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THE DENSITY OF SUPERCONDUCTIVITY IN THE BULK REGIME

In the asymptotic limit of a large Ginzburg-Landau parameter, we give a new asymptotic formula for the L 2 -norm of the Ginzburg-Landau order parameter. The formula is valid in the bulk regime where the intensity of the applied magnetic field is of the same order as the Ginzburg-Landau parameter and strictly below the second critical field. Our formula complements the celebrated one of Sandier-Serfaty for the L 4 -norm.

Introduction and main results

The Ginzburg-Landau model. The Ginzburg-Landau functional is defined as the sum of two functionals, the energy of the order parameter and the magnetic energy. It reads as follows,

E GL (ψ, A) = E op (ψ, A) + E mag (A) , (1.1) 
where

E op (ψ, A) = Ω |(∇ -iκHA)ψ| 2 -κ 2 |ψ| 2 + κ 2 2 |ψ| 4 dx , E mag (A) = κ 2 H 2 Ω | curl A -1| 2 dx . (1.2) 
Here:

• Ω ⊂ R 2 is an open, bounded and simply connected set with a C ∞ boundary ; Ω is the cross section of a cylindrical superconducting sample placed vertically. • (ψ, A) ∈ H 1 (Ω; C) × H 1 (Ω; R 2 ) describes the state of superconductivity as follows: |ψ| 2 measures the local density of the superconducting Cooper pairs and curl A measures the induced magnetic field in the sample. • κ > 0 is the Ginzburg-Landau parameter, a material characteristic of the sample.

• H > 0 measures the intensity of the applied magnetic field.

• The applied magnetic field is κH e, where e = (0, 0, 1).

We introduce the ground state energy of the functional in (1.1):

E gs (κ, h ex ) = inf{E GL (ψ, A) : (ψ, A) ∈ H 1 (Ω; C) × H 1 (Ω; R 2 )} . (1.3)
For a given (κ, H), a configuration (ψ, A) ∈ H 1 (Ω; C) × H 1 (Ω; R 2 ) satisfying E GL (ψ, A) = E gs (κ, h ex ) is called a minimizer of the functional E GL and we will denote it by (ψ, A) κ,H to emphasize its dependence on κ and H. Such a minimizer is a solution of the following Ginzburg-Landau equations (we use the notation

∇ ⊥ = (∂ x 2 , -∂ x 1 ))        -∇ -iκHA 2 ψ = κ 2 (1 -|ψ| 2 )ψ in Ω , -∇ ⊥ curl A = (κH) -1 Im ψ (∇ -iκHA)ψ in Ω , ν • (∇ -iκHA)ψ = 0
on ∂Ω , curl A = B 0 on ∂Ω .

(1.4)
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Gauge invariant quantities. The physically relevant quantities, density, induced magnetic field, energy and supercurrent are invariant under the Gauge transformations. More precisely, the following quantities

|ψ| 2 , curl A , |(∇ -iκHA)ψ| 2 , (1.5) 
j(ψ, A) = Re -iψ (∇ -iκHA)ψ , (1.6) are invariant under the transformation (ψ, A) → (e iχ , A -∇χ) for every given χ ∈ H 1 (Ω; R). This gauge invariance insures that all the quantities in (1.5) and (1.6) are smooth functions (cf.

[23, Ch. 2]) when (ψ, A) is a minimizer. The solution (ψ, A) of (1.4) in the class such that divA = 0 in Ω and

A • ν = 0 on ∂Ω is indeed C ∞ .
Earlier results on the density. In this paper, we will study the asymptotics for the density in the following regime

H = bκ , (1.7) where b ∈ (0, 1) is a fixed constant.
This corresponds to the situation of an external magnetic field with intensity strictly below the second critical field H c 2 (κ) := κ . The case where b > 1 in (1.7) is related to the phenomenon of surface superconductivity which is extensively studied by many authors [START_REF] Almog | Non-linear surface superconductivity in the large κ limit[END_REF][START_REF] Correggi | Boundary behavior of the Ginzburg-Landau order parameter in the surface superconductivity regime[END_REF][START_REF] Fournais | Spectral Methods in Surface Superconductivity[END_REF][START_REF] Pan | Surface superconductivity in applied magnetic fields above Hc2[END_REF].

When (1.7) holds, Sandier-Serfaty [START_REF] Sandier | The decrease of bulk superconductivity close to the second critical field in the Ginzburg-Landau model[END_REF] proved the following formula for the ground state energy in (1.3):

E gs (κ, h ex ) = g(b)|Ω|κ 2 + o(κ 2 ) as κ → +∞ , (1.8 
) where g(b) is an implicitly defined quantity that depends only on b. Its precise definition will be given in (2.4). In particular, it satisfies:

g(0) = - 1 2 , g (1) 
= 0 and g(b) < 0 for b ∈ (0, 1) .

The convergence in (1.8) is uniform with respect to b on every interval [ , 1), > 0. The uniform convergence fails on the interval (0, 1) . More details regarding the uniformity with respect to b are given by K. Attar in [START_REF] Attar | The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field[END_REF][START_REF] Attar | Energy and vorticity of the Ginzburg-Landau model with variable magnetic field[END_REF]. Now suppose that (1.7) holds and that (ψ, A) κ,H is a minimizer of the functional in (1.1). The magnetic energy satisfies [START_REF] Attar | The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field[END_REF]:

κ 2 H 2 Ω | curl A -1| 2 dx ≤ C κ 7/4 , (1.9) 
for κ ≥ κ 0 , where κ 0 and C are two constants that depend only on the domain Ω and the constant b in (1.7). Hence its contribution in the ground state energy is relatively small as κ → +∞ . Again, if b ∈ [ , 1) for some > 0 , the constants κ 0 and C can be selected independently from b, but they will depend on . More details can be found in [START_REF] Attar | The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field[END_REF][START_REF] Attar | Energy and vorticity of the Ginzburg-Landau model with variable magnetic field[END_REF], where it is allowed for to depend on κ, = (κ), and approach 0 as κ → +∞ .

Using the Ginzburg-Landau equation for ψ (see (1.4)), we get the following simple relation between the energy and the L 2 -norm of the density:

E op (ψ, A) = - κ 2 2 Ω |ψ(x)| 4 dx , (1.10) 
where E op is the energy of the order parameter introduced in (1.2). Consequently, combining the estimates in (1.8) and (1.9), we deduce the following formula regarding the L 2 -norm of the density [START_REF] Sandier | The decrease of bulk superconductivity close to the second critical field in the Ginzburg-Landau model[END_REF]:

Ω |ψ(x)| 4 dx = -2g(b)|Ω| + o(1) as κ → +∞ , (1.11) 
where the function o(1) is dominated by a function s(κ) such that s(κ) is independent of the choice of the minimizer (ψ, A) κ,H and s(κ) → 0 as κ → +∞ . When b ∈ [ , 1) for some > 0 , the function s(κ) can be selected independently from b. More details can be found in [START_REF] Attar | The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field[END_REF][START_REF] Attar | Energy and vorticity of the Ginzburg-Landau model with variable magnetic field[END_REF], where the case = (κ) tending to 0 is considered. In particular the comparison of (κ) with the first critical field H c 1 (κ) ≈ ln κ κ could play a role. Furthermore, Sandier-Serfaty obtained the following weak-convergence of |ψ| 4 as κ → +∞ in the sense of distributions [START_REF] Sandier | The decrease of bulk superconductivity close to the second critical field in the Ginzburg-Landau model[END_REF]:

|ψ| 4 -2g(b) in D (Ω) .
(1.12)

Open questions. Note that for b = 0 in (1.7), i.e. H = 0, every minimizer (ψ, A) κ,H satisfies |ψ| = 1 and curl A = 1. This is consistent with (1.11) and (1.9). Indeed, as b → 0 + , we know that g(b) → -1 2 . The regime b → 0 + (which corresponds to H κ, see (1.7)) is thoroughly analyzed by Sandier-Serfaty in [START_REF] Sandier | On the energy of type-II superconductors in the mixed phase[END_REF][START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF]. In particular, it is proved that, for any minimizer (ψ, A) κ,H , the density |ψ| 2 satisfies |ψ| 2 → 1 in L 2 (Ω) and it is close to 1 everywhere except in narrow regions of area O(κ -1 ). The region where |ψ| 2 is not close to 1 consists of small defects accommodating isolated zeros of ψ, called vortices. These vortices are evenly distributed in the domain Ω along a lattice, and the distance between two vortices is ≈ H -1 , much larger than κ -1 , the core size of the vortex.

The detailed analysis of the distribution of vortices is missing when (1.7) holds for a fixed constant b ∈ (0, 1), even for small values of b. This is a challenging problem mainly for the following reason. For a minimizer (ψ, A) κ,H , it is expected that ψ will have isolated zeros/vortices filling up all the domain Ω, but these zeros are separated by a distance O(H -1 ) = O(κ -1 ). At the same time, the core-size of every vortex is equal to O(κ -1 ). Consequently, detecting the vortices in this regime becomes harder than when H κ (i.e. b → 0 + in (1.7)). This problem is related to the one of the Abrikosov state near the critical field H C 2 := κ , where the transition to the normal state in the bulk occurs. This is visualized in the regime b → 1 -in (1.7) and is analyzed in many papers, [START_REF] Almog | Abrikosov lattices in finite domains[END_REF][START_REF] Fournais | Nucleation of bulk superconductivity close to critical magnetic field[END_REF][START_REF] Kachmar | The Ginzburg-Landau order parameter near the second critical field[END_REF][START_REF] Kachmar | The distribution of 3D superconductivity near the second critical field[END_REF]. The same difficulty is encountered when trying to detect the vortices by the methods of Sandier-Serfaty, so that the analysis is shifted to the distribution of the density |ψ| 2 instead.

