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ABSTRACT
We present a new study investigating whether active galactic nuclei (AGN) beyond the local
universe are preferentially fed via large-scale bars. Our investigation combines data from
Chandra and Galaxy Zoo: Hubble (GZH) in the AEGIS (All-wavelength Extended Groth strip
International Survey), COSMOS (Cosmological Evolution Survey), and (Great Observatories
Origins Deep Survey-South) GOODS-S surveys to create samples of face-on, disc galaxies
at 0.2 < z < 1.0. We use a novel method to robustly compare a sample of 120 AGN host
galaxies, defined to have 1042 erg s−1 < LX < 1044 erg s−1, with inactive control galaxies
matched in stellar mass, rest-frame colour, size, Sérsic index, and redshift. Using the GZH bar
classifications of each sample, we demonstrate that AGN hosts show no statistically significant
enhancement in bar fraction or average bar likelihood compared to closely-matched inactive
galaxies. In detail, we find that the AGN bar fraction cannot be enhanced above the control
bar fraction by more than a factor of 2, at 99.7 per cent confidence. We similarly find no
significant difference in the AGN fraction among barred and non-barred galaxies. Thus we
find no compelling evidence that large-scale bars directly fuel AGN at 0.2 < z < 1.0. This
result, coupled with previous results at z = 0, implies that moderate-luminosity AGN have
not been preferentially fed by large-scale bars since z = 1. Furthermore, given the low bar
fractions at z > 1, our findings suggest that large-scale bars have likely never directly been a
dominant fuelling mechanism for supermassive black hole growth.

Key words: galaxies: evolution – galaxies: general – galaxies: Seyfert – galaxies: structure.

1 IN T RO D U C T I O N

Most simulations of galaxy evolution require some kind of feedback
that correlates with bulge mass (and is often assumed to be active
galactic nucleus – AGN – feedback) to reproduce key observations,
such as the colour bimodality of galaxies (e.g. Springel, Di Matteo
& Hernquist 2005; Croton et al. 2006; Cimatti et al. 2013). Yet,

� This publication has been made possible by the participation of more
than 85,000 volunteers in the Galaxy Zoo project. Their contributions are
individually acknowledged at http://authors.galaxyzoo.org/
†E-mail: ec2250@gmail.com
‡Hubble Fellow.

the mechanism that funnels gas towards the central supermassive
black hole that powers the AGN is still unknown (e.g. Hopkins &
Hernquist 2006; Hopkins & Quataert 2011; Hopkins, Kocevski &
Bundy 2014; see Fabian 2012; Kormendy & Ho 2013; Heckman
& Best 2014 for recent reviews).

Major mergers are often cited as a key trigger for AGN ac-
tivity (Sanders et al. 1988; Barnes & Hernquist 1991; Mihos &
Hernquist 1996; Di Matteo, Springel & Hernquist 2005; Hopkins
et al. 2005a,b). Although major mergers seem to drive the most lu-
minous and rapidly accreting AGN (Sanders et al. 1988; Kartaltepe
et al. 2010; Koss et al. 2010; Treister et al. 2012; Trump 2013; Hop-
kins et al. 2014), low- to moderate-luminosity AGN, which make up
the majority of AGN by number, seem to be fuelled by processes that
do not visibly disturb the discy structure of galaxies (Schawinski
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et al. 2010, 2011, 2012; Cisternas et al. 2011; Kocevski et al. 2012;
Simmons et al. 2012, 2013).

An obvious process that satisfies this constraint is secular evolu-
tion (Kormendy 1979; Martinet 1995; Kormendy & Kennicutt 2004;
Athanassoula 2013; Sellwood 2014). A major driver of secular evo-
lution in disc galaxies is large-scale bars,1 and they are predicted to
affect galaxies in a variety of ways, including the fuelling of AGN
(Simkin, Su & Schwarz 1980; Noguchi 1988; Shlosman, Frank
& Begelman 1989; Shlosman, Begelman & Frank 1990; Wada &
Habe 1992). The non-axisymmetric potential of a bar is predicted
to funnel interstellar gas into the central kpc (Athanassoula 1992) –
which has been confirmed by multiple observational works (Regan,
Vogel & Teuben 1995; Regan, Sheth & Vogel 1999; Sakamoto et al.
1999; Sheth et al. 2000, 2002, 2005; Zurita et al. 2004) – where
a possible nested, secondary bar may further funnel gas to the in-
ner ∼10 pc. From this distance, cloud–cloud collisions may lead to
inflows on to the AGN accretion disc. Collectively, this scenario is
known as ‘bars within bars’ (Shlosman et al. 1989, 1990; Hopkins
& Quataert 2010, 2011). Observations at low redshift, however, find
no excess of primary bars in active galaxies (Ho, Filippenko & Sar-
gent 1997; Mulchaey & Regan 1997; Malkan, Gorjian & Tam 1998;
Hunt & Malkan 1999; Martini & Pogge 1999; Regan & Mulchaey
1999; Erwin & Sparke 2002; Martini et al. 2003; Lee et al. 2012b;
Cisternas et al. 2013, but see Knapen, Shlosman & Peletier 2000;
Laine et al. 2002; Laurikainen, Salo & Buta 2004; Oh, Oh & Yi
2012; Alonso, Coldwell & Lