -C κ 2 + -1 ≤ E 0 (ψ, A; Ω) ≤ 0 ,
where E 0 (ψ, A; Ω) is introduced in (4.3). Now, we use Proposition 6.2 with a = 1 and get,

κ 2C (H -C 2 ) -κ 2 Ω |hψ| 2 dx ≤ C + -1 κ 2 .
Selecting = (κ/H) 1/3 , we get for κ large and H satisfying (6.1)

Ω |hψ| 2 dx ≤ C κ H 1/3
. Now, thanks to (6.10), the first inequality (6.2) in Theorem 6.1 is proved. Now, the inequality (6.3) (resp. (6.4)) is simply a consequence of (4.5)) (resp. (4.6)).

6.2. Exponential bound. In the next theorem, we establish that every minimizing order parameter decays exponentially fast away from the set Γ where the magnetic field vanishes, provided that κ H κ 2 . 

κ 0 such that, if (ψ, A) is a critical point of the functional in (1.1), κ ≥ κ 0 , (κ)κ 2 ≤ H ≤ Λκ 2 , then Ω exp 2m 0 H κ t(x) 1 κ 2 |(∇ -iκHA)ψ| 2 + |ψ(x)| 2 dx ≤ C {t(x)≤C κ H } |ψ(x)| 2 dx ,
where t(x) = dist(x, Γ).

Proof. Let ζ = (κH) -1/3 . (6.13) The assumption on κ and H ensures that

κ -1 ζ 1 . (6.14) 
We will prove Theorem 6.3 by establishing the following two estimates (away from the boundary or in a neighborhood of the boundary),

{dist(x,∂Ω)≥ζ} e 2m 0 H κ t(x) 1 κ 2 |(∇ -iκHA)ψ| 2 + |ψ(x)| 2 dx ≤ C 1 {t(x)≤C κ H } |ψ(x)| 2 dx , (6.15 
) and {dist(x,∂Ω)≤ζ}

e 2m 0 H κ t(x) 1 κ 2 |(∇ -iκHA)ψ| 2 + |ψ(x)| 2 dx ≤ C 2 {t(x)≤C κ H } |ψ(x)| 2 dx , (6.16 
) expressing the localization of the energy of ψ near Γ.

The proof of (6.15) and (6. [START_REF] Fournais | The ground state energy of the three dimensional Ginzburg-Landau functional. Part II. Surface regime[END_REF]) is divided into several steps.

Step 1. Consider the parameters

ξ ∈ (1, ∞) , σ = H κ 2 , = ξ σκ . (6.17) Let f (x) = χ(x) exp( -1 t(x)) , and 
g(x) = η(x) exp( -1 t(x)) . The functions χ ∈ C ∞ c (Ω) and η ∈ C ∞ (Ω) satisfy,        0 ≤ χ ≤ 1 in Ω , χ = 1 in {dist(x, ∂Ω) ≥ ζ} {t(x) ≥ } , χ = 0 in {dist(x, ∂Ω) ≤ 1 2 ζ} {t(x) ≤ 1 2 } , |∇χ| ≤ Cκ in Ω . (6.18) and        0 ≤ η ≤ 1 in Ω , η = 1 in {dist(x, ∂Ω) ≤ ζ} {t(x) ≥ } , η = 0 in {dist(x, ∂Ω) ≥ 2ζ} {t(x) ≤ 1 2 } , |∇η| ≤ Cκ in Ω . (6.19)
Here we have used for the control of the gradient (6.14) and that κ -1 1 .

Using the Ginzburg-Landau equation in (4.1), we write,

Ω |(∇ -iκHA)f ψ| 2 -|∇f | 2 |ψ| 2 dx = κ 2 Ω |ψ| 2 -|ψ| 4 f 2 dx ≤ κ 2 Ω |f ψ| 2 dx , (6.20) 
and

Ω |(∇ -iκHA)gψ| 2 -|∇g| 2 |ψ| 2 dx = κ 2 Ω |ψ| 2 -|ψ| 4 g 2 dx ≤ κ 2 Ω |gψ| 2 dx . (6.21)
Step 2.

In this step, we determine a lower bound of

Ω |(∇ -iκHA)f ψ| 2 dx. Notice that f ψ ∈ C ∞ c (Ω)
. Consequently, we may write (see (6.6)),

Ω |(∇ -iκHA)f ψ| 2 dx ≥ κH Ω | curl F| |f ψ| 2 dx -κH Ω | curl A -curl F| |f ψ| 2 dx .
We use the following estimates,

Ω | curl F| |f ψ| 2 dx ≥ 1 M Ω |f ψ| 2 dx [by (6.7)] Ω | curl A -curl F| |f ψ| 2 dx ≤ C H κ H 1/6 f ψ 2 4
[by (6.

3)] ,

and obtain

Ω |(∇ -iκHA)f ψ| 2 dx ≥ 1 M κH Ω |f ψ| 2 dx -Cκ κ H 1/6 f ψ 2 4 . Notice that f ψ ∈ C ∞ c (Ω) ⊂ H 1 (R 2 ) . By the continuous Sobolev embedding of H 1 (R 2 ) in L 4 (R 2
) and a scaling, we get for all η ∈ (0, 1),

f ψ 2 4 = |f ψ| 2 4 ≤ C Sob η ∇|f ψ| 2 2 + η -1 f ψ 2 2 ≤ C Sob η (∇ -iκHA)f ψ 2 2 + η -1 f ψ 2 2 [By the diamagnetic inequality] . We select η = 1 CC Sob κ -1 κ H - 1 
6 and obtain,

Ω |(∇ -iκHA)f ψ| 2 dx ≥ κH 2M -Cκ 2 κ H 1/3 Ω |f ψ| 2 dx . (6.22) 
Thanks to the choice of the parameters in (6.17), the lower bound in (6.22) becomes,

Ω |(∇ -iκHA)f ψ| 2 dx ≥ ξκ 2 2M -Cκ 2 κ H 1/3 Ω |f ψ| 2 dx . (6.23) 
Step 3.

We insert (6.23) into (6.20) and use that

Ω |∇f | 2 |ψ| 2 dx ≤ 2 -2 Ω |f ψ| 2 dx + 2 Ω |∇χ| 2 exp(2 -1 t(x))|ψ| 2 dx ≤ 2 -2 Ω |f ψ| 2 dx + Cκ 2 Ω |gψ| 2 dx + Cκ 2 { -1 t(x)≤1} |ψ| 2 dx , (6.24) 
to obtain,

Ω 1 2 |(∇ -iκHA)f ψ| 2 + 1 2 ξκ 2 2M -2 σ 2 ξ 2 κ 2 -Cκ 2 κ H 1/3 |f ψ| 2 dx ≤ Cκ 2 Ω |gψ| 2 dx + Cκ 2 { -1 t(x)≤1}
|ψ| 2 dx . (6.25)

Step 4.

We will determine a lower bound of Ω |(∇ -iκHA)gψ| 2 dx. We cover the set

Ω ζ, = {x ∈ Ω : dist(x, ∂Ω) ≤ 2ζ , dist(x, Γ) ≥ }
by a family of squares (in tubular coordinates),

K(a j , ζ) = {x ∈ Ω : dist(x, ∂Ω) ≤ 2ζ, dist ∂Ω (p(x), a j ) ≤ 2ζ} ,
where:

• dist ∂Ω is the arc-length distance along ∂Ω . • If x ∈ Ω ζ, and ζ is sufficiently small, p(x) is the unique point on ∂Ω satisfying dist(x, p(x)) = dist(x, ∂Ω) . • For all j, a j ∈ ∂Ω ∩ Ω ζ, .
Let (χ j ) be a partition of unity such that

j χ 2 j = 1 , j |∇χ j | 2 ≤ Cζ -2 , supp χ j ⊂ K(a j , 2ζ) .
It holds the decomposition formula

Ω |(∇ -iκHA)gψ| 2 dx = j Ω |(∇ -iκHA)χ j gψ| 2 dx - j Ω |∇χ j | 2 |gψ| 2 dx ≥ j Ω |(∇ -iκHA)χ j gψ| 2 dx -Cζ -2 Ω |gψ| 2 dx . (6.26)
Next we define the gauge function

α j = A(a j ) -F(a j ) • (x -a j ) .
Let α ∈ (0, 1) be a constant. Using the Cauchy-Schwarz inequality, Proposition 4.2 and Theorem 6.1, we may write,

Ω |(∇ -iκHA)χ j gψ| 2 dx = Ω |(∇ -iκH(A -∇α j ))e -iκHα j χ j gψ| 2 dx ≥ 1 2 Ω |(∇ -iκHF)e -iκHα j χ j gψ| 2 dx -Cκ 2 κ H 1/3 ζ 2α Ω |χ j gψ| 2 dx . (6.27)
Recall the definition of the magnetic potential A 0 in (3.46). There exists a gauge function ϕ j satisfying (see Proposition 4.3) F(x) -B 0 (x j )A 0 (x -a j ) + ∇ϕ j ≤ Cζ 2 in K j (a j , ζ) .

Again, using the Cauchy-Schwarz inequality, we may write,

Ω |(∇ -iκHF)e -iκHα j χ j gψ| 2 dx ≥ 1 2 Ω |(∇ -iκHB 0 (a j )A 0 (x -a j ))e -iκHϕ j e -iκHα j χ j gψ| 2 dx -κ 2 H 2 ζ 4 Ω |χ j gψ| 2 dx . (6.28)
Now, we are allowed to use the analysis of the Neumann realization of the Schrödinger operator with a constant magnetic field equal to κHB 0 (a j ) in our case. In the half-plane case, the ground state energy of this operator is Θ 0 κH|B 0 (a j )|, where the constant Θ 0 is universal and satisfies Θ 0 ∈ ( 1 2 , 1) . The result remains asymptotically true in general domains with smooth and compact boundary [START_REF] Helffer | Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells[END_REF]. More precisely, there exists a function Notice that by the assumptions on and the points (a j ), we may use (6.7) with x = a j and get,

∀ j , κH|B 0 (a j )| ≥ 1 M κH 1 .
Moreover, the magnetic potentials A 0 (x) and A 0 (x -a j ) are gauge equivalent since

A 0 (x -a j ) = A 0 (x) -A 0 (a j ) = A 0 (x) -∇u j (x) , with u j (x) = A 0 (a j ) • x .
In that way, when κ is sufficiently large, we may write, Ω |(∇ -iκHB 0 (a j )A 0 (x -a j ))e -iκHϕ j e -iκHα j χ j gψ| 2 dx

≥ Θ 0 2 κH|B 0 (a j )| Ω |χ j gψ| 2 dx ≥ 1 4M κH Ω |χ j gψ| 2 dx . (6.29)
Collecting the estimates in (6.26), (6.27), (6.28) and (6.29), we get,

Ω |(∇ -iκHA)gψ| 2 dx ≥ κ H 4M -CκH 2 ζ 4 - C κζ 2 -Cκ κ H 1/3 ζ 2α Ω |gψ| 2 dx . (6.30)
Recall the definition of the parameters in (6.17) and (6.13):

ζ = (Hκ) -1/3 = σ -1/3 κ -1 .
We insert (6.30) into (6.21) and use that

Ω |∇g| 2 |ψ| 2 dx ≤ 2 -2 Ω |gψ| 2 dx + 2 Ω |∇η| 2 exp(2 -1 t(x))|ψ| 2 dx ≤ 2 -2 Ω |gψ| 2 dx + Cκ 2 Ω |f ψ| 2 dx + Cκ 2 { -1 t(x)≤1} |ψ| 2 dx , to obtain, Ω 1 2 |(∇ -iκHA)gψ| 2 + 1 2 ξκ 2 4M -2 -2 -Cσ 2/3 κ -Cκ κ H 1/3 ζ 2α |gψ| 2 dx ≤ Cκ 2 Ω |f ψ| 2 dx + Cκ 2 { -1 t(x)≤1}
|ψ| 2 dx . (6.31)

Step 5.

Summing the two inequalities in (6.25) and (6.31), we get,

1 2 Ω |(∇ -iκHA)gψ| 2 + |(∇ -iκHA)f ψ| 2 dx + 1 2 Ω ξκ 2 4M -C σ 2 ξ 2 κ 2 -Cκ 2 -Cσ 2/3 κ -Cκ κ H 1/3 ζ 2α |f ψ| 2 + |gψ| 2 ≤ Cκ 2 { -1 t(x)≤1} |ψ| 2 dx . (6.32) 
Recall that σ satisfies κ -1 σ ≤ Λ. We select ξ sufficiently large such that

ξ 4M -C Λ 2 ξ 2 -C > 2 .
Since κ H 1/3

1 and ζ 1, we get,

Ω 1 2 |(∇ -iκHA)f ψ| 2 + κ 2 2 |f ψ| 2 dx ≤ Cκ 2 { -1 t(x)≤1} |ψ| 2 dx ,
and

Ω 1 2 |(∇ -iκHA)gψ| 2 + κ 2 2 |gψ| 2 dx ≤ Cκ 2 { -1 t(x)≤1} |ψ| 2 dx .
Thanks to the definitions of f and g, the two aforementioned inequalities yield the inequalities in (6.15) and (6.16) with m 0 = 1/ξ.

As a consequence of Theorem 6.3, we get an improvement of the bound given in Theorem 6.1.

Proposition 6.4. Under the assumptions of Theorem 6.3, it holds,

ψ 2 ≤ C κ H .
Combining the results in Propositions 4.1, 4.2 and 6.4, we obtain the improved estimates: Proposition 6.5. Under the assumptions of Theorem 6.3 and Proposition 4.2, it holds,

curl A -curl F 2 ≤ C H κ H , A -F C 1,α (Ω) ≤ C α κ H , A -F C 0,α (Ω) ≤ C α H κ H .

Energy lower bound

In this section, we will derive lower bounds of the following energy,

E 0 (ψ, A; U ) = U |(∇ -iκHA)ψ| 2 -κ 2 |ψ| 2 + κ 2 2 |ψ| 4 dx , (7.1) 
where U ⊂ R 2 is an open set such that U ⊂ Ω. 

E 0 h ψ, A; D(a j , ) ≥ (1 -δ) 2 κ |∇B 0 (x j )| H κ 2 1/3 E |∇B 0 (x j )| H κ 2 -r ,
where

r = C δκ 2 + δ -1 κ 3 H 2α + κ 2 H 2 6 D(a j , ) |hψ| 2 dx .
Proof. Let α j = A(a j ) -F(a j ) • (x -a j ). Thanks to Proposition 6.5, we have

|A -(F + ∇α j )| ≤ C A -F C 0,α (Ω) |x -a j | α ≤ C H κ H α in D(a j , ) . (7.2) 
Notice that,

E 0 h ψ, A; D(a j , ) = E 0 h ψ e -iκHα j , A -∇α j ; D(a j , ) ≥ (1 -δ)E 0 h ψ e -iκHα j , F; D(a j , ) -C δκ 2 D(a j , ) |hψ| 2 dx + δ -1 κ 2 H 2 D(a j , ) |A -(F + ∇α j )| 2 |hψ| 2 dx (7.3) Using (7.
2), we get,

E 0 h ψ, A; D(a j , ) ≥ (1-δ)E 0 h ψ e -iκHα j , F; D(a j , ) -C δκ 2 + δ -1 κ 3 H 2α D(a j , )
|hψ| 2 dx .

(7.4) Let f j = h ψ e -iκHα j e iκHφ j , where φ j is defined in Proposition 4.3. Notice that f j ∈ H 1 0 (D(a j , )), f j ∞ ≤ 1 and, using (4.9), E 0 h ψ e -iκHα j , F; D(a j , ) = E 0 f j , F -∇φ j ; D(a j , )

≥ (1 -δ)E 0 f j , |∇B 0 (x j )|A app,ν j (x -a j ); D(a j , ) -C δκ 2 + δ -1 κ 2 H 2 6 D(a j , ) |f j | 2 dx . (7.5)
We will use Theorem 3.11 to get a lower bound of the energy

E 0 f j , |∇B 0 (x j )|A app,ν j (x -a j ); D(a j , ) . Define L = L j = |∇B 0 (x j )| H κ 2 . (7.6)
Performing the translation x → x + a j , we get that

E 0 f j , |∇B 0 (x j )|A app,ν j (x -a j ); D(a j , ) = G(f j ) ≥ E gs,r (κ, L; ) . (7.7)
Here G is the functional in (3.36) and E gs,r (κ, L; ) is the ground state energy in (3.37). Let R = L 1/3 κ . Now, Theorems 3.11 and 3.8 applied successively tell us that

E 0 f j , |∇B 0 (x j )|A app,ν j (x -a j ); D(a j , ) ≥ e gs,disc (ν, L; R) ≥ 2R E(L) = 2L 1/3 κ E(L) .
Recall the definition of L in (7.6). We insert the aforementioned estimate into (7.7). In that way, we infer from (7.5) and (7.4) the lower bound of Proposition 7.1. Proposition 7.2. For r > 0, h ∈ C ∞ (R 2 ) satisfying h ∞ ≤ 1 , and (ψ, A) a critical point of the functional in (1.1), the following lower bound holds, E 0 h ψ, A; D(a j , r) ∩ Ω ≥ -πκ 2 r 2 .

(7.8)

Proof. Notice that all terms in E 0 h ψ, A; D(a j , r) ∩ Ω are positive except the integral of |hψ| 2 . Thus,

E 0 h ψ, A; D(a j , r) ∩ Ω ≥ -κ 2 Ω∩D(a j ,r) |hψ| 2 dx .
This finishes the proof of the proposition upon using hψ ∞ ≤ 1 and ψ ∞ ≤ 1 .

Theorem 7.3. Let Λ > 0 and : R → R + such that lim κ→∞ κ (κ) = ∞ and lim κ→∞ (κ) = 0 . There exist κ 0 > 0 and a function err : R → R such that the following is true:

(1) lim κ→∞ err(κ) = 0 .

(

) Let D ⊂ Ω be a regular open set, h ∈ C ∞ (D), h ∞ ≤ 1, (ψ, A) a critical point of the functional in (1.1), κ ≥ κ 0 and (κ)κ 2 ≤ H ≤ Λκ 2 . (a) If H κ 3/2 , then, E 0 (hψ, A; D) ≥ κ Γ∩D |∇B 0 (x)| H κ 2 1/3 E |∇B 0 (x)| H κ 2 ds(x) + κ 3 H err(κ) . (7.9) (b) If H κ 3/2 , then, E 0 (hψ, A; D) ≥ κ 2 D g H κ |B 0 (x)| dx + κ 3 H err(κ) . 2 
Proof. Consider three parameters a ∈ (0, 1) , ∈ (0, 1) , δ ∈ (0, 1) , and define the following sets,

D 1 = {x ∈ Ω : dist(x, Γ) < 2 √ a } , D 2 = {x ∈ Ω : dist(x, Γ) > √ a } .
Let (χ j ) be a partition of unity satisfying

2 j=1 χ 2 j = 1 , 2 j=1 |∇χ j | 2 ≤ C(a 2 ) -1 , supp χ j ⊂ D j (j ∈ {1, 2}) .
It holds the following decomposition of the energy,

E 0 (hψ, A; D) ≥ E 0 (χ 1 hψ, A; D 1 ) + E 0 (χ 2 hψ, A; D j ) - 2 j=1 Ω |∇χ j | 2 |hψ| 2 dx .
The error terms are controlled using the pointwise bounds on |h|, |ψ|, |∇χ j |, and the conditions on the support of χ j . We obtain the following lower bound,

E 0 (hψ, A; D) ≥ E 0 (χ 1 hψ, A; D 1 ) + E 0 (χ 2 hψ, A; D 2 ) -C( √ a ) -1 . (7.11) 
The formula in (7.11) is the key to compute a lower bound of the ground state energy E gs (κ, H) as in Theorem 1.1. Loosely speaking, we will do the following:

• Estimate the energy E 0 (χ 1 hψ, A; D 1 ) using the limiting function E(•) (this is the energy close to the set Γ) ; • Estimate the energy E 0 (χ 2 hψ, A; D 2 ) using the limiting function g(•) (this is the energy which is 'relatively' away from Γ) . Here we will need to split into the two regimes displayed in Theorem 1.1. In the regime κ 3/2 H κ 2 , estimating E 0 (χ 1 hψ, A; D 1 ) via the limiting function E(•) will produce small errors. In the regime H κ 3/2 , the errors will be large, so that the main contributions in (7.11) will be captured through the term E 0 (χ 2 hψ, A; D 2 ) via the function g(•). For the moment, we can not explain this surprising behavior through intuitive/physical terms.

The regime H κ 3/2 . In this regime, we shall see that E 0 (χ 1 hψ, A; D 1 ) is the leading term and E 0 (χ 2 hψ, A; D 2 ) is an error term.

Lower bound of the term E 0 (χ 1 hψ, A; D 1 ). Consider a constant a ∈ (0, 1) and distinct points (a j ) in Γ such that,

∀ j , 2 -a ≤ dist(a j , a j+1 ) ≤ 2 - a 2 .
Choose the constant a sufficiently small so that

D 1 = {x ∈ Ω : dist(x, Γ) < 2 √ a } ⊂ j D(a j , ) .
Consider a partition of unity satisfying

j f 2 j = 1 in D 1 , supp f j ⊂ D(a j , ) , j |∇f j | 2 ≤ C a 2 2 .
Notice that the support of each ∇f j is in D(a j , ) ∩ D(a j+1 , ). Since the points (a j ) are selected in such a manner that dist(a j , a j+1 ) -2 ≈ a , then the area of the domain

D(a j , ) ∩ D(a j+1 , ) is proportional to √ a × a = a √ a 2 .
The partition of unity (f j ) allows us to decompose the energy as follows,

E 0 (χ 1 hψ, A; D 1 ) ≥ j E 0 (f j χ 1 hψ, A; D 1 ) - j |∇f j | χ 1 hψ 2 2 ≥ j E 0 (h j ψ, A; D 1 ) - C √ a , (7.12) 
where h j = f j χ 1 hψ is supported in D ∩ D(a j , ) . If D(a j , ) ∩ ∂Ω = ∅, then we can apply Proposition 7.2. Since Γ ∩ ∂Ω is a finite set, then we get,

D(a j , )∩∂Ω =∅ E 0 (h j ψ, A; D 1 ) ≥ -Cκ 2 2 .
Let δ ∈ (0, 1) be a constant. We select the parameter as follows,

= δH -1/3 . (7.13)

In that way, we obtain,

1 , κ 2 2 κ 3 H , 1 √ a κ 3 H , and 
D(a j , )∩∂Ω =∅ E 0 (h j ψ, A; D 1 ) ≥ κ 3 H o(1) (κ → ∞) . (7.14) 
If D(a j , ) ⊂ D c , then h j = 0 and E 0 (h j ψ, A; D 1 ) = 0 . Now, if j ∈ I = {j : D(a j , ) ⊂ Ω and D(a j , ) ∩ D = ∅}, then we can apply Proposition 7.1 and get,

j∈I E 0 (h j ψ, A; D 1 ) ≥ (1 -δ) 2 κ j∈I |∇B 0 (x j )| H κ 2 1/3 E |∇B 0 (x j )| H κ 2 -C δκ 2 + δ -1 κ 3 H 2α + κ 2 H 2 6 Ω |hψ| 2 dx ,
where, for all j, x j is an arbitrary point in D(a j , ). Thanks to Proposition 6.4 and the choice of in (7.13), we get further,

j∈I E 0 (h j ψ, A; D 1 ) ≥ (1 -δ) 2 κ j∈I |∇B 0 (x j )| H κ 2 1/3 E |∇B 0 (x j )| H κ 2 -C δ + δ 2α-1 κ H H -2α/3 κ 3 H .
Theorem 3.12 allows us to write,

|∇B 0 (x j )| H κ 2 1/3 E |∇B 0 (x j )| H κ 2 ≤ C κ 2 H . (7.15) Consequently, j∈I E 0 (h j ψ, A; D 1 ) ≥ 2 κ j∈I |∇B 0 (x j )| H κ 2 1/3 E |∇B 0 (x j )| H κ 2 -C δ + δ 2α-1 κ H H -2α/3 κ 3 H .
Inserting this and (7.14) into (7.12), and using the fact that ( √ a ) -1 κ 3

H , we get,

E 0 (χ 1 hψ, A; D 1 ) ≥ κ j∈I 2 |∇B 0 (x j )| H κ 2 1/3 E |∇B 0 (x j )| H κ 2 -C δ + δ 2α-1 κ H H -2α/3 κ 3 H . (7.16) 
Thanks to (7.15), the sum

j∈I 2 |∇B 0 (x j )| H κ 2 1/3 E |∇B 0 (x j )| H κ 2 (7.17)
is of order κ 2 /H. Let η ∈ (0, 1). Select 0 sufficiently small such that, for all ∈ (0, 0 ), the arc-length measure of D(a j , ) ∩ Γ along Γ satisfies,

2 - η 2 ≤ |D(a j , ) ∩ Γ| ≤ 2 + η 2 .
Thus, replacing 2 by |D(a j , ) ∩ Γ| in the sum in (7.17) produces an error of order η . Now, select x j ∈ D(a j , ) such that

|∇B 0 (x j )| 1/3 E |∇B 0 (x j )| H κ 2 = max D(a j , ) |∇B 0 (x)| 1/3 E |∇B 0 (x)| H κ 2 .
In that way, the sum in (7.17) satisfies,

j∈I 2 |∇B 0 (x j )| H κ 2 1/3 E |∇B 0 (x j )| H κ 2 ≥ j∈I D(a j , )∩Γ |∇B 0 (x j )| H κ 2 1/3 E |∇B 0 (x j )| H κ 2 dx -Cη κ 2 H . (7.18) 
Recall (7.15). Since the balls D(a j , ) overlap in a region of length O(a ), and the number of these balls is inversely proportional to , then

j∈I D(a j , )∩Γ |∇B 0 (x j )| H κ 2 1/3 E |∇B 0 (x j )| H κ 2 dx ≥ D∩Γ |∇B 0 (x j )| H κ 2 1/3 E |∇B 0 (x j )| H κ 2 dx -Ca κ 2 H .
Inserting this into (7.18), then inserting the resulting inequality into (7.16), we get,

E 0 (χ 1 hψ, A; D 1 ) ≥ κ Γ∩D |∇B 0 (x)| H κ 2 1/3 E |∇B 0 (x)| H κ 2 ds(x) -C a + δ + δ 2α-1 κ H H -2α/3 + η κ 3 H . (7.19)
Recall that α > 0. Taking κ → ∞, we get,

lim inf κ→∞ H κ 3 E 0 (χ 1 hψ, A; D 1 ) -κ Γ∩D |∇B 0 (x)| H κ 2 1/3 E |∇B 0 (x)| H κ 2 ds(x) ≥ -C(a + δ + η) .
Taking η → 0 + , we obtain, 

lim inf κ→+∞ H κ 3 E 0 (χ 1 hψ, A; D 1 ) -κ Γ∩D |∇B 0 (x)| H κ 2 1/3 E |∇B 0 (x)| H κ 2 ds(x) ≥ -C(a+δ) . ( 7 
H κ 3 E 0 (hψ, A; D) -κ Γ∩D |∇B 0 (x)| H κ 2 1/3 E |∇B 0 (x)| H κ 2 ds(x) ≥ -C(a + δ) .
Now, we take the limit (a, δ) → (0, 0) to obtain,

lim inf κ→∞ H κ 3 E 0 (hψ, A; D) -κ Γ∩D |∇B 0 (x)| H κ 2 1/3 E |∇B 0 (x)| H κ 2 ds(x) ≥ 0 .
Thus, we arrive at

E 0 (hψ, A; D) ≥ κ Γ∩D |∇B 0 (x)| H κ 2 1/3 E |∇B 0 (x)| H κ 2 ds(x) - κ 3 H o (1) 
. (7.22) This completes the proof of Theorem 7.3 in the case H κ 3/2 .

The regime H κ 3/2 . In this regime, we shall see that E 0 (χ 1 hψ, A; D 1 ) is an error term and E 0 (χ 2 hψ, A; D 2 ) is the leading term. Since H κ 3/2 , the parameter introduced in (7.13) satisfies δ κ H .

Consequently, we have,

E 0 (χ 1 hψ, A; D 1 ) ≥ -κ 2 Ω |χ 1 hψ| 2 dx ≥ Cκ 2 ≥ -δ κ 3 H . ( 7 

.23)

Unlike the regime H κ 3/2 , we can no more ignore the energy in { √ a ≤ dist(x, Γ) ≤ κ H }. We introduce the two parameters, m > 1 and ζ ∈ (0, ) ,

and the domain,

U = x ∈ D 2 : dist(x, Γ) ≥ m κ H . (7.25) 
Thanks to the exponential decay in Theorem 6.3, we get, 

κ 2 U |ψ| 2 dx ≤ Ce -2m m 0 κ 3 H . and E 0 (χ 2 hψ, A; U ) ≥ -Ce -2m m 0 κ 3 H . ( 7 
Q ζ = - ζ 2 , ζ 2 × - ζ 2 , ζ 2 . 
Let

J blk = {k : Q k,ζ ⊂ D 2 \ U and Q k,ζ ∩ ∂Ω = ∅} , J bnd,1 = {k : k ∈ J blk , Q k,ζ ∩ (D 2 \ U ) = ∅ and Q k,ζ ∩ ∂Ω = ∅} , J bnd,2 = {k : Q k,ζ ⊂ D 2 \ U and Q k,ζ ∩ ∂Ω = ∅} .
We have the obvious decomposition,

E 0 (χ 2 hψ, A; D 2 \U ) ≥ k∈J blk E 0 (χ 2 hψ, A; Q k,ζ )+ 2 j=1 k∈J bnd,j E 0 (χ 2 hψ, A; Q k,ζ ∩(D 2 \U )) . (7.27)
Since Γ ∩ ∂Ω is a finite set, then N = CardJ bnd,2 is bounded independently of κ. Now, the terms corresponding to k ∈ J bnd,j are easily estimated as follows, 

E 0 (χ 2 hψ, A; Q k,ζ ) ≥ (1 -η)E 0 (χ 2 hψ e -iκHu k , B 0 (a k )A 0 (x -x k ); Q k,ζ ) -C ηκ 2 + η -1 κ 3 H ζ 2α + κ 2 H 2 ζ 4 ψ 2 L 2 (Q k,ζ ) , (7.29) 
where u k is a gauge function.