In this paper, we complement the results of Sandier-Serfaty by obtaining analogues of the formulas in (1.11) and (1.12) for the density |ψ| 2 (instead of the square of the density, |ψ| 4 ), in the regime where (1.7) holds for a fixed constant b ∈ (0, 1). Besides that such results are new and do not follow from the analysis by Sandier-Serfaty [START_REF] Sandier | The decrease of bulk superconductivity close to the second critical field in the Ginzburg-Landau model[END_REF], they might be helpful in the analysis of the vortices. Related to these results is the asymptotics of the supercurrent j(ψ, A) when (1.7) holds. Even in the particular regime H κ (i.e. b 1 in (1.7)), the analysis of the distribution of the super-current is missing. Actually, Sandier-Serfaty [START_REF] Sandier | Vortices for the Magnetic Ginzburg-Landau Model[END_REF]Ch. 8,Corol. 8.1] prove only that, in the regime

| ln κ| κ H κ, curl j → 0 in D (Ω), as κ → +∞.
Main results. To state our main results, we recall some properties of g. The function g is increasing and concave (cf. [13, Thm. 2.1]). Consequently, g has at each point left-and rightsided derivatives g (b -) and g (b + ) with

g (b + ) ≤ g (b -) .
Therefore, we can introduce the set

R = {b ∈ (0, 1) : g (b -) = g (b + )} (1.13)
whose complement in the interval (0, 1) is countable. Assuming that b ∈ R and (1.7) holds, we will prove that every minimizer (ψ, A) κ,H of the G-L functional in (1.1) satisfies (compare with (1.11))

Ω |ψ(x)| 2 dx = g (b) -2g(b) |Ω| + o(1) as κ → +∞ . (1.14)
The formula in (1.14) is consistent with the one given in [18, Eq. (1.6)] which is valid as b → 1 -.

We have indeed (see below (2.7)),

g(b) ∼ E Ab (b -1) 2 ,
where E Ab ∈ [-1 2 , 0) is a universal constant. More precisely, our main result is: Theorem 1.1. Let b ∈ (0, 1). There exist κ 0 > 0 and a function λ : R + → R + such that lim κ→∞ λ(κ) = 0 and the following is true.

If (ψ, A) κ,H is a minimizer of the functional in (1.1) for H = bκ and κ ≥ κ 0 , then (1) 
g (b + ) -λ(κ) ≤ 1 κ 2 |Ω| Ω |(∇ -iκH)A)| 2 dx ≤ g (b -) + λ(κ) .
(2)

g (b + ) -2g(b) -λ(κ) ≤ 1 |Ω| Ω |ψ(x)| 2 dx ≤ g (b -) -2g(b) + λ(κ) as κ → +∞ .
(3) If b ∈ R, then as κ → ∞, the following convergence holds in the sense of distributions

|ψ| 2 g (b) -2g(b) in D (Ω) .
(4) The supercurrent satisfies

1 κ 2 |Ω| Ω |j(ψ, A)| 2 dx ≤ g (b -) + λ(κ) , and 
1 κ|Ω| Ω |j(ψ, A)| dx ≤ g (b -) g (b -) -2g(b) + λ(κ) . Remark 1.2

. [On the leading order term]

The coefficient of the leading term in (1.14) does not vanish. Actually, g (b) ≥ 0 since g is increasing, and g(b) < 0 for b ∈ (0, 1).

Remark 1.3. [On the L 2 -norm of 1 -|ψ| 2 ]
Using (1.11) and Hölder's inequality, we get, for fixed b and as κ → +∞,

1 |Ω| Ω |ψ(x)| 2 dx ≤ |Ω| -1 2 Ω |ψ(x)| 4 dx 1 2 ≤ (-2g(b)) 1 2 + o(1) .
Combined with the lower bound in (1.14), we get (we use that g (b

+ ) ≥ 0) -2g(b) -o(1) ≤ 1 |Ω| Ω |ψ(x)| 2 dx ≤ (-2g(b)) 1 2 + o(1) .
Now we find the following estimate for the

L 2 -norm of 1 -|ψ| 2 , 1 |Ω| Ω (1 -|ψ(x)| 2 ) 2 dx ≤ 1 + 2g(b) + o(1) ,
with the principal term on the right hand side approaching 0 as b → 0 + , since

lim b→0 + g(b) = - 1 2 .
This is consistent with the behavior |ψ| 2 → 1 in L 2 (Ω) obtained in [START_REF] Sandier | On the energy of type-II superconductors in the mixed phase[END_REF].

Remark 1.4. [On the potential energy] When b ∈ R (see (1.13)), we get from Theorem 1.1 that the potential energy satisfies

κ 2 Ω -|ψ(x)| 2 + 1 2 |ψ(x)| 4 dx = κ 2 g(b) -g (b) |Ω|(1 + o(1)) .

