N

N
N

HAL

open science

Adaptive On-Line Information System
Serge Garlatti, Sébastien Iksal, P. Kervella

» To cite this version:

Serge Garlatti, Sébastien lksal, P. Kervella.

01434735

Adaptive On-Line Information System. Information
System, Analysis and Synthesis (ISAS) 99, Jul 1999, Orlando, United States. pp.1050-1057. hal-

HAL Id: hal-01434735
https://hal.science/hal-01434735
Submitted on 11 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01434735
https://hal.archives-ouvertes.fr

Adaptive On-Line Information System

S. Garlatti
IASC Laboratory, ENST Bretagne,
Z1 deKernevent, BP 832, 29285 BREST Cedex , France

And
S. Iksal
IASC Laboratory, ENST Bretagne,
Z1 deKernevent, BP 832, 29285 BREST Cedex , France
And
P.Kervella

Atlantide, Technop6ble Brest Iroise,
Site du Vernis, CP n°2, 29608 Brest Cedex, France

ABSTRACT

SWAN project (Adaptive and Navigating Web Server)
ams to design adaptive web servers for on-line
multimedia information systems about nautical
publications. It is a joined project between the 1ASC
laboratory and Atlantide - a private company. The
project is funded by the west region council and
supported by the French naval hydrographic and
oceanographic service. In on-line information systems,
users used to only access a fragment of information
space according to their current goal. User’s goals can
provide navigation support [1-8]. In our framework, user
modelling is based on stereotypes and more precisely on
prototypical user’s tasks and on user’s class. It also uses
a domain model, an individual model and a maritime
navigation context. The content and presentation
adaptation is achieved by the sailor’s class. The task
model is used to design navigation processes and to
define views of hyperspace. Some tasks determine the
relevant domain concepts available in a particular
geographical area, an adaptive method for them and a
way to compute the hyperspace views. The system
architecture is based on the one hand a WebObjects
server [9] to manage user’s recognition and web browser
communication and on the other hand a knowledge
based system managing the adaptation by means of a
user’s model [10].

Keywords: on-line information system, adaptive web
server, user modelling, task model, domain model.
1. INTRODUCTION

Due to new technologies in telecommunication, most of
information systems are available through Internet or

Intranet. They are based on one or more web servers.
They provide a new information retrieval mechanism
based on browsing. Web servers supply with hypermedia
tools for user-driven access to information. Nevertheless,
hypermedia systems have some drawbacks : a user may
become hopelessly lost in hyperspace when browsing in
a large information space [11]. Then it is necessary to
assist user’s navigation for information retrieval.
Reducing information space to access relevant
information needed by users is a well known method to
prevent from getting lost in hyperspace. In on-line
information systems, users used to only access a
fragment of information space according to their current
goal. Goal analysis enables designers to specify relevant
fragments and the navigation process. Then, user’s goals
are often used to design on-line information systems [1-
8]. In general, goals provide navigation support.

SWAN project aims to design an adaptive web
server for on-line information systems about nautical
publications by means of user modelling. First of all, we
present the SWAN project and its requirements.
Secondly, the system’s architecture is analysed and
discussed. Thirdly, user modelling and task model is
explained by means of a particular task example.
Fourthly, the user’s interface and the relationships
between WebObjects server and the knowledge base is
presented. In conclusion some perspectives are
considered.

2. SWAN PROJECT

SWAN project (Adaptive and Navigating Web Server) is
a joined project between the IASC laboratory and a
private company called Atlantide. The project is funded



by the west region council and supported by the French
naval hydrographic and oceanographic service. At
present, sailors have to find out the relevant pieces of
information in different categories of publications. All
these publications are geographically organised around
the notion of area which is recursively divided into sub-
areas. These multimedia publications are composed of
texts, photos, tables, drawings, charts and plans.

The on-line information system will provide
together nautical information available in different types
of publications - sailing directions, lists of lights and fog
signals - for different categories of sailors and vessels to
prepare a navigation or to navigate on oceans. In order to
acquire users’ goals and how they achieve them with
paper publications, we made free and directed interviews
of some different categories of sailors - military,
shipping, commerce and yachtsman. This study showed
that sailors have a common set of goals which are stables
and are achieved in very similar way. Nautical
publications for acquiring domain knowledge were
investigated. In the first version of the web server, we
decided to study these common goals, named services.
Now, the architecture of the web server is presented.

3. ARCHITECTURE

Building an adaptive web server for on-line information
system requires to design a domain model and a user
model and an information base. The Web server has to
recognise the user, the current stage according to the
user’s goal and maybe the corresponding application
whether there are several applications running on the
server. The HTTP protocol is a stateless protocol, that is
to say, the server is unable to associate two queries from
the same user and to link them. Consequently, a HTTP
server is not sufficient to design a web server. HTML
pages are generally static, then it is not possible to
compute on the fly the content of a HTML page.
Dynamic web servers require another tools.

Several tools are available to design dynamic
Web servers, for example, web servers tools for
databases. In general, the dynamic features of the web
pages are limited to Information retrieval mechanisms of
data bases: writing queries. WebObjects is a more
opened tool for our purpose and provides an
environment to produce Web applications [9].

WebObjects has three concepts: application,
session and components. A web server may have several
tools for different purposes. Each one is identified as an
application in WebObjects which can store persistent
states or manages persistent data. Sessions are periods
during which one user is accessing an application.
Different users may be accessing an application at the
same time, a single application may have more than one
session. There is one session per user on the Web server.
An application is generally composed of a set of
components. A component is a web page, or a portion of

one, that has both content and behaviour. A component
consists of three parts:

1. A template that specifies how the component
looks. In other words, it is a generic HTML page.
A template contains classic HTML tags and
dynamic WebObjects elements.

2. Code that specifies how the component acts, that is
to say how it has to respond to user queries

3. Binding that associate the component’s template
with its code.

Dynamic elements are the basic building blocks
of a WebObjects application. They link an application’s
behaviour with the HTML page shown in the web
browser and their contents are defined at runtime.
Dynamic elements may be text, images, hyperlinks,
conditions, ... By means of these dynamic element, it is
possible to compute on the fly a Web page. The code
part of a WebObjects application can be written in
Webscript, objective-C, Java or mixed.

There are three possible strategies to state
storage in a WebObjects application : in the server, in
cookies or in custom state storage - external tools for
instance. Then, the main problem is to choose a stage
storage strategy for the user model, the domain model
and the task model. We investigated two strategies:
storage in the server by using Java to develop the
different models and external storage in a knowledge
based system. A good paradigm to develop the different
models is objects. The object language has to provide
some methods to access the models. In other words, it is
necessary to browse the class hierarchy from top to
bottom by means of the generalisation / specialisation
relationship, but also over all relations. In Java, the
« reflection » package enables us to browse each object
or class and their relations. But, you need to know the
class name and it is not possible to search the hierarchy
from top to bottom.

In Artificial intelligence, the object-centered
languages permit this procedures. Then, we chose the
description logic Loom to manage the domain model, the
user model and the task model. Loom is a description
logic based on Common Lisp [10]. Loom has also a
very convenient feature to develop a task model, a
message sending protocol similar to those of object
programming language. But it is more powerful and it is
well integrated to the basic inference mechanism of
description languages: the classifier. The data are stored
in a data base. For the first version, we decided to put the
data in Loom because it is easier, the amount of data is
limited and Loom has a query language. For the reasons,
the system’s architecture is as follows (cf. fig 1):



- Knowledge
i) PR T

Server LOOM

A
Y

Y
A

Browser } €

Fig. 1 System Architecture

WebObjects is connected with a HTTP server,
and manages the following functions: computation of
dynamic HTML pages, user identification, applications
management, sessions management and events storage.
WebObjects is the interface between the system and the
user. Whereas Loom stores the different models. The
domain model has two functions, firstly it is used as a
reference for the adaptation and secondly it allows the
data indexing. We use the query mechanism of Loom to
search the useful data, because it filters the domain
concepts. To manage the dialogue between Loom and
WebObjects, we chose the socket protocol and a specific
protocol language (lisp oriented).

As the user queries the system, the server gets
the following information : the application, the session -
i.e. the user -, the current Web page, the interaction type.
It sends these data to the knowledge base server which
retrieves the current task and by means of the different
models computes the next step of the navigation process,
that is to say the next component and its content. Loom
gives these information to WebObjects which generates
dynamically the next Web page for the right user. Now,
we present the user model and the task model in details.

4. USER MODELLING

Stereotype, introduced by Rich [12], is an important
element of user modelling and it has been extensively
used because it gives a simple but powerful way for
adaptation [13, 14]. In our framework, the user’s model
is based on stereotypes and more precisely on
prototypical user’s tasks and on a user’s class.

The user’s model is composed of a user’s class,
a task model and an individual model. Its structure is
similar to the user’s model of Hynecosum [2]. The user’s
class consists of a sailor’s class and a vessel’s class. The
former has only one feature, the sailor category which
can be professional or yachtsman. The vessel’s class
features are the following: length, breadth, height,
tonnage, draught, navigation category which determines
maximal distances from a shelter, vessel type (military,
fishing, cargo, yacht, ..). The maritime navigation
context consists of a set of navigation condition
features : tide, time, weather forecast, general inference,
GPS position (Lat/Long) or position chosen by the
sailor. The user’s individual model enables the sailor to
choose an adaptation method for a particular task or to

specify some parameters of an adaptation method and to
choose the minimal depth of route.

According to Brusilosky, content-level and link-
level, called respectively adaptive presentation and
adaptive navigation support, are the two main classes of
hypermedia adaptation [5]. The sailor’s class is used for
adaptive presentation and the task model for adaptive
navigation. At present, the content and presentation
adaptation is achieved in a simple way - for the first
version : it depends on the sailor’s category: professional
or yachtsman ; sailing directions are different for these
two user’s classes. Adaptive presentation is processed in
the same way whatever the task. Adaptive navigation
support is achieved by means of a task model which uses
the vessel’s class, an individual model and the navigation
context. Indeed, all tasks are available for each sailor’s
class. In a next version, we could design specific tasks
for particular sailor’s classes.

5. TASK MODEL

According to interviews, we find out four
common goals for sailors - named Services - that are
sufficiently general and high-level to be stable : route
retrieval or creation, route information retrieval, port /
anchorage, general information retrieval. Route retrieval
or creation helps the sailor to find a route from a
port/anchorage to another one. Route information
retrieval provides navigation information, regulations,
aids to navigation, lights, dangers to navigation, local
conditions, currents, ... according to the route chosen.
Port / anchorage gives to the sailor information about
port entry, anchorage, marinas, facilities, services, etc.,
and a port retrieval based on the available services in the
port and around. General information retrieval will
provide history of weather, geography, oceanography,
country and so on.

Task analysis of services showed that it is quite
natural to represent them by a hierarchical task model
[15]. The task model consists of tasks hierarchically
organised by a composition relationships (cf. fig. 2).
Tasks are divided into two classes abstract and atomic
tasks. Abstract tasks are used to declare the navigation
process. A control structure using standard operators -
sequence (and) and selection (or) - achieves the sub-
tasks ordering.



Sequence
Selection
Atomic
Abstract

{A/N : Aids to Navigation
SDC : Saling Direction ‘ Route information retrieval ‘

00\

Content

w ‘ Route Selection Hlnformation retrieval ‘ @
Crs o>

‘s

Port entry | | Inshore Landfall Offshore

bodedsde

Fig. 2 Graph of the « Route Information Retrieval »
service.

Each service begins with an « Introduction »
task to explain the service’s goals and a « Ending » task
to close it, mainly for tutorial aspects of the first version.
The « Route Selection » task is available to the sailor
whether he has not previously chosen a route in the
«Route Retrieval/Creation » service. Then, he can
access the « Retrieval » sub-task to select a route. A
route is composed of several route sections which are
defined by two way-points, a compass course, a route
section type (inshore traffic area, offshore traffic area,
landfall, port entry), a minimal depth, a length, a sailing
direction area, danger conditions. A route possesses
some other attributes like: a departure and an arrival
port/anchorage, a route category, a minimal depth, a
length and advisable or not. After selecting a route, the
sailor uses the «Information Retrieval » task to get
relevant pieces of information corresponding to his
route.

In our framework, two main information
categories are provided to sailors: aids to navigation
(buoys, lights, seamarks and alignments) and sailing
direction content (texts, charts, images, drawings) which
come from the sailing directions for professional or
yachtsman and lists of lights and fog signals. This
« Information Retrieval » task is composed of a sequence
of sub-tasks, one task per route section type. A particular
task class is associated with each route section type.
Each class is composed of two sub-tasks, one per
information category «aids to navigation » or «sailing
direction content » to define the corresponding strategy
for hyperspace views and adaptive method. Indeed, the
two information categories are not processed in the same
way because they are structured in a different way and
are not accessed for the same reasons. Atomic tasks are
used for information retrieval - all « aids to navigation »
and «Sailing Direction content» tasks - and

communication « Introduction » and « Ending » tasks.
They are not composed of sub-tasks. A communication
task gives some explanations to the user, specifies some
user’s needs and gathers data or information from users.
An information retrieval task computes an hypermedia
views allowing the user to browse in a small hyperspace.
It determines the relevant sub-domain space, an adaptive
navigation method and a way to compute hyperspace
views according to particular sub-domain spaces.

For instance,
Vessel Position

Sailing Direction
Area

Task Model

Domain M odel

Sub-domain

Relevant Information

information
space

Aidsto Navigation
Information Space

Fig 3. Hyperspace views from user’s model.

In figure 3, the relationships between task
model, domain model, sailing direction area are
represented for an « information retrieval » task in the
sub-domain space of aids to navigation. A sailing
direction area can be represented by a polygon on a
chart. For aids to navigation, a smaller polygon defined a
priori or be the results of a computation is used to define
the relevant information space. It is always included into
a sailing direction area.

6. USER INTERFACE

Now, we go into details about the user interface and the
relationships between WebObjects components and the
knowledge based system. In a previous paragraph, a
particular service, called Route Information Retrieval,
was used to present the task model. We use it again to
analyse the user interface and its principle. Indeed,
adaptive systems are very useful to adapt the system to
the user’s needs - backgrounds, knowledge, goals,
preferences, ... Adaptation leads to changes in the user’s
environment. Unless carefully designed, they may lead
to an unpredictable and uncontrollable interface [3]. At
present, we try to cope with these problems, we designed
a user interface which have a static and stable part across
all services and a dynamic part which gives transparency
to the user. The user should see the system as a glass box
within which the lower level components act as a black
box [16]. As a first step to design such a glass box, we
provide a stable environment to the user where the
changes reflect some interior states of the system. In this
paper, we only present the relationships between the user
interface and the task and domain model. Indeed, they



are closely related to the user’s goals and then we hope
that they will be well understood by the sailors.
Nevertheless, we need to check these points.

The user interface is presented in figure 4. For
all services, the main window, having the entire web
browser features, consists of four stable frames:

1. the top horizontal frame show the different
available services,

2. the bottom horizontal frame gives the history of
the current service,

3. the left vertical frame enables the user to select the
pieces of information present in the chosen
category - for instance, buoys, lights, seamarks,
alignments, etc.,

4. the right vertical frame contains the selected piece
of information.

‘ Windows linked to the main

Web Browser: main window ‘

= oo [IHE @
. X — Service’s States
LI — — | Imayge
Light 1
Light 2
Light 3
Lot Information
Domain ° o | Light5 o o
Model ~
Map g ° /
Navigation -
© Process States
O\ °
/ /
C. Introduction - Route Retrieval - Information Retrieval - Inshore
Traffic Area- Aidsto navigation :
© Lights

Fig. 4 User interface.

The left windows are linked to the main and are
specific to the «route Information Retrieval » service.
But, the main window is stable across the services. The
top left window enables the sailor to choose a route
section to get the corresponding pieces of information. A
task determines the relevant sub-domain space, one or
more sub-graphs of the domain model. The bottom left
window offers a way to select a particular information
category - for example, buoys, lights, seamarks or
alignments in the category aids to navigation. The main
changes that the sailor can perceive, are the following:

1. The service states, according to the corresponding
task states, are displayed in the top horizontal
frame,

2. The service history is display in the bottom
horizontal frame and depends on the sub-task
states of the current service and on the selected
sub-tasks

3. The domain model map is an adaptive map in
which the leaves are displayed in two colours - one

for relevant categories and another for non-
relevant categories.
4. The right vertical frame may display the next step
of the current service
The main window behaviour is « static », that is
to say stable over all services.

As shown, the task model is linked to the user
interface and its adaptive features. But, it necessary to
have another strong link between WebObjects and the
task Model. Indeed, the knowledge based system
establishes the next web page and its content. Then, it
has also to determine the right WebObjects component
for the current service step. In figure 4, the «Route
Information retrieval » service is described. The main
role of an atomic task is user communication and
information retrieval and display. To cope with this goal,
a description of one or more components and their
features are associated to each atomic task. Only, atomic
tasks have to communicate with the WebObjects server.

At present, the user and the domain’s model are
ready for the first prototype, the communication protocol
between Loom and WebObjects is validated. Now, we
are focusing our development on the WebObijects part -
design of web pages - and the data recovery.

7. PERSPECTIVES

Some aspects of the current version of this on-
line information system is intentionally simple. Indeed,
all future users don’t make a habit of utilising computer-
based systems to achieve their daily tasks. Consequently,
it is important to firstly design a software which is not
too far from the current software in nautical domain. The
purpose of the first version is also to show the benefits of
adaptive on-line information systems to sailors, to
acquire new goals for the systems and to suggest sailor
propositions and comments before going further.

In the next stage, we plan to add some features
in our adaptive web server: user’s preferences for
adapting the task model and the strategy to define
hypermedia views, more sailor and vessels classes, new
tasks, maybe specific to some user’s classes. We thought
about other features, but we need to evaluate the current
version before modifying.

8. REFERENCES

[1] Waern, Y., Cognitive Aspects of Computer
Supported tasks. 1986, New York: Wiley.

[2] Vassileva, J., A Task-Centered Approach for user
Modeling in a hypermedia Office Documentation
system. User Models and User Adapted Interaction,
1996(6): p. 185-223.

[3] Hook, K., et al., A glass box approach to adaptive
hypermedia. User Models and User Adapted
Interaction, 1996(6).



[4] Encarnagdo, L.M., Adaptivity in graphical user
interface: an experimental framework. Computers
& graphics, 1995. 19(6): p. 873-884.

[5] Brusilovsky, P., Methods and techniques of
adaptive hypermedia. User Modeling and User-
Adapted Interaction, 1996. 6(2-3): p. 87-129.

[6] Grunst, G., Adaptive hypermedia for support systes,
in Adaptive user interfaces: Principles and
Practice, M. Schneider-Hufschmidt, T. Kiime, and
U. Malinnowski, Editors. 1993, North-Holland:
Amsterdam. p. 269-283.

[71 Tyler, S.W. and S. Treu, An interface architecture
to provide Adaptive Task-Specific Context for the
user. International Journal of Man, Machine and
Studies, 1989(30): p. 303-327.

[8] Kaplan, C., J. Fenwick, and J. Chen, Adaptive
Hypertext Navigation Based on User Goals and
Context. User modelling and user adapted
interaction, 1993. 3(2): p. 193-220.

[9]1 Apple, WebObjects, . 1997, Apple Computer.

[10] MacGregor, R.M. A Description Classifier for the
Predicate Calculus. in Proceedings of the Twelfth
National Conference on Artificial Intelligence.
1994: p. 213-220,.

[11] Conklin, J., Hypertext: An introduction and Survey.
IEEE Computer, 1987.

[12] Rich, E., Stereotypes and user modeling, in user
models in dialog systems, A. Kobsa and W.
Wahlster, Editors. 1989, Springer verlag: berlin. p.
35-51.

[13] Kobsa, A., User modeling: Recent Work, Prospects
and Hazards, in Adaptive User Interfaces:
Principles and Practice, M. Schneider-Hufschmidt,
T. Kuhme, and U. Malinowski, Editors. 1993,
Notrh-Holland: Amsterdam.

[14] Kay, J. Lies, Damned Lies and Sereotypes:
Pragmatic approximations of users. in Conference
on user modeling. 1994: Hyannis, MA: p. 175-184.

[15] Rasmussen, J., A. Pejtersen, and L. Goodstein,
Cognitive system Engineering. 1994, New York:
John Wiley & Sons.

[16] Boulay, B.d., T. O'Shea, and J. Monk, The Black
Box inside the Glass Box: presenting Computing

Concepts to Novices. International Journal of Man-
Machine Studies, 1981(14).