We select the parameter ζ as follows

ζ = ηH -1/2 . (7.30) Clearly, ζ satisfies, ζ δ κ H 1 , κ 2 ζ κ H , H 2 ζ 4 = η 4 , ζ κH|B 0 (a k )| ζ κH √ a ηδ 1/2 a 1/4 .
Applying a scaling and a translation, we may use (3.51) and get,

1 ζ √ κH|B 0 (a k )| 2 E 0 (χ 2 hψ e -iκHu k , B 0 (a k )A 0 (x -x k ); Q k,ζ ) ≥ κ H|B 0 (a k )| g H κ |B 0 (a k )| -C H κ |B 0 (a k )| ζ √ κH|B 0 (a k )| .
We insert this into (7.29), sum over k ∈ J blk and use Proposition 6.4 to get,

k∈J blk E 0 (χ 2 hψ, A; Q k,ζ ) ≥ ζ 2 κ 2 k∈J blk g H κ |B 0 (a k )| - C ζκ -(Cη + o(1)) κ 3 H .
The sum in the inequality above becomes a lower Riemann sum if for each k the point (a k ) is selected in Q k, as follows,

|B 0 (a k )| = max{|B 0 (x)| : x ∈ Q k, } . Notice that N blk = Card J blk satisfies N blk × ζ 2 ≈ |D 2 \ U | as ζ → 0 and |D 2 \ U | = |{ √ a ≤ dist(x, Γ) ≤ m κ H }| ≤ Cm κ H .
Consequently, we have, We select ρ 0 sufficiently small so that the boundary of ∂D ρ is smooth. Let h 1 ∈ C ∞ c (D ρ ) and h 2 ∈ C ∞ (R 2 ) be functions satisfying

k∈J
0 ≤ h 1 ≤ 1 , |∇h 1 | + |∇h 2 | ≤ C ρ in R 2 , h 1 = 1 in D ρ , and h 2 1 + h 2 2 = 1 . that supp h 2 ⊂ D c .
Let (ψ, A) be a minimizer of (1.1). We will estimate the following energy Recall that we deal with two separate regimes:

Regime I : κ H κ 3/2 ; Regime II : κ 3/2 H κ 2 .

We define the quantity C 0 (κ, H; D) as follows: In light of the upper bound in Theorem 3.12, we have, 

C 0 (κ, H; D) =          κ D∩Γ |∇B 0 (x)| H κ 2 
where C 0 (κ, H; D) is introduced in (8.2). 9. Proof of Theorem 1.6

The proof of (1) in Theorem 1.6 is a simple combination of the upper bound in Theorem 5.1 and the lower bound in Theorem 7.3 (used with D = Ω).

The assertion (2) in Theorem 1.6 is the conclusion of Section 8.4. The rest of the section is devoted to the proof of statement (3) in Theorem 1.6. This will be done in three steps. Recall the definition of the quantity C 0 (κ, H; D) in (8.2) and that we work under the assumption on H described in Regimes I and II. It is sufficient to prove that the following formula is true in Regimes I and II, where the formula is valid in Regimes I and II. Combining this lower bound and the upper bound in (9.4), we obtain the asymptotics announced in the third assertion of Theorem 1.6.

  If A and B are two positive quantities, then • A B means A = δ(κ)B and δ(κ) → 0 as κ → ∞ ; • A B means A ≤ CB and C > 0 is a constant independent of κ ; • A B means B A, and A B means B A ; • A ≈ B means c 1 B ≤ A ≤ c 2 B, c 1 > 0 and c 2 > 0 are constants independent of κ . The main result in this paper is: Theorem 1.1. Suppose that the function B 0 satisfies Assumptions (1.2) and (1.3). Let b : R + → R + be a function satisfying lim κ→∞ b(κ) = +∞ and lim sup κ→∞ κ -1 b(κ) < +∞ . (1.10)

17

 17 

  )

  The simple change of variable = √ R gives us, lim R→∞ e gs (L; R) 2R = E(L) .

Theorem 3 . 11 .

 311 .41) This simple observation allows us to prove the following Theorem 3.11 below, which indicates a situation where the energies e gs (L; R) and e gs,disc (ν, L; R) match. For ν ∈ [0, 2π), L > 0 and R > 0, we have, e gs,disc (ν, L; R) = e gs,disc (0, L; R) ≥ e gs (L; R) , (3.42) where e gs (L; R) and e gs,disc (ν, L; R) are the ground state energies introduced in (3.15) and (3.40).

  ) where |Q r | denotes the area of Q r (|Q r | = r 2 ) and g is a continuous function such that g(0) = -1 2 and g(b) = 0 when b ≥ 1 . (3.50) Furthermore, there exists a constant C such that, for all r ≥ 1 and b > 0, the function g(•) to prove Theorem 3.12 below. This theorem concerns the limting function E(•). It contains sharp bounds on E(•) in the regime L → 0 + (compare with Proposition 3.6). The function g(•) provides us with a test function to prove: Theorem 3.12. There exist two positive constants C 1 and C 2 such that, if L ∈ (0, λ -3/2 0

  ) where the function u r ∈ H 1 0 (Q r ) is a minimizer of the ground state energy F b,Qr introduced in (3.45) and ∈ (0, 1) is a positive constant (to be determined in (3.56)). We impose the following condition on m and

Proposition 5 . 1 .

 51 Let Λ > 0 and : R → R + such that lim κ→+∞ κ 1/2 (κ) = +∞ and lim κ→∞ (κ) = 0 .

1 / 2 )

 12 and b : R → R + such that lim κ→∞ b(κ) = ∞ and lim κ→∞ κ -1/2 b(κ) = 0 . There exist positive constants C, κ 0 and 0 such that the following is true.

  ds(x) is the arc-length (along Γ) of D(a, ) ∩ Γ. Thus, the choice of 1 is such that the arc-length of D(a, ) ∩ Γ is approximately 2 , whenever ∈ (0, 1 ).The arc-length measure of Γ is denoted by |Γ|. By assumption, Γ consists of a finite number of simple smooth curves (Γ i )

Proposition 5 . 3 .

 53 Let Λ > 0 and : R+ → R + be a function satisfying lim κ→∞ (κ) = 0 and lim κ→∞ κ (κ) = ∞.

  be the minimizer of the ground state energy F b,Qr introduced in (3.47). For all k ∈ I, let r k = ζ κH|B 0 (x k )|, b k = H κ |B 0 (x k )|, u k = u r k and ϕ k be the gauge function satisfying (see Proposition 4.3),

Theorem 6 . 3 .

