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ABSTRACT
For the last 30 yr many observational and theoretical evidences have shown that galaxy
clusters are not spherical objects, and that their shape is much better described by a triaxial
geometry. With the advent of multiwavelength data of increasing quality, triaxial investigations
of galaxy clusters is gathering a growing interest from the community, especially in the time
of ‘precision cosmology’. In this work, we aim to provide the first statistically significant
predictions in the unexplored mass range above 3 × 1014 M�h−1, using haloes from two
redshift snapshots (z = 0 and z = 1) of the Millennium XXL simulation. The size of this
cosmological dark matter-only simulation (4.1 Gpc) allows the formation of a statistically
significant number of massive cluster scale haloes (≈500 with M > 2× 1015 M� h−1, and
780 000 with M > 1014 M� h−1). Besides, we aim to extend this investigation to lower masses
in order to look for universal predictions across nearly six orders of magnitude in mass, from
1010 to almost 1016 M� h−1. For this purpose we use the SBARBINE simulations, allowing
us to model haloes of masses starting from ≈1010 M� h−1. We use an elliptical overdensity
method to select haloes and compute the shapes of the unimodal ones (approximately 50 per
cent), while we discard the more unrelaxed. The minor to major and intermediate to major axis
ratio distributions are found to be well described by simple universal functional forms that
do not depend on cosmology or redshift. Our results extend the findings of Jing & Suto to a
higher precision and a wider range of mass. This ‘recipe’ is made available to the community
in this paper and in a dedicated web page.

Key words: methods: numerical – galaxies: clusters: general – galaxies: haloes – cosmology:
theory – dark matter.

1 IN T RO D U C T I O N

Spectroscopic galaxy redshift surveys and numerical N-body sim-
ulations have revealed a large-scale distribution of matter in the
Universe featuring a complex network of interconnected filamen-
tary galaxy associations. Vertices, i.e. intersections among the fil-
aments, correspond to the very dense compact nodes within this
cosmic web where one can find massive galaxy clusters.

� E-mail: mario.bonamigo@lam.fr

These objects have been first assigned a spherical geometry, being
the easiest way to characterize a shape in three dimensions; at the
time this fitted the available data well enough. Nowadays, with
the advent of multiwavelength data of increasing quality, there is
a growing interest from the community to go beyond the spherical
assumption, which is inaccurate and misleading. At first, clusters of
galaxies have been characterized as spherical objects, a model that
fitted well enough the limited data available at the time. Nowadays,
with the advent of multiwavelength data of increasing quality, there
is a growing interest from the community to go beyond the spherical
assumption.

C© 2015 The Authors
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Many observational evidences have been collected showing that
clusters are not spherical objects; in particular from the non-
circular projection of various probes; density of cluster galaxies
(Carter & Metcalfe 1980; Binggeli 1982); X-Ray surface brightness
(Fabricant, Rybicki & Gorenstein 1984; Buote & Canizares 1992,
1996; Kawahara 2010; Lau et al. 2012); Sunyaev Zel’dovich pres-
sure maps (Sayers et al. 2011); strong gravitational lensing (Soucail
et al. 1987) and weak gravitational lensing (Evans & Bridle 2009;
Oguri et al. 2010, 2012).

Recently, an azimuthal variation of galaxy kinematics has been
detected in a stacked sample of 1 743 galaxy clusters from the
SDSS (Skielboe et al. 2012). The line-of-sight velocity dispersion
of galaxies lying along the major axis of the central galaxy is found
to be larger than those along the direction of the minor axis, further
evidence supporting the asphericity of galaxy clusters.

On the numerical side, haloes forming in cosmological simula-
tions have been found to be triaxial in shape, with a preference for
prolateness over oblateness (Frenk et al. 1988; Dubinski & Carlberg
1991; Warren et al. 1992; Cole & Lacey 1996; Jing & Suto 2002;
Bailin & Steinmetz 2005; Hopkins, Bahcall & Bode 2005; Kasun &
Evrard 2005; Allgood et al. 2006; Paz et al. 2006; Bett et al. 2007;
Muñoz-Cuartas et al. 2011; Gao et al. 2012; Schneider, Frenk &
Cole 2012; Despali, Tormen & Sheth 2013). These simulations also
predict an evolution of the shape with mass and redshift; low-mass
haloes appear more spherical than high-mass haloes, essentially be-
cause high-mass haloes have formed later on (Despali, Giocoli &
Tormen 2014).

Finally, it can be shown (Doroshkevich 1970) that triaxial col-
lapse is a straightforward prediction of structure growth driven by
self-gravity of Gaussian density fluctuations.

These evidences shows that the triaxial framework, though still
an approximation, encapsulates halo shapes much more accurately
than the spherical counterpart.

Besides, it has been shown that cluster properties (mass, con-
centration parameter, slope of the inner dark matter density pro-
file, strong lensing cross-section) can differ significantly depending
on the shape assumed in the analysis (see, e.g. the discussion in
Limousin et al. 2013, regarding Abell 1689); see also Giocoli et al.
(2012a,b). Even the galaxy correlation function can be affected by
wrong assumptions on the triaxiality of haloes (van Daalen, Angulo
& White 2012).

Since the mentioned properties constitute key ingredients of im-
portant cosmological tests, this suggests that triaxial modelling is
the next milestone in the road map of ‘precision cosmology’ with
galaxy clusters.

In this paper, we aim to characterize the shape of numerically
simulated clusters, described within a triaxial framework. Apart
from the three Euler angles, a triaxial geometry is characterized
by three axes (a < b < c), hence two axial ratios: minor to major
(s = a/c in the following) and intermediate to major (q = b/c).