Preliminaries

2.1. The bulk energy. Here we give the definition of the reference bulk energy g(•). This energy first appeared in [START_REF] Sandier | The decrease of bulk superconductivity close to the second critical field in the Ginzburg-Landau model[END_REF] and was then extensively studied in [START_REF] Aftalion | Lowest Landau level approach in superconductivity for the Abrikosov lattice close to HC2[END_REF][START_REF] Fournais | The ground state energy of the three dimensional Ginzburg-Landau functional. Part I. Bulk regime[END_REF][START_REF] Attar | Energy and vorticity of the Ginzburg-Landau model with variable magnetic field[END_REF][START_REF] Attar | Pinning with a variable magnetic field for the Ginzburg-Landau model[END_REF][START_REF] Kachmar | A new formula for the energy of bulk superconductivity[END_REF]. Consider b ∈ (0, +∞), r > 0 and Q r = (-r/2, r/2) × (-r/2, r/2) . Define the functional,

F b,Qr (u) = Qr b |(∇ -iA 0 )u| 2 -|u| 2 + 1 2 |u| 4 dx , for u ∈ H 1 (Q r ) . (2.1)
Here, A 0 is the magnetic potential,

A 0 (x) = 1 2 (-x 2 , x 1 ) , for x = (x 1 , x 2 ) ∈ R 2 . (2.2)
Define the two ground state energies,

e D (b, r) = inf{F b,Qr (u) : u ∈ H 1 0 (Q r )} , e N (b, r) = inf{F b,Qr (u) : u ∈ H 1 (Q r )} .
(2.

3)

The function g(•) may be defined as follows (cf. [START_REF] Fournais | The ground state energy of the three dimensional Ginzburg-Landau functional. Part I. Bulk regime[END_REF][START_REF] Sandier | The decrease of bulk superconductivity close to the second critical field in the Ginzburg-Landau model[END_REF][START_REF] Attar | Energy and vorticity of the Ginzburg-Landau model with variable magnetic field[END_REF]),

∀ b > 0 , g(b) = lim r→+∞ e D (b, r) |Q r | = lim r→∞ e N (b, r) |Q r | , (2.4) 
where |Q r | denotes the area of Q r (|Q r | = r 2 ). Furthermore, there exists a constant C such that, for all r ≥ 1 and b ∈ (0, 1),

g(b) ≤ e D (b, r) |Q r | ≤ g(b) + C √ b r and e D (b, R) -Cr √ b ≤ e N (b, r) ≤ e D (b, r) . (2.5) 
Various properties satisfied by the function g(•) are established in [START_REF] Attar | Pinning with a variable magnetic field for the Ginzburg-Landau model[END_REF][START_REF] Fournais | The ground state energy of the three dimensional Ginzburg-Landau functional. Part I. Bulk regime[END_REF][START_REF] Kachmar | The ground state energy of the three dimensional Ginzburg-Landau model in the mixed phase[END_REF][START_REF] Sandier | The decrease of bulk superconductivity close to the second critical field in the Ginzburg-Landau model[END_REF]. In particular, the function g(•) is a non decreasing continuous and locally Lipschitz function such that

g(0) = - 1 2 and g(b) = 0 when b ≥ 1 , (2.6) 
and Proposition 2.1. Let b ∈ (0, 1). There exist two constants C > 0 and κ 0 > 0 such that, if κ ≥ κ 0 , H = bκ 2 and (ψ, A) κ,H is a critical point of (1.3), then:

lim b→1 - g(b) (b -1) 2 = E Ab ∈ [- 1 2 , 0) . ( 2 
ψ ∞ ≤ 1 , (2.8) 
(∇ -iκHA)ψ C(Ω) ≤ Cκ , (2.9 
)

curl A -1 C 1 (Ω) ≤ C κ . (2.10)
As a consequence of Proposition 2.1, we may pick a useful gauge transformation in every ball with small radius: Proposition 2.2. Let b ∈ (0, 1). There exist two constants C > 0 and κ 0 > 0 such that, for any x 0 ∈ Ω, there exists a function ϕ 0 ∈ C 1 (Ω) such that

∀ x ∈ Ω , A(x) -A 0 (x -x 0 ) -∇ϕ 0 (x) ≤ C κ max |x -x 0 |, |x -x 0 | 2 ,
where A 0 is the vector field introduced in (2.2).

Proof. Let B = curl A. Choose a convex and open set U ⊂ R 2 such that Ω ⊂ U . We may extend the function B to a function

B ext : U → R such that supp(B ext ) ⊂ U and ∇B ext L ∞ (U ) ≤ C ∇B L ∞ (Ω) , (2.11) 
where C is a constant that depends solely on Ω and U (i.e. it is independent of B).

Define the vector field in Ω

G(x) = 2 1 0 sB ext s(x -x 0 ) + x 0 ds A 0 (x -x 0 ) .

It is easy to check that

curl G = B ext = B in Ω .
Consequently, since Ω is simply connected, there exists a smooth function ϕ 0 such that,

A(x) = G(x) -∇ϕ 0 (x) .
Using (2.10), (2.11) and the mean value theorem, we get further

|G(x) -B 0 (x 0 )A 0 (x -x 0 )| ≤ C κ |x -x 0 | 2 .
Again, using (2.10), we write (B 0 (x 0 )-1)A 0 (x-x 0 ) ≤ Cκ -1 |x-x 0 |. This yields the inequality

|G(x) -A 0 (x -x 0 )| ≤ C κ max |x -x 0 |, |x -x 0 | 2 .
Remark 2.3. We will use the inequality in Proposition 2.2 for |x -x 0 | ≤ and 1, which in turn reads as follows A(x) -A 0 (x -x 0 ) -∇ϕ 0 (x) ≤ C κ .

On the local energy of minimizers

For any open set D ⊂ Ω, we define the following local energy

E 0 (f, a; D) = D |∇ -iκHa)f | 2 -κ 2 |f | 2 + κ 2 2 |f | 4 dx . (3.1) 
For x 0 ∈ R 2 and > 0, Q (x 0 ) = x 0 + (-/2, /2) 2 denotes the square of center x 0 and sidelength .

We will need the following result, essentially proved in [START_REF] Attar | The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field[END_REF] modulo a few adjustments.

Proposition 3.1. If b ∈ (0, 1), there exist positive constants C , R 0 , and κ 0 > 0 , such that for

κ ≥ κ 0 , H = bκ , R 0 κ -1 ≤ ≤ κ -1 0 , x 0 ∈ Ω , and if Q (x 0 ) ⊂ Ω , then the following inequalities hold 1 |Q (x 0 )| E 0 e iκHϕ 0 ψ, A x 0 0 ; Q (x 0 ) -κ 2 g(b) ≤ C + (κ ) -1 κ 2 ,
and

1 |Q (x 0 )| Q (x 0 ) |ψ(x)| 4 dx + 2g(b) ≤ C + (κ ) -1 ,
where A x 0 0 (x) = A 0 (x -x 0 ), A 0 is the vector field in (2.2), and ϕ 0 is the function constructed in Proposition 2.2 .

Proof. In [5, Prop. 4.2 and 6.2], it is proved that

1 |Q (x 0 )| E 0 ψ, A; Q (x 0 ) -κ 2 g(b) ≤ C + ( κ) -1 κ 2 . (3.2)
The estimate of the remainder term in [START_REF] Attar | The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field[END_REF] was worse because the magnetic field was assumed nonconstant and a variant of the inequality in Proposition 2.2 was used (with a worse error as well). However, in our case of a constant magnetic field, we insert the inequality in Proposition 2.2 into the proof given in [START_REF] Attar | The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field[END_REF] and get the better remainder as in (3.2).

We write

E 0 ψ, A; Q (x 0 ) = E 0 ψ, A x 0 0 -∇ϕ 0 + (A -A x 0 0 + ∇ϕ 0 ); Q (x 0 ) ≥ (1 -) E 0 ψ, A x 0 0 -∇ϕ 0 ; Q (x 0 ) --1 κ 2 H 2 Q (x 0 ) |A -A x 0 0 + ∇ϕ 0 | 2 |ψ| 2 dx -κ 2 Q (x 0 ) |ψ| 2 dx .
Using the gauge invariance, the bound |ψ| ≤ 1 and the inequality in Proposition 2.2 , we get the following lower bound

E 0 ψ, A; Q (x 0 ) ≥ (1 -) E 0 e -κHϕ 0 ψ, A x 0 0 ; Q (x 0 ) -Cκ 2 3
. In a similar fashion, we prove the upper bound

E 0 ψ, A; Q (x 0 ) ≤ (1 + ) E 0 e -κHϕ 0 ψ, A x 0 0 ; Q (x 0 ) + Cκ 2 3 .
Inserting the foregoing lower and upper bounds into (3.2), we get the first inequality in Proposition 3.1. Now we prove the second inequality in Proposition 3.1. We multiply the first G-L equation in (1.4) by ψ and integrate by parts in the integral over Q (x 0 ). We get

- κ 2 2 Q (x 0 ) |ψ(x)| 4 dx = E 0 ψ, A; Q (x 0 ) + ∂Q (x 0 ) ψ (ν • (∇ -iκHA)ψ) dσ(x) .
Using the bounds |ψ| ≤ 1 and |(∇-iκHA)ψ| ≤ Cκ in Proposition 2.1, we get that the boundary term is bounded by Cκ , where C is a constant. Now, using (3.2), we get

- κ 2 2 Q (x 0 ) |ψ(x)| 4 dx -g(b)κ 2 |Q (x 0 )| ≤ C + (κ ) -1 κ 2 |Q (x 0 )| .

Proof of Theorem 1.1

Our proof of Theorem 1.1 has some similarities with the analysis of diamagnetism [START_REF] Fournais | Strong diamagnetism for general domains and applications[END_REF] and the computation of the quantum supercurrent [START_REF] Fournais | On the semiclassical asymptotics of the current and magnetisation of a non-interacting electron gas at zero temperature in a strong constant magnetic field[END_REF].

For the proof of Theorem 1.1, it is easier to work with rescaled variables.

Definition 4.1. Let x 0 ∈ Ω, > 0 and f ∈ H 1 (Ω) and suppose that Q (x 0 ) ⊂ Ω . We define the new function f on Q √ κH := Q √ κH (0) as follows:

f (y) = f x 0 + y √ κH .
For H = bκ and R = √ κH, we have the following relation:

1 κ 2 |Q (x 0 )| E 0 f, A x 0 0 ; Q (x 0 ) = 1 |Q R | Q R b|(∇ -iA 0 ) f | 2 -| f | 2 + 1 2 | f | 4 dy . (4.1)
Lemma 4.2. For b ∈ (0, 1), there exist κ 0 , R 0 > 0 and a positive-valued function r(•, •) such that lim (t -1 ,s)→0 r(t, s) = 0 and the inequality

g (b + ) -r(R, ) ≤ 1 |Q R | Q R |(∇ -iA 0 ) f | 2 dy ≤ g (b -) + r(R, ) , holds for (cf. Prop. 3.1) f (x) = e iκHϕ 0 ψ(x) , R = √ κH, R 0 κ -1 < < κ -1 0 , κ ≥ κ 0 , H = bκ and (ψ, A) κ,H is a minimizer of the functional in (1.1).
Proof. Recall the definition of the function F b,Q R in (2.1). By (4.1) and Proposition 3.1,

F b,Q R ( f ) ≤ g(b)|Q R | + C R + R 2 .
Let ∈ R \ {0} such that b + ∈ (0, 1). Using (2.5), we get

F b+ ,R ( f ) ≥ e N (b + , R) ≥ g(b + )|Q R | -CR . It is easy to notice that Q R |(∇ -iA 0 ) f | 2 dy = F b+ ,R ( f ) -F b,R ( f ) ≥ g(b + ) -g(b) |Q R | -C R + R 2 . (4.2)
For > 0, we infer from (4.2) the lower bound

Q R |(∇ -iA 0 ) f | 2 dy ≥ g(b + ) -g(b) |Q R | -C -1 R + R 2 .
Choosing = max R -1/2 , 1/2 , we get further

Q R |(∇ -iA 0 ) f | 2 dy ≥ g (b + )|Q R | -r 1 (R, )|Q R | ,
where

r 1 (R, ) = C R -1/2 + 1/2 + g(b + ) -g(b) -g (b + ) → 0 as (R -1 , ) → 0 .
In a similar fashion, we choose = -max R -1/2 , 1/2 < 0 and infer from (4.2) the upper bound

Q R |(∇ -iA 0 ) f | 2 dy ≤ g (b -)|Q R | + r 2 (R)|Q R | ,
where

r 2 (R, ) = C R -1/2 + 1/2 + g(b + ) -g(b) -g (b -) → 0 as (R -1 , ) → 0 .
To conclude, we choose r(R) = max r 1 (R, ), r 2 (R, ) .

Lemma 4.3. There exists a function r(•, •) such that lim (t -1 ,s)→0 r(t, s) = 0 and, under the assumptions in Lemma 4.2, the following inequality holds

g (b + ) -r(R, ) ≤ 1 |Q R | Q R | f (y)| 2 dy ≤ g (b -) + r(R, ) .
Proof. By (4.1) and Proposition 3.1,

F b,Q R ( f ) -g(b)|Q R | ≤ CR 3/2 .
By the formula for the L 4 -norm of ψ in Proposition 3.1 and a change of variables, we have

Q R | f (y)| 4 dy + 2g(b)|Q R | ≤ C + R -1 |Q R | .
Combining the aforementioned formulae and the one in (4.2), we get the formula for the integral

of | f | 2 .
By rescaling, we deduce from Lemma 4.3:

Theorem 4.4. Let b ∈ (0, 1). There exist C, R 0 , κ 0 > 0 and a positive-valued function λ(•) such that lim κ→+∞ λ(κ) = 0 and the following is true.

Suppose that

• κ ≥ κ 0 and H = bκ ; • R 0 κ -1 ≤ ≤ κ -1 0 ; • Q is the interior of a square of side length satisfying Q ⊂ Ω ; • (ψ, A) κ,H is a minimizer of the functional in (1.1) .
Then the following inequalities hold

g (b + ) -2g(b) -λ(κ) ≤ 1 |Q | Q |ψ(x)| 2 dx ≤ g (b -) -2g(b) + λ(κ) .
Theorem 4.4 improves the results in [START_REF] Sandier | The decrease of bulk superconductivity close to the second critical field in the Ginzburg-Landau model[END_REF], where only a non-optimal upper bound on the integral of |ψ| 2 is given (see [START_REF] Sandier | The decrease of bulk superconductivity close to the second critical field in the Ginzburg-Landau model[END_REF]Eq. Now, the proof of statement (1) regarding the L 2 -norm of the magnetic gradient is a consequence of statement (1) and the formulas in (1.10) and (1.11).

The first inequality in statement (4) regarding the supercurrent results from statement (1) and the following inequality |j(ψ, A)| ≤ |(∇ -iκHA)ψ| , which is a consequence of the definition of the supercurrent in (1.6) and the inequality in (2.8).

The other inequality for the L 1 -norm of the supercurrent results from the inequality

|j(ψ, A)| ≤ |ψ| |(∇ -iκHA)ψ| ,
the Cauchy-Schwarz inequality and the conclusions in Statements ( 1) and (2). (5.2)

Note that (5.2) is better than (5.1) since g (b + ) ≤ g (b -) , g(b) ≥ -1 2 , hence 1 2 + g(b) ≤ 1 + 2g(b) . 5.2. On the behavior of g(b) as b → 0 + . Taking the limit as b → 0 + in (5.1) and noticing that g (b ± ) ≥ 0 and g(0) = -1 2 , we get

lim b→0 + g (b ± ) = 0 .
Consequently, there exists a sequence (b n ) n≥1 ⊂ R such that b n → 0 and g (b n ) → 0 (R is defined in (2.5)). On the other hand, it is proved in [START_REF] Kachmar | The ground state energy of the three dimensional Ginzburg-Landau model in the mixed phase[END_REF] that as b → 0 + ,

g(b) = - 1 2 + b 4 ln 1 b + o b ln 1 b . (5.3) 
We deduce from this that: 

• g (0 + ) = +∞ ; • the function b → g (b + ) is not
∀ b ∈ (0, 1) , g(b) = lim R→∞ e disc (b, R) πR 2 , (5.4) 
where

e disc (b, R) = inf{F b,D R (u) : u ∈ H 1 0 (D R )} , (5.5) 
D R = {x ∈ R 2 : |x| < R} and F b,D R is the functional introduced in (2.1). The proof of (5.4) is standard (see [START_REF] Aftalion | Lowest Landau level approach in superconductivity for the Abrikosov lattice close to HC2[END_REF][START_REF] Fournais | The ground state energy of the three dimensional Ginzburg-Landau functional. Part I. Bulk regime[END_REF]). It follows by covering the disc D(0, R) with squares (Q R ,j ) j with side-length 1 R R and using the estimates in (2.5) (for r = R ). We omit the technical details.

We restrict the functional F b,D R (u) on configurations of the form u(r, θ) = e imθ f (r) ,

where f : (0, R) → C, m ∈ Z and (r, θ) denote the polar coordinates. Note that u ∈ H 1 0 ((B(0, R)) if and only if f ∈ D m,R , where

D m,R = f : √ r f , √ r f, m √ r f ∈ L 2 (0, R); R , f (R) = 0 . (5.7) Furthermore, F b,D R (u) = G m,b,R (f ) , where G m,b,R (f ) = 2π R 0 b|f (r)| 2 + b m r - r 2 2 |f (r)| 2 -|f (r)| 2 + 1 2 |f (r)| 4 rdr . (5.8)
Consequently, we define the following ground state energy

e 1D (m, b, R) = inf{G b,m,R (f ) : f ∈ D m,R } (5.9) 
A minimizer f m,b,R exists, can be selected real-valued and non-negative (because |f m,b,R | is a minimizer too) and satisfies the following ODE

-f m,b,R (r) - 1 r f (r) + m r - r 2 2 f m,b,R (r) = 1 b 1 -|f m,b,R (r)| 2 f m,b,R (r) in (0, R) . (5.10)
When the magnetic field is absent (i.e. the term r 2 is dropped from (5.10)) and R = +∞ , (5.10) has been studied in many papers, for example [START_REF] Hervé | Étude qualitative des solutions réelles d'une équation différentielle liée à l'équation de Ginzburg-Landau[END_REF]. (5.12)

Remark 5.1. A natural question is then to determine if for any b ∈ (0, 1) there exists m ∈ Z such that g(b) = g m (b) and if the discontinuity of g corresponds to the case when two m's satisfy this property.