 63 Let Λ > 0 and : R → R + such that lim κ→∞ κ (κ) = ∞ and lim κ→∞ (κ) = 0 . There exist positive constants C, m 0 and

  err : R + → R + , such that lim |b|→∞ err(b) = 0 and ∀ b , λ N (b) ≥ Θ 0 |b| -|b| err(b) , where λ N (b) is the lowest eigenvalue of the operator -(∇ -ibA 0 ) 2 in L 2 (Ω) with Neumann boundary condition.

Proposition 7 . 1 .

 71 Let Λ > 0 and : R → R + such that lim κ→∞ κ (κ) = ∞ and lim κ→∞ (κ) = 0 . For α ∈ (0, 1), there exist positive constants C and κ 0 such that, for ∈ (0, 1) , δ ∈ (0, 1) ,a j ∈ Γ, D(a j , ) ⊂ Ω, x j ∈ D(a j , ) ∩ Γ, h ∈ C ∞ c D(a j , ) a function satisfying h ∞ ≤ 1, (ψ,A) a critical point of the functional in (1.1), κ ≥ κ 0 , and (κ)κ 2 ≤ H ≤ Λκ 2 , the following holds:

2 j=1

 2 k∈J bnd,jE 0 (χ 2 hψ, A; Q k,ζ ∩(D 2 \U )) ≥ -κ 2 {dist(x,∂Γ)≤Cζ |ψ| 2 dx-N κ 2 ζ 2 ≥ -Cκ 2 ζ . (7.28)For all k, let x k be the center of the square Q k,ζ and a k an arbitrary point in Q k,ζ . Repeating the proof of Proposition 7.1, we get, for all k ∈ J and η ∈ (0, 1),

1 :( 2 ) 1 . 8 .

 1218 proof of Theorem 7.3 in the regime H κ 3/2 . We get by applying Theorem 7.3 with D = Ω and h = Corollary 7.4. Let Λ > 0 and : R → R + such that lim κ→∞ κ (κ) = ∞ and lim κ→∞ (κ) = 0 . There exist κ 0 > 0 and a function err : R → R such that the following is true: (1) lim κ→∞ err(κ) = 0 . Let κ ≥ κ 0 , (κ)κ 2 ≤ H ≤ Λκ 2 and (ψ, A) be a critical point of the functional in (1.1). (a) If H κ 3/2 , then, E 0 (ψ, A) ≥ κ We have just to combine the conclusions of Theorem 5.1 and Corollary 7.4. Local energy estimates 8.1. Preliminaries. Let D ⊂ Ω be an open set with a smooth boundary such that ∂D ∩ Γ is a finite set. Let ρ 0 ∈ (0, 1), ρ ∈ (0, ρ 0 ) and D ρ = {x ∈ Ω : dist(x, D) < ρ} .

E 0 2 Ω

 02 (ψ, A; D) = D |∇ -iκHA)ψ| 2 -κ 2 |ψ| 2 + κ 2 2 |ψ| 4 dx .Notice that we have the following decomposition of the energyE 0 (ψ, A; Ω) ≥ E 0 (h 1 ψ, A; D ρ ) + E 0 (h 2 ψ, A; D c ) -C ρ |ψ| 2 dx .Now we use the estimate in Proposition 6.4 and write,E 0 (ψ, A; Ω) ≥ E 0 (h 1 ψ, A; D ρ ) + E 0 (h 2 ψ, A; D c )

  Since h 1 = 1 in D, we get the simple decomposition of the energy,E 0 (ψ, A; D) = E 0 (h 1 ψ, A; D ρ ) -E 0 (h 1 ψ, A; D ρ \ D) .Since h 1 ∞ ≤ 1 and the boundary of D ρ \ D is smooth, we get in light of Theorem 7.3,E 0 (h 1 ψ, A; D ρ \ D) ≥ C 0 (κ, H; D ρ \ D) + κ 3 H err ρ (κ) .
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 383 In the same vein, since g(b) is bounded and vanishes when b ≥ 1, then,Dρ\D g H κ |B 0 (x)| dx ≤ Cρ κ H .As a consequence, we get,C 0 (κ, H; D ρ \ D) ≤ C κ 3 H ρ ,andE 0 (ψ, A; D) ≤ C 0 (κ, H; D) {E 0 (ψ, A; D ρ ) -C 0 (κ, H; D)} ≤ Cρ .Next, we send ρ to 0 + and get, lim sup κ→∞ H κ 3 {E 0 (ψ, A; D) -C 0 (κ, H; D)} ≤ 0 . (8.3) Notice that the upper bound in (8.3) is valid for any open set D ⊂ Ω with smooth boundary. In particular, it is true when D is replaced by D c = Ω \ D, i.e. lim sup κ→∞ H κ 3 E 0 (ψ, A; D c ) -C 0 (κ, H; D c ) ≤ 0 .(8.4) Lower bound. We continue to assume that (ψ, A) is a minimizer of the functional in (1.1). We will give a lower bound of the energy E 0 (ψ, A; D). We plug the lower bound in Corollary 7.4 into the following simple decomposition of the energy,E 0 (ψ, A; D) + E 0 (ψ, A; D c ) = E 0 (ψ, A; Ω) .In that way, we get,E 0 (ψ, A; D) ≥ C 0 (κ, H; Ω) -E 0 (ψ, A; D c ) + κ 3 H err(κ) .Notice the following simple decomposition of the term on the right hand side,E 0 (ψ, A; D) ≥ C 0 (κ, H; D) + κ 3 H err(κ) -E 0 (ψ, A; D c ) -C 0 (κ, H; D c ) .Now we send κ to ∞ and using (8.4), we get,lim inf κ→∞ κ 3 {E 0 (ψ, A; D) -C 0 (κ, H; D)} ≥ 0 . (8.5) Conclusion for the local energy. Combining (8.3) and (8.5), we get, in the two regimes we are considering, that the local energy in D of a minimizer (ψ, A) satisfies, E 0 (ψ, A; D) = C 0 (κ, H; D) + κ 3 H o(κ) ,

Dκ 2 2 Ω

 2 |ψ(x)| 4 dx = -2 κ 2 C 0 (κ, H; D) + κ H o(1) , (κ → ∞) ,where (ψ, A) is a minimizer of the energy in (1.1).Step 1: The case D = Ω. A minimizer (ψ, A) satisfies the Ginzburg-Landau equation in (4.1). Recall the useful identity in (4.3), -|ψ(x)| 4 dx = E 0 (ψ, A; Ω) . Thanks to the formulas in Subsection 8.4 used with D = Ω , we observe that (8.6) yields, Ω |ψ(x)| 4 dx = -2 κ 2 C 0 (κ, H; Ω) + κ H o(1) , (9.1)

Step 2 :Since 1 ≥Step 3 :

 213 Upper bound. Let = κ -1/4 κ H and D = {x ∈ D : dist(x, ∂D) ≥ } .Consider a cut-off function χ ∈ C ∞ c (D) such that, χ ∞ ≤ 1 , ∇χ ≤ C , χ = 1 in D .Multiplying both sides of the equation in (4.1) by χ 2 ψ then integrating by parts and using the estimate in Proposition 6.4 yield,D |(∇ -iκHA)χ ψ| 2 -κ 2 χ 2 |ψ| 2 + κ 2 χ 2 |ψ| 4 dx = χ 2 ≥ χ 4 , this formula implies, -κ 2 2 D χ 2 |ψ| 4 dx ≥ E 0 (χ ψ, A; D) -κ 3 H o(1) . (9.2)Using the bounds ψ ∞ ≤ 1 and ψ 2 ≤ C κ H , the fact that χ is supported in D and χ = 1 in D , we get,D |ψ(x)| 4 dx = D χ 2 (x)|ψ(x)| 4 dx + D (1 -χ 2 (x))|ψ(x)| 4 dx = D χ 2 (x)|ψ(x)| 4 dx + infer from (9.2) and Theorem 7.3, D |ψ(x)| 4 dx ≤ -2 κ 2 C 0 (κ, H; D) Lower bound. Notice that (9.4) is valid for any open domain D ⊂ Ω with a smooth boundary, in particular, it is valid when D is replaced by the complementary of D in Ω: D c . We have the simple decomposition, Using the asymptotics in (9.1) obtained in Step 1, we deduce that, D |ψ(x)| 4 dx ≥ -2 κ 2 C 0 (κ, H; D)

  .20) Lower bound of the term E 0 (χ 2 hψ, A; D 2 ).

	Since H	κ 3/2 , the parameter defined in (7.13) satisfies,
		= δH -1/3 = δ	κ H	H 2/3 κ	κ H	.
	Thanks to the exponential decay in Theorem 6.3, there holds,
		κ 2	D 2	|ψ| 2 dx	κ 3 H	,
	and				
		E 0 (χ 2 hψ, A; D 2 ) ≥ -	κ 3 H	o(1) (κ → +∞) .
	which implies			
		lim inf κ→+∞	H κ 3 E 0 (χ 2 hψ, A; D 2 ) ≥ 0 .	(7.21)
	Inserting (7.21) and (7.20) into (7.11), we get,
	lim inf κ→+∞				

  .26) Our next task is to determine a lower bound of the energy E 0 (χ 2 hψ, A; D 2 \ U ). Consider for ζ ∈ (0, 1) the lattice of squares (Q k,ζ ) k generated by the square

  blk E 0 (χ 2 hψ, A; Q k,ζ ) ≥ κ 2Since the function g is non-positive, then we get that,k∈J blk E 0 (χ 2 hψ, A; Q k,ζ ) ≥ κ 2We insert (7.31) and (7.28) into(7.27). Since g H κ |B 0 (x)| = 0 in {|B 0 (x)| ≥ H κ }and H κ 3/2 , it results the inequality, E 0 (χ 2 hψ, A; D 2 \ U ) ≥ κ 2

								D ζ		g	H κ	|B 0 (x)| dx -m	Cκ ζ	κ H	-(Cη + o(1))	κ 3 H	,
	where									
					D ζ =			Q k,ζ ⊂ D 2 \ U .
									k∈J blk
			D 2 \U	g		H κ	|B 0 (x)| dx -Cm	κ ζ	κ H	-(Cη + o(1))	κ 3 H
	≥ κ 2	D 2 \U	g		H κ	|B 0 (x)| dx -C mη -1 H 1/2 κ	κ 3 H	-(Cη + o(1))	κ 3 H	.
											(7.31)
			D	g		H κ	|B 0 (x)| dx -(Cη + o(1))	κ 3 H	, (κ → ∞) .	(7.32)
	Combining (7.32) and (7.26), we get				
	E 0 (χ 2 hψ, A; D 2 ) ≥ κ 2	D	g		H κ	|B 0 (x)| dx -Ce -2m m 0 κ 3 H	-(Cη + o(1))	κ 3 H	.
	Now, we insert this inequality and (7.23) into (7.11) to get,
	E 0 (hψ, A; D) ≥ κ 2	D	g			H κ	|B 1)	κ 3 H	.
	By taking the successive limits,							
	lim inf κ→∞	,			lim a→0 +	,	lim δ→0 +	,	lim η→0 +	,	lim m→∞	,
	we get									
	E 0 (hψ, A; D) ≥ κ 2		D	g	H κ	|B 0 (x)| dx -

0 (x)| dx -C a + δ + η + e -2m m 0 + o(

  Upper bound. The results in this section are valid under the assumption that (ψ, A) is a minimizer of the functional in (1.1).We have E 0 (ψ, A; Ω) ≤ E gs (κ, H). Using |ψ| ≤ 1 and the upper bound in Theorem 5.1, we get,E 0 (h 1 ψ, A; D ρ ) + E 0 (h 2 ψ, A; D c ) ≤ C 0 (κ, H; Ω) + E 0 (h 2 ψ, A; D c ) ≥ C 0 (κ, H; DAs a consequence, we have, E 0 (h 1 ψ, A; D ρ ) ≤ C 0 (κ, H; D) +

											κ 3 H	err(κ) +	C ρ 2	κ H	.
	Using Theorem 7.3, we may write,					
							c ) +	κ 3 H	err(κ) .
							κ 3 H	err(κ) +	C ρ 2
	κ 2	D	g	κ H	|B 0 (x)| dx	1/3	E |∇B 0 (x)|	H κ 2 ds(x)	in Regime I , in Regime II .	(8.2)

Notice that, in Regimes I and II, the result of Theorem 1.1 reads as follows,

E gs (κ, H) = C 0 (κ, H; Ω) + κ 3 H o(1) , (κ → ∞) ,

8.2.
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