Shape of triaxial haloes have been investigated theoretically in
a number of works which aim to characterize the dependence of
shapes on mass, redshift, radius and so on. Most of the works agree
on the fact that massive haloes are on average more elongated than
low-mass haloes (Jing & Suto 2002; Allgood et al. 2006; Muñoz-
Cuartas et al. 2011; Despali et al. 2013, 2014), since they form
at later times and thus still retain memory of their original shape;
which is influenced by the direction of the surrounding filaments or
of the last major merger. Moreover, shapes depend also on redshift
with haloes of all masses having on average smaller axial ratios
at higher z; even though, the rank in mass is maintained at all
times (Muñoz-Cuartas et al. 2011; Despali et al. 2014). Other works

have investigated halo shapes as a function of radius, measuring
axial ratios of shells at different distances from the centre and the
alignment between shells (Warren et al. 1992; Jing & Suto 2002;
Bailin & Steinmetz 2005; Allgood et al. 2006; Schneider et al.
2012); haloes are more elongated in the central regions, while the
outskirts are more rounded, probably due to interactions with the
surrounding environment. Obviously the available number of haloes
increased in parallel with computational resources; the analysis of
Jing & Suto (2002) was based on simulations with 5123 particles
in a 100 Mpc h−1 box, which contained hardly any halo above
1014 M� h−1 and some higher resolution runs which provided only
12 haloes with more than 106 particles. On the other hand more
recent works, i.e. Schneider et al. (2012), have been able to analyse
larger data sets like the Millennium I and II simulations (Springel
2005; Boylan-Kolchin et al. 2009). The mass range between 1012

and 1014 M� h−1 has been widely explored in all these works,
while only recently small haloes down to 1010 M� h−1 (Muñoz-
Cuartas et al. 2011; Schneider et al. 2012) and some massive haloes
of 1015 M� h−1 (Despali et al. 2014) have been included in this
kind of analysis. So far, no statistically significant predictions are
available above 3 × 1014 h−1 M� and we rely on extrapolations
from lower mass haloes when it comes to predict the shapes of
massive galaxy clusters. With about 300 billion particles and a
box size of 3 Gpc h−1, the Millennium XXL (MXXL) simulation
(Angulo et al. 2012) fills the range of high masses and explore the
properties of cluster size haloes.

In this work our aims are twofold:

(i) using cluster scale haloes (M > 1014 M� h−1) from the MXXL
simulation, we aim to provide predictions for the shape of massive
clusters.

(ii) Then, we extend the mass range by considering haloes from
the SBARBINE simulations, applying similar methods in order to
investigate the shapes of haloes and provide predictions over five
decades in mass, from ∼3 × 1010 to ∼4 × 1015 M� h−1.

This paper is organized as follows: in Section 2, we present the
simulations and the methodology used to extract haloes and measure
their shapes. In Section 3, we present our results for the massive
cluster scale haloes, then in Section 4 we extend our analysis to a
broader mass range. In Section 5, we compare our findings with
previous works. We discuss our results and conclude in Section 6.

2 H A L O C ATA L O G U E

We have derived the shape of galaxy clusters from the MXXL sim-
ulation (Angulo et al. 2012). To generalize our analysis to lower
masses, we used a new set of simulations (Despali et al., in prepa-
ration), which extended the mass range to more than five orders of
magnitudes. From both simulations, we have analysed haloes from
two redshifts: z = 0 and 1. The main features of the simulations are
described in the following sections and summarized in Table 1.

2.1 MXXL simulation

With a box side of 3 Gpc h−1 (4.1 Gpc), this simulation was es-
pecially tailored to study massive haloes which can be only found
in very large volumes, because of their nature of extremely rare
objects and due to the dampening of large fluctuation modes in
smaller boxes. The 67203 ≈ 3 × 1011 dark matter particles have a
mass of 6.174 × 109 M� h−1; the Plummer-equivalent softening
length is ε = 13.7 kpc. For reasons of consistency with the previous
Millennium runs, the adopted �CDM cosmology is the Wilkinson
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Table 1. Main features of the simulations used in this work. The last two columns report the total
number of haloes with more than 1000 particles (Nh) and the corresponding fraction of ‘regular’
haloes (Nreg), at redshift z = 0.

Box (Mpc h−1) zi mp(M� h−1) Soft (kpc h−1) Nh(z = 0) Nreg(z = 0)

Ada 62.5 129 1.94 × 107 1.5 39 445 28 005
Bice 125 99 1.55 × 108 3 49 100 32 107
Dora 500 99 9.92 × 109 12 66 300 33 970
Emma 1000 99 7.94 × 1010 24 46 665 20 696
Flora 2000 99 6.35 × 1011 48 7754 2997
MXXL 3000 63 6.17 × 109 18.8 937 755 568 477

Microwave Anisotropy Probe one: total matter density �m = 0.25,
baryons density �b = 0.045, cosmological constant �� = 0.75,
power spectrum normalization σ 8 = 0.9 and dimensionless Hub-
ble parameter h = 0.73. The main properties of the simulation are
summarized in Table 1.

Due to the huge number of haloes in the simulation (almost 68
millions at redshift 0), we restricted the analysis to only a random
subsample; for each logarithmic mass bin of size 0.2 [mass inside a
spherical overdensity (SO) of 200�crit] we chose either 105 random
objects or all, for the higher masses where the number of haloes in
the bin is lower. This cut happens at a logarithmic mass of about
14.4 and 14.0 M� h−1 for redshifts 0 and 1, respectively. We have
then re-identified haloes at redshift z = 1 and 0 using an ellipsoidal
halo finder, which will be described in Section 2.3.

2.2 LE SBARBINE simulations

With the purpose of comparing different data sets and extending
the available mass range, we use (from Section 4 on) the results
from five cosmological simulations which have been run in Padova
using the publicly available code GADGET-2 (Springel 2005); these
are part of a series of new simulations which will be presented in
a subsequent work (‘LE SBARBINE’ simulations, Despali et al.,
in preparation). The adopted cosmology follows the recent Planck
results (Planck Collaboration XVI 2014): �m = 0.307, �� = 0.693,
σ 8 = 0.829 and h = 0.677. The initial power spectrum was gen-
erated with the code CAMB (Lewis, Challinor & Lasenby 2008)
and initial conditions were produced perturbing a glass distribution
with N-GenIC (http://www.mpa-garching.mpg.de/gadget). They all
follow 10243 particles in a periodic box of variable length. Table 1
shows some of the main characteristics of these simulations. Haloes
were identified using a SO algorithm (Tormen, Moscardini &
Yoshida 2004; Giocoli, Tormen & van den Bosch 2008) and then
the best-fitting ellipsoid was found using an ellipsoidal overden-
sity method, already presented in Despali et al. (2013, 2014) and
similar to the one used on the MXXL haloes and described in the
next section; the two codes produce equivalent results. We selected
only haloes with more than 1000 particles to ensure a good resolu-
tion and to have a good comparison with the haloes of the MXXL
simulation.

2.3 Ellispoidal halo finder

It is known that Friends Of Friends finders tend to connect together
multiple virialized haloes via thin bridges of particles (Jing & Fang
1994); thus, to characterize halo shapes more precisely, we used a
second halo finder that iteratively selects particles inside an ellipsoid

and then uses their mass distribution to compute the ellipsoid for
the next step in the iteration. A more detailed description of the
‘ellipsoidal halo finder’ in general and of the iterative procedure
can be found in Despali et al. (2013)

We start with a traditional SO algorithm which selects parti-
cles inside a sphere of given overdensity, namely the value from
the spherical collapse model at z = 0: �vir = 359.7 times the back-
ground density (Eke, Cole & Frenk 1996), and centred in the particle
with lowest potential (most bound particle). We then compute the
mass tensor1

Mαβ =
NV∑
i=1

mi ri,α ri,β

MTOT
(1)

of the particles inside the virial radius of the sphere of mass MTOT,
where ri is the distance of the ith particle, of mass mi, from the
most bound particle. The tensor’s eigenvectors give the direction
of the ellipsoid that approximate the mass distribution, while the
square roots of the eigenvalues are proportional to the axes length
(c > b > a).

Having derived the triaxial distribution of dark matter for the
SO, we use it to select particles inside an ellipsoid. This technique
has been already adopted in the literature (Allgood et al. 2006;
Schneider et al. 2012; Despali et al. 2013); however, different au-
thors use different criteria to define the ellipsoid. We select particles
inside an ellipsoid, centred in the most bound particle, that encloses
an overdensity equal to the virial one, as provided by the spherical
collapse model �vir; we do not fix the mass, the volume or the
major axis to be equal to the spherical values, as has been done in
previous works. We then recompute the mass tensor with the new
subset and we iterate this procedure until both the ratios of minor to
major axis s = a/c and intermediate to major axis q = b/c converge
within a 0.5 per cent of error. This method allows us to adopt a more
general description while being still close to theoretical predictions
and is the simplest possible extension of the SO, which actually
becomes just the first step in our iteration. The mass difference
between the spherical and the ellipsoidal identifications goes from
2 per cent at 1013 M� h−1 to 5 per cent for very massive haloes of
5.5 × 1015 M� h−1. On the other hand the change in the measured
shapes is about 30 per cent and cannot be ignored, as shown also
by Despali et al. (2013). Ellipsoidal masses are in general larger
than the spherical ones, since a triaxial shape is expected to follow
the actual distribution of matter better than a sphere, and so fol-
low the overdense regions, adding more particles. The difference in
the following results between using the mass inside a sphere or an
ellipsoid is negligible.

1 Not to be confused with the inertia tensor (Bett et al. 2007).
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Figure 1. Density distribution (colour scale) of dark matter particles inside a 10 Mpc h−1 side cube centred in two different haloes and the respective computed
ellipsoids (red) that approximate the mass distribution of the halo. The halo shown on the left-hand panel has a virial mass of 5.29 × 1014 M� h−1, the one
on the right has a mass of 6.90 × 1014 M� h−1. These represent two families of objects: a ‘regular’ haloes (left) and a perturbed one (right), due to the large
amount of substructures the latter has to be discarded, as it cannot be well described by a triaxial approximation.

2.4 Halo selection

Fig. 2 shows the mass function of all haloes (upper panel). Data
from redshift z = 0 and z = 1 are indicated by red squares and blue
circles, respectively. As previously explained, we have analysed
only a random sample of the entire halo catalogue of the MXXL
simulation; this is causing the flattening at the mass bins which
have more than 105 objects in the entire box (≈1014 M� h−1). To
avoid any resolution effect, we have kept only haloes with at least
1000 particles within the ellipsoid (vertical dashed line) in both
simulations.

For our analysis, we cleaned the halo catalogue from many unre-
laxed systems. As an example, Fig. 1 shows the density distribution
of dark matter of two haloes (colour scale) and, in red, the computed
ellipsoid which encloses an overdensity of �vir. The object on the
left has a virial mass of 5.29 × 1014 M� h−1 and represent a relaxed
halo; the mass of the one on the right is 6.90 × 1014 M� h−1 and it
is clearly multimodal. The ellipsoid seems to capture quite well the
overall three-dimensional matter distribution of the relaxed halo;
though it fails, as expected, with the perturbed one. This system is
highly asymmetrical and lacks of a well-defined centre, therefore
it cannot be described using a single triaxial model. Since triaxial
multimass modelling is beyond the purpose of this paper we decided
to not consider for our analysis multimodal haloes, like the one on
the right-hand panel.

In general, defining relaxed and unrelaxed haloes is not a trivial
task; there is no absolute definition and the limiting criteria depend
on the model that must be tested. In our case, where we are interested
in haloes shapes, we would like at least to be able to describe them
with a single ellipsoid. In particular, we need to well define their
centres as well as their symmetry, up to a certain degree.

A possible way to discriminate this kind of objects is to look
at the offset between centre of mass and geometrical centre of
the ellipsoid, which is one of the commonly used criteria for the
selection of relaxed haloes. While the latter is associated with
the minimum of the potential (most bound particle) of the most
massive substructure (Springel et al. 2001), the other represents the
centre of mass of the whole particle distribution. This means that,
if a significant number of massive substructures is present and per-

turbs the whole halo distribution, there will be an offset between the
centre of the ellipsoid and the centre of mass. We decided to select
only haloes for which the offset is less than 5 per cent of their virial
radius,

|x̄MBP − x̄cm|
Rvir

< 0.05. (2)

The lower panel of Fig. 2 shows the percentage of cleaned haloes
as a function of the mass. As expected, the number of perturbed
haloes increases with the mass, due to more massive haloes being
assembled recently (Giocoli et al. 2007). At high redshift (blue
circles), the percentage of ‘regular’ haloes was lower and more
constant with mass, than at z = 0 (red squares). For cluster masses
the percentage is roughly 50 per cent.

Generally, ‘relaxed’ haloes are selected using both this and two
other criteria: the amount of mass in substructures and the ratio of
kinetic to potential energy as measurements of the dynamical state
of a halo (Meneghetti et al. 2014). For this reason, we choose to
call our cleaned sample of haloes ‘regular’ and not relaxed haloes.
However, as can be seen in Neto et al. (2007), the selection in the
centre offset is responsible for the majority of the rejected haloes;
this means that our selection is still able to eliminate the most
unrelaxed and irregular objects. Ludlow et al. (2012) used a similar
selection (N200 > 5000 and spherically defined haloes) and found
different results: the fraction of objects with an offset less than 5 per
cent is 0.536, while, combining all the three relaxation criteria, the
fraction of selected haloes is 0.285. In comparison with their work,
our selection is still able to capture approximately 65 per cent of all
perturbed haloes.

Thus, the choice of the criteria to distinguish between relaxed
and unrelaxed haloes is still different in different works. Since we
are interested in the overall shape of haloes, we decided to use only
the centre offset as a selection criterion, since it is able to exclude
very irregular haloes which could not be well fitted by an ellipsoid;
we believe that adding the other two criteria would not change our
results more than a few percent. Moreover, our choice is motivated
also by the fact that we do not want to restrict our analysis to a
very limited and regular sample, since our future plans include a

MNRAS 449, 3171–3182 (2015)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/449/3/3171/1117159 by C
N

R
S - ISTO

 user on 15 Septem
ber 2021



Universality of dark matter haloes shape 3175

Figure 2. Mass function and halo selection of the MXXL sample at redshift
z = 0 (red squares) and z = 1 (blue circles) obtained with the ellipsoidal
overdensity. The vertical dashed line indicates the mass of a halo with 1000
particles. Top panel: points show the mass function of the whole selected
halo catalogue. The cut at low masses is clearly visible. Bottom panel: points
show the percentage of regular haloes in each mass bin (i.e. objects with a
centre offset smaller than 5 per cent of their virial radius).

comparison with observational results, which are far from being
homogeneous and regular.

Another used criterion is the rms of the fit adopting an NFW
profile (Macciò et al. 2007; Muñoz-Cuartas et al. 2011) as reference.
As we are only interested in the overall shape of a halo, this does
not play an important role; it is also interesting to mention that the
halo profile may vary for the simple NFW predictions (Navarro
et al. 2004; Prada et al. 2012; Klypin et al. 2014). This can be seen,
for example, in fig. 6 of Macciò et al. (2007), where the authors
compare the dependence of shape on mass for different selection
criteria. A selection only on centre offset (as done here) correspond
to what the authors called GOOD and NOISY halo samples (offset
less than 4 per cent) and differ only by the goodness of the NFW
fit. The two curves in the plot are almost identical, while there is
a noticeable difference when compared with the BAD and UGLY
sample (offset larger than 4 per cent).

These methods for selecting regular haloes have also been ap-
plied to the five SBARBINE simulations, obtaining a catalogue
equivalent to the MXXL haloes. The selected number haloes for
both simulations at redshift z = 0 is shown in Table 1.

3 TR I A X I A L S H A P E S O F M A S S I V E G A L A X Y
C L U S T E R S FRO M MX X L

3.1 MXXL results

In this first analysis we are mostly interested in the clusters mass
range, therefore we will use only a portion of the available MXXL

Figure 3. Probability distribution functions – differential and cumulative –
of s = a/c. The distributions for the entire haloes population is shown in
grey (and with dashed lines), while the red (solid) ones refer to the cleaned
population.

Table 2. Number of haloes in each logarithmic mass bin(in log (M/M�h))
and percentage of regular haloes for redshifts z = 0 and 1.

z = 0 z = 1
log (M)[M� h−1] Nh Nreg/Nh Nh Nreg/Nh

14.0–14.2 57 759 58.56 per cent 30 823 41.19 per cent
14.2–14.4 56 083 56.61 per cent 13 271 39.11 per cent
14.4–14.6 42 951 53.52 per cent 3914 38.24 per cent
14.6–14.8 20 715 50.60 per cent 919 39.39 per cent
14.8–15.0 7823 48.50 per cent 134 36.81 per cent
15.0–15.2 2305 46.46 per cent 6 19.35 per cent
15.2–15.4 523 45.84 per cent
15.4–15.6 84 46.15 per cent

data. By taking the ratio of minor to major axis s = a/c we can
measure the degree of triaxiality of a halo; the closer s is to 0, the
less spherical the object is. If we combine this information with the
value of the intermediate to major axis ratio q = b/c, we can infer
how much prolate or oblate the halo is. In Fig. 3, the distribution of s
is shown for the entire halo catalogue (dashed grey curves), and for
the regular one (solid red curves). The filled histograms represent
the differential distributions, while the curves are cumulative distri-
butions of the two different samples. In the original population there
is a noticeable bump at low s which corresponds to highly aspherical
objects; clearly this is the case of unrelaxed or merging clusters. As
it can be seen in the red histogram, the selection criteria we adopted
have helped to remove this unwanted feature, since modelling them
is beyond the goal of this work. We have divided our sample in eight
logarithmic mass bins, from 1014 to 3.98 × 1015 M� h−1. Table 2
reports the total number of haloes Nh and the percentage of regular
ones Nrel/Nh for each mass bin for both redshifts of the MXXL. As
expected, the number of clusters at high redshift is lower and we
do not have any halo in the highest mass bins. As noted before, the
percentage of regular haloes is higher at low masses, which formed
earlier and thus had more time to reach an equilibrium state.

It has already been established (Jing & Suto 2002; Allgood et al.
2006; Bett et al. 2007; Schneider et al. 2012) that the axis ratio
s depends on the mass of the halo, however this dependence has
not been tested at the high masses available in large simulation
boxes such as the MXXL. Fig. 4 shows the distributions of s for
different mass bins in our sample – only five mass bins of Table 2,
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Figure 4. Probability distribution function of s = a/c binned in mass using
a fixed bin of 0.2 M� h−1 for both redshifts. For clarity, we show the results
for only five of the mass bins reported in Table 2.

Figure 5. Conditional distributions p(q|s), with q = b/c. Different colours
represent the distributions for six bins in s; solid and dashed histogram
shows data from redshift 0 and 1, respectively. The vertical dashed lines of
corresponding colour show the median value of s for each bin.

to avoid an overcrowded plot; as halo mass increases, the median
value of the axis ratio becomes smaller, that is, the halo is less
spherical. This effect is barely visible at redshift z = 1. Moreover
the dispersion in s is larger in the lower bins. It is also noticeable that
the distributions are not symmetric, particularly they are skewed to
low values of the axis ratio. To fully describe the shape of haloes,
we need also the conditional probability distribution function p(q|s),
which is the distribution of q for a given value of s. Fig. 5 shows the
conditional distributions obtained for six bins in s: solid histogram
for z = 0 and dashed for z = 1. The two redshifts are almost
indistinguishable, which hints at the universality of the conditional
distribution that will be discussed later on. For any interval, the
median value of b/c is fairly close to the median of a/c (dashed
vertical lines); although still fully triaxial, haloes tend to be prolate
rather than oblate. For example, in the case of a ‘disc-like’ object,
all the distributions would have been prominently shifted to values
close to unity, because, in this case, b ≈ c independently of the
minor axis a.

3.2 Minor to major axis ratio distribution: functional form

We aim to obtain a functional form to describe the axial ratio dis-
tributions at different masses. Due to the low statistic, Jing & Suto
(2002) were not able to fully resolve the shape of the distribution
and therefore assumed a Gaussian distribution. On the other hand,
Schneider et al. (2012) claimed to be able to fit all the masses
with a single beta distribution, although, even after a rescaling of s,
they mention some residual mass dependence. Thanks to the large
statistic in the MXXL simulation we are able to reconstruct the
distributions with greater detail, even at large masses. Moreover,
we are only interested in clusters, so we do not need the same level
of generalization of the previous authors (see Section 4 for broader
analysis). These two conditions allow us to simplify the analysis
and obtain a better fit of the axial ratio distributions.

As shown by various authors (Press & Schechter 1974; Bond et al.
1991; Lacey & Cole 1993) the mass function written as a function
of peak height ν = δc(z)/σ (M) does not depend on redshift nor on
cosmology (see appendix A for the details on how to compute ν). It
can be understood as follows: δc(z) is the critical overdensity of the
spherical collapse model (initial density required for a fluctuation to
collapse at redshift z), it increases with z; σ (M) is the variance in the
initial density field smoothed on a scale of a uniform sphere of mass
M and is higher for small masses. Then, since at high-redshift haloes
were less massive, the dependences on time of the two quantities
compensate with each other. For example, ν(M�, z) = 1 at every
redshift, and ν > 1 always represent a halo with a mass larger than
the typical haloes collapsing at that time, even though the exact
value of M� changes with redshift.

Fig. 6 shows the logarithm of s versus the logarithm of peak
height (≈mass) for the selected haloes. Medians of log (s) for the
two redshifts are shown in red squares and blue circles; the redshift
dependence seen in Fig. 4 has disappeared completely. As already
shown by Despali et al. (2014, fig. 5), the universality of haloes
properties seems to extend also to the shape when using ν instead
of mass. The change of variable allows us to provide results that
are independent of the redshift and valid for different cosmologies.
This idea was already in the original Jing & Suto (2002) paper,
as the mass was given in units of M�, but the use of ν is more

Figure 6. (logarithmic) Distribution of s as function of peak height: the
black boxes and whiskers represent the quartiles and 1.5 the quartiles range
of the combined distributions. The horizontal error shows the different bins,
while the green solid line is the linear fit to the medians. Red squares and
blue circles are redshift 0 and 1 subsamples. As reference, the corresponding
mass for MXXL cosmology at z = 0 is shown in the top axis.
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Figure 7. Distribution of the scaled axial ratio s̃ for masses shown in
Table 2. It can be easily seen that the distributions at all masses are well
represented by an unique fitting function.

general and gives a more direct connection to the theory of structure
formation. As a result, we can safely treat the two data sets as a single
population, shown by the box and whiskers plot for a given ν bin
(horizontal error bars). This plot confirms the previously mentioned
trend: more massive haloes (higher ν) are more aspherical. We
have looked for a linear relation between ν and axis ratio in the
log–log space (green line in Fig. 6) and obtained an inclination
a = −0.257 ± 0.01 and an intercept b = −0.219 ± 0.005. The
intercept is the logarithm of the median axis ratio at M�: s̃(M�) =
10b = 0.604 ± 0.006, which however does not enter directly in the
following relations. The relation translate to a rescaling similar to
the one adopted by previous authors: log (s) = a log (ν) + b ⇒ s̃ =
10b = 10log s−a log(ν) = s ν−a. Therefore

s̃ = sν0.257 (3)

as ν takes care of any time and cosmology dependence, this rescal-
ing is valid also for different redshifts and cosmologies. As Fig. 7
shows, distributions of the rescaled axis ratios (coloured histograms)
are nearly indistinguishable from each other, meaning that we have
eliminated all the dependence on the mass, in contrast with the
findings of Schneider et al. (2012). Moreover, we were not able
to fit the histogram of s̃ with a beta distribution. As it can be
seen in Fig. 7, the distributions are non-zero at values greater than
s̃ = 1; this does not mean that there are haloes with axis ratio
greater than 1: s̃ is not a physical quantity, this effect is due to the
rescaling. Nevertheless, one can argue that s̃ represents the physical
axis ratio at ν = 1 (M = 5.8 × 1012 M� h−1); still, this rescal-
ing has been obtained only for M > 1014 M� h−1, leaving the
unscaled axis ratio well within the physically meaningful bound-
aries. We have chosen to fit the minor to major axis ratio using a
lognormal distribution

p(x, μ, σ ) = 1

x
√

2πσ
exp

(
− (ln x − μ)2

2σ 2

)
, (4)

which corresponds to the probability distribution function of a vari-
able which is normally distributed in the logarithmic space. The
parameters of the fitted function are the following:

μ = −0.49

σ = 0.20; (5)

they can be converted to more familiar quantities

median = eμ = 0.61,

std =
√

(eσ 2 − 1)e2μ+σ 2 = 0.13. (6)

In this framework, for a simple analysis, one can just use the
scaled median value s̃ = eμ = 0.61 with asymmetric quartiles at
0.53 and 0.70; then use equation (3) to obtain the physical value.
On the other hand, it is possible to use the fit to obtain the whole
distribution for a given mass. For example, to use it as a prior
distribution of the minor to major axis ratio, one draws a value
x from a normal (Gaussian) distribution with mean μ = −0.49
and standard deviation σ = 0.20, the scaled axis ratio is then ex

(or directly extract s̃ from a lognormal distribution); inverting the
rescaling relation one can obtain the axis ratio of the halo at a given
peak height, which can be subsequently converted in mass for a
given cosmology at a given redshift.

3.3 Intermidiate to major axis ratio distribution: functional
form

Once we are able to describe s as a function of mass we can look at
the correlation between the two axial ratios. For construction, q is
always greater (or equal) than s; also it is always less than 1. These
limits have the effect of distorting the distribution of intermediate
to major axis ratio in a way that depends directly on s. To avoid this
problem, we use the rescaled quantity q̃ = (q − s)/(1 − s) instead
of the simple axial ratio (Schneider et al. 2012), eliminating the
issues of a limited interval; the correlation between the rescaled
second axial ratio and s can be seen in the left-hand panel of Fig. 8,
where medians (red error bars) and quartiles (box and whiskers
plot) for different values of the first axis ratio are shown. We have
divided q̃ in bins of different s and extracted the distributions p(q̃|s)
(right-hand panel of Fig. 8). From both plots, it is quite evident that
q̃ strongly depends on the first axial ratio, with higher values at
higher s, which is in agreement with haloes that tend to be prolate.
Moreover the scatter is larger at higher s, though this is mostly due
to the rescaling which extends the allowed interval of q̃.

Because of the strong correlation between q̃ and s, we cannot
just give q̃ as a function of mass to obtain the second axis ratio
distribution for a given mass, we have to describe p(q̃|s) and then
get the first axis ratio from its distribution at different masses (as
shown in Section 3.2). Given the large differences in the shapes of
the distributions of q̃ at a given s, the rescaling needed to reduce
them to a single one needs to be much more complex than the one
adopted in the last section. Therefore, we fit each single histogram
with a different beta distribution, which has the following analytical
expression:

p(x, α, β) = 1

B(α, β)
xα−1(1 − x)β−1. (7)

This function has two shape parameters α and β; the factor 1/B(α,
β) is a normalization constant that can be computed by requiring
that the integral of the probability distribution function is equal to
unity.

From the fitting procedure, we obtained a pair of parameters for
each bin in s; however, α has a complicated dependence on the first
axial ratio (almost constant with an average value of α = 2.15),
while the mean value of the beta distributions μ = 1/(1 + β/α)
follows a linear relation. Fig. 9 shows the dependence of the mean
μ (red squares on left-hand panel) and β parameter (blue circles on
right-hand panel) of the fitted beta functions on the first axial ratio
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3178 M. Bonamigo et al.

Figure 8. Distribution of q̃ = (q − s)/(1 − s) as function of s: the black boxes and whiskers represent the quartiles and 1.5 the quartiles range, respectively.
The horizontal red error bars represent the bin inside which the medians have been computed. Right: distributions of q̃ for different values of s (histograms)
and fitting function resulting from the model presented in the section (curves).

Figure 9. Parameters of the fitted beta functions. Red is the mean of the
distribution, in blue the second parameter β.

s. The coloured lines in each respective panel show a fit of these
two parameters:

μ(s) = 0.633s−0.007

β(s) = 1.389s−1.685. (8)

These two equations give us a functional form of p(q̃|s): starting
from a value of s, one can retrieve the mean μ and β from which
the other parameter can be computed α = β/(1/μ + 1). This gives
what is needed to reconstruct the distribution of q̃ of a given s
and the scatter, if needed. The final step is to revert the change of
coordinates and compute the physical axial ratio q.

4 EX P L O D I N G T H E MA S S R A N G E TO FI V E
O R D E R S O F M AG N I T U D E

The next step of our work is to explode the recipes for dark matter
halo shapes to lower masses; in the following sections we describe
how to generalize the axial ratio distribution to a wider mass range.
To do so, we combined the MXXL data with the SBARBINE simu-
lations, a set of cosmological simulations that will allow us to study
the shape of dark matter haloes from 3 × 1010 to 6 × 1015 M� h−1.

As before, we express the mass dependence in terms of peak
height ν. By doing this, it is possible to treat homogeneously data
from different redshifts and cosmologies, such as the SBARBINE
and the MXXL simulations.

4.1 Axis ratio distribution: minor to major

On left-hand panel of Fig. 10, the logarithm of the minor to major
axial ratio s is shown as a function of the logarithm of ν. As be-
fore, horizontal error bars represent the interval in ν and the box
and whiskers are the quartiles and 1.5 the quartiles range for the
combined sample, while coloured points are medians of individual
catalogues. Again, there is no difference in the medians between
redshifts, neither between the single simulations. It can be seen that
s has a nearly linear dependence on log (ν), with a hint of flattening
at both high and low masses.

For each bin, we extracted the probability distribution function
of log (s) (right-hand panel of Fig. 10). The resulting curves exhibit
an interesting pattern: high and low ν histograms are mirrored with
respect to a central symmetric distribution which corresponds to
ν � 1.21 (M ≈ M∗). The rescaling adopted in Section 3.2 for
cluster-size haloes does not compensate this large variation in the
form of the distributions and it is not able to remove entirely the
mass dependence. Instead of using a different rescaling relation to
obtain a single probability distribution function (pdf), we decided to
follow the same recipe we used for the second axial ratio; first of all
we separately fit each distribution and then we relate the resulting
parameters to the binning quantity. This is shown in Fig. 11, where
we fit the mean (left-hand panel) and β parameter (right-hand panel)
of the Beta distributions we derived by fitting the histograms of the
right-hand panel of Fig. 10. In order to keep the procedure simple
we fit with a linear relation both μ and log β,

μ(ν) = −0.322 log ν + 0.620

log (β(ν)) = 0.560 log ν + 0.836. (9)

As before, the dependence of α is difficult to describe and it is
almost constant with a value of about 11.21.

Using this fits we are now able to approximate the probability
distribution function of the first axial ratio with a Beta function with
parameters α = β/(1/μ − 1) and β, over a range in mass of almost
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Universality of dark matter haloes shape 3179

Figure 10. Left: distribution of s as function of peak height for all the haloes selected from both redshifts the two simulations; the black boxes and whiskers
represent the quartiles and 1.5 the quartiles range, respectively, computed within the bins shown by the horizontal error bars. The coloured points represent
the medians for individual redshifts for the two simulations. Right: differential distribution of s for 8 bin in ν (histograms) and the respective approximating
functions obtained as shown in section 4.1 (curves).

Figure 11. Parameters of the fitted beta functions. Red is the mean of the
distribution, in blue the second parameter β.

six orders of magnitudes. Moreover the use of ν allows us to extend
these results to different cosmologies and different redshifts.

4.2 Axis ratio distribution: intermediate to major

Finally, to fully describe a triaxial halo of a given mass the in-
termediate to major axis ratio has to be parametrized. As Fig. 12
shows, the relation between q and s at redshift z = 0 does not de-
pend on the mass; the curves of different colours represent different
mass bins and still trace the same relation. The fact that all the
mass dependence is already inside s, allows us to use for p(q|s) the
same functional form of Section 3.3, independently of the mass we
choose. The same applies to different redshifts (not shown here,
but see Fig. 5 for a limited comparison), with the relation between

Figure 12. Axis ratio q as function of s for different masses, represented by
the points of different colours. Since there is no residual mass dependence
in the conditional distribution, we get the same result as in the MXXL with
all the simulations, confirming that this relation is universal.

the two quantities being indistinguishable from the one in Fig. 12.
Moreover, this independence of the conditional distribution from
both mass and redshift is in agreement with the theoretical predic-
tions from Rossi, Sheth & Tormen (2011).

5 C O M PA R I S O N W I T H PR E V I O U S WO R K S

We have compared our results with measurement of axis ratios
from other authors (Fig. 13). The data from both redshifts of the
MXXL and SBARBINE simulations are shown with red squares,
the median result form the analysis on cluster masses (Section 3.2)
is the blue solid line and the green solid line is from the combined
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3180 M. Bonamigo et al.

Figure 13. Comparison between previous works (dashed lines) and the results of this paper (solid lines). Red squares represent the data from both redshifts
of the MXXL and the SBARBINE simulations, converted to redshift z = 0 for the Millennium cosmology. The blue solid line is the model for clusters shown
in Section 3.2; the green solid line is the fit for the entire mass interval from section 4.1. The dotted parts of the curves show the mass ranges outside where the
relations have been derived from.

data sets (Section 4.1). Results from other authors are shown with
dashed lines in the mass range where their analysis was carried out
and with dotted lines when extrapolated beyond it. Moreover all
data and predictions have been converted to redshift z = 0 for the
Millennium cosmology, when necessary. As it can be seen, there is
a general agreement in the dependence of s on the mass, with more
massive haloes being less spherical. Although there seems to be a
scatter of about 15 per cent, this is due more to the differences in
the method of measuring shapes (different finders, radius, cleaning
procedure), than an error on the measurement. It must be noticed
that instead of the spherical mass, we used the mass within the
ellipsoid for consistency reasons; yet, this does not substantially
alter the findings presented here.

The most important difference comes from the radius at which
the shape is measured. Jing & Suto (2002, blue dashed line) used
particles of the isodensity surface corresponding to 2500δc, roughly
at a radius of 0.3Rvir; this analysis is different from all the following
authors, as it reflects the shape of an ellipsoidal shell, and not
of all the mass inside the ellipsoid. Their mass range 6 × 1012–
1014 M� h−1 was also quite small compared to later analysis.

Studying a larger mass interval, 6 × 1011–3 × 1014 M� h−1,
Allgood et al. (2006, yellow dashed line) derived axis ratios of
particles distribution inside 0.3Rvir diagonalizing the normalized
mass tensor (weighted by the distance from the centre); because of
this their measure reflects the shape at an even closer radius.

On the other hand, Schneider et al. (2012, black dashed line)
extended the analysis up to the virial radius, nevertheless the use of
the normalized tensor prevents a meaningful comparison with our
results.

All of these results are lower than what we derived, which can be
explained by the fact that the shapes were measured at inner radii,
where the particle distribution is supposed to be more elongate.
However, if we restrict the comparison to works that used particles
within the virial radius the agreement becomes much more strong.
This is the case of Muñoz-Cuartas et al. (2011, magenta dashed

line), who studied shapes with an ellipsoidal overdensity algorithm
similar to the one adopted in this work; their results agree with ours
much more than any other work.

Finally, using a different type of halo finder, Bett et al. (2007, red
dashed line) measured s for a set of particles that represent all the
bounded particles of a halo without assuming any particular shape;
the finder also clean the sample for irregular haloes. The agreement
with our results is another indication that the adopted selection
criteria are justified and ellipsoids are a good approximation for
regular haloes.

The other difference can arise from the cleaning of the sample;
the green dashed line show the prediction from Despali et al. (2014),
which is obtained from all haloes, regardless of their state of relax-
ation. As expected the values are lower, since the more unrelaxed
haloes are typically irregular and so they appear more elongated
with lower axial ratios. The difference is greater for less massive
haloes.

6 SU M M A RY A N D C O N C L U S I O N S

We have studied the triaxiality of dark matter haloes from the MXXL
simulation, which enabled us to characterize the shape of haloes
with extremely good statistic in the galaxy clusters mass range,
from 1014 to 4 × 1015 M� h−1. Using the SBARBINE simula-
tions, we have extended our analysis to lower masses down to
3 × 1010 M� h−1, thus increased the mass range by more than
five orders of magnitude. The main results of our analysis are the
following:

(i) dark matter haloes are triaxial with a tendency of being prolate
and in particular more massive objects are less spherical; as shown in
Fig. 3 very unrelaxed haloes have the effect of artificially increasing
the axis ratios and cannot be described by this simple ellipsoidal
model, which is unimodal by construction;
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(ii) for clusters, the distribution of the rescaled minor to major
axis ratio is well described by a lognormal distribution, in contrast
to previous extrapolations from lower masses that found a simple
Gaussian fit;

(iii) over the whole examined mass range, s can be approximated
by a beta distribution that depends only on the peak height ν;

(iv) the conditional intermediate to major axis ratio distribution
p(q|s) can also be described by a beta distribution that depends only
on the first axis ratio and not on the mass, thus the same approach
can be used for both clusters and the whole mass range of haloes;

(v) overall, the pdf of the shape of a dark matter halo is given
by one single parameter ν, related to its mass, that incorporates
the dependence on redshift and cosmology. This goes in support
of methods that allows us to change the cosmology of a numerical
simulation (Angulo & White 2010), as within good approximation
most of halo properties depend only on ν.

In the recipe that we provide, a halo shape is determined only by
its mass and can be changed to different cosmologies and redshifts.
Depending on the level of precision desired, it is possible to choose
different approximations,

(i) for a simpler analysis that is focused on the entire mass range,
Section 4.1 presents a single method that can be applied to masses
from 1010 up to 1016 M� h−1. If restricted to masses lower than
1014 M� h−1, this is actually a very accurate description of haloes
shapes;

(ii) if the interest is only on clusters shapes, then Section 3.2
gives a more precise model;

(iii) finally, it is possible to combine the two description and just
use the most suitable one given the mass of the halo, although losing
the universality of the description.

A simple implementation of this model can be found on a dedi-
cated website.2

In Section 5, we have compared our results with previous findings.
There is a general agreement with previous works within a 15 per
cent scatter that is due to the different methods used and especially
to the radius at which the shape is measured. However, the picture is
clear; dark matter haloes are triaxial objects and this effect is more
prominent in clusters where the spherical model is quite far from
being able to realistically represent the matter distribution.
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A P P E N D I X A : D E N S I T Y P E A K H E I G H T

In this appendix, we describe step by step how to compute density
peak height ν for a virialized halo with mass M at redshift z for a
given cosmological model. Its definition is the following:

ν ≡ δc(z)

σ (M)
, (A1)

where δc(z) is the critical overdensity of the spherical collapse
model, the initial density required for a fluctuation to collapse at
redshift z. This in turn can be expressed as the collapse overdensity
at redshift z = 0 rescaled to a given time: δc(z) = δc/D(z), with D(z)
being the linear growth rate of a density fluctuation normalized to
unity at z = 0. The overdensity δc depends only on redshift and not
on the mass; on the other hand, the denominator σ (M), depends on
the mass but not on redshift. It is the variance in the initial density
field smoothed on a linear scale R, which corresponds to the radius
of a uniform sphere of mass M. Therefore, only the linear growth
rate D(z) and the initial power spectrum P(k) are needed.

From the linear perturbation theory, it is possible to compute
D(z)

D(z) ∝ H (t)
∫ t

0

dt ′

a2(t ′)H 2(t ′)
, (A2)

which has to be solved numerically. Fortunately, there is an approxi-
mated solution (Carroll, Press & Turner 1992) that can be expressed
as D(z) ∝ g(z)/(1 + z), where

g(z) = 5/2 �m(z)

�
4/7
m − ��(z) + [1 + �m(z)/2] [1 + ��(z)/70]

. (A3)

Additionally, the collapse overdensity has an extremely weak de-
pendence on cosmology: δc ≈ 1.686[�m(tc)]0.0055; for realistic cos-
mologies this can be approximated to δc ≈ 1.69. Therefore, at z = 0
the collapse overdensity is δc and it increases with redshift, due to
D(z).

The other quantity required, the variance σ 2(M), is defined from
the power spectrum as

σ 2(M) = 1

2π2

∫ ∞

0
P (k)W̃ 2(kR)k2dk; (A4)

where W̃ is the Fourier transform of a window function. Typically,
W is a Top Hat (sphere) in the coordinates space, so that its Fourier
transform W̃ is

W̃ (kR) = 3
sin (kR) − kR cos (kR)

(kR)3 ; (A5)

with the radius R given by M = ρb4π/3R3. The power spectrum
P(k) of the density fluctuations is the main input; given a set of
cosmological parameters it can be computed from a software like
CAMB (Lewis et al. 2008). As it is function of initial conditions only,
σ (M) needs to be computed only once for a given cosmology; all
the redshift dependence is inside D(z).

Finally, for a halo of mass M, using equation (A4) it is possible to
compute σ (M) and combine it with the value of D(z) from equation
(A3) to obtain the correct density peak height ν.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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