Extension to three dimensional domains

The result in Theorem 1.1 can be easily extended to the three dimensional Ginzburg-Landau model. In this section, Ω ⊂ R 3 denotes a bounded smooth open set with a smooth boundary. We introduce the Ginzburg-Landau functional in Ω as follows [START_REF] Fournais | Spectral Methods in Surface Superconductivity[END_REF][START_REF] Lu | Surface nucleation of superconductivity in 3-dimensions[END_REF],

E 3D (ψ, A) = E 3D κ,H (ψ, A) = Ω |(∇ -iκHA)ψ| 2 -κ 2 |ψ| 2 + κ 2 2 |ψ| 4 dx + κ 2 H 2 R 3
| curl A -β| 2 dx , (6.1)

where β = (0, 0, 1). The configuration (ψ, A) belongs to the space H 1 (Ω; C) × Ḣ1 div,F (R 3 ) with Ḣ1 div,F (R 3 ) defined as follows. Let Ḣ1 (R 3 ) be the homogeneous Sobolev space, i.e. the closure of C ∞ c (R 3 ) under the norm u → u Ḣ1 (R 3 ) := ∇u L 2 (R 3 ) . Let further F(x) = (-x 2 /2, x 1 /2, 0). Clearly div F = 0. We define the space, Ḣ1 div,F (R 3 ) = {A : div A = 0 , and A -F ∈ Ḣ1 (R 3 )} . This energy is estimated in [START_REF] Fournais | The ground state energy of the three dimensional Ginzburg-Landau functional. Part I. Bulk regime[END_REF] when H = bκ, b ∈ (0, 1) is a fixed constant and κ → ∞. Using the methods in [START_REF] Fournais | The ground state energy of the three dimensional Ginzburg-Landau functional. Part I. Bulk regime[END_REF], we may easily adapt the proof of Theorems 1.1 and 4.4 to get the following result:

Theorem 6.1. For b ∈ (0, 1), there exist C, R 0 , κ 0 > 0 and a positive-valued function λ(•) such that lim κ→+∞ λ(κ) = 0 and the following is true.

Suppose that

• κ ≥ κ 0 and H = bκ ;

• R 0 κ -1 ≤ ≤ κ -1 0 ; • Q is the interior of a cube of side length satisfying Q ⊂ Ω ; • (ψ, A) κ,H is a minimizer of the functional in (6.1) . Then the following inequalities hold

g (b + ) -2g(b) -λ(κ) ≤ 1 |Q | Q |ψ| 2 dx ≤ g (b -) -2g(b) + λ(κ) .
As a consequence of Theorem 6.1, we can get that the minimizer (ψ, A) κ,H satisfies the following weak convergence for H = bκ, b ∈ R and κ → ∞ :

|ψ| 2 → g (b) -2g(b) in D (Ω) .
This result is complementary to the results in [START_REF] Fournais | The ground state energy of the three dimensional Ginzburg-Landau functional. Part II: Surface regime[END_REF] and [START_REF] Kachmar | The distribution of 3D superconductivity near the second critical field[END_REF] devoted respectively to the regimes b > 1 (surface superconductivity) and b → 1 -(bulk superconductivity near H C 2 ) for three dimensional superconducting samples.

. 7 ) 2 . 2 .

 722 A priori estimates and Gauge tranformations. Here we collect useful estimates regarding the critical points of the Ginzburg-Landau functional (cf.[START_REF] Fournais | Spectral Methods in Surface Superconductivity[END_REF] Prop. 10.3.1 and 11.4.4]).

  (1.18)]). In Theorem 4.4, we not only prove a lower bound on the integral of |ψ| 2 , but also a matching upper bound in the case where b ∈ R (i.e. when g (b + ) = g (b -)). Proof of Theorem 1.1. The proof of the statements (2) and (3) regarding the estimate of the L 2 -norm of ψ and the weak convergence of |ψ| 2 both follow from Theorem 4.4 in a standard manner, see e.g. [5, Proof of Thm. 4.1].

5. New properties of the function g 5 . 1 .( 1

 511 Universal estimates of g(b). As a by-product of the result in Theorem 1.1, we get new properties of the function g(•) introduced in (2.4). Using the classical bound |ψ| ≤ 1 (see (2.8)), we deduce from (1.14) that ∀ b ∈ (0, 1) , g (b + ) -2g(b) ≤ 1 . (5.1) We can obtain an upper bound on the left-derivative of g as well by expanding the square in the inequality Ω -|ψ(x)| 2 ) 2 dx ≥ 0 then using (1.11) and (1.14): ∀ b ∈ (0, 1) , g (b -) ≤ 1 2 + g(b) .

  continuous at 0 ; • The asymptotics in (5.3) can not be differentiated, i.e. the formula g (b) ∼ 1 4 ln b -1 4 does not hold as b -→ b∈R 0 + . Simply, the aforementioned sequence (b n ) violates this formula. 5.3. The radial symmetry. Next we try to extract more information about the function g by exploiting the radial symmetry. The function g may be expressed as follows

2 . ( 5 . 11 )

 2511 Now we define g m (b) = lim sup R→+∞ e 1D (m, b, R) πR We then have, ∀ b ∈ (0, 1) , ∀ m ∈ Z , g(b) ≤ g m (b) .

(6. 2 )

 2 Now we define the ground state energy,E gs (κ, h ex )(κ, H) = inf E 3D (ψ, A) : (ψ, A) ∈ H 1 (Ω; C) × Ḣ1 div,F (R 3 ) . (6.3) 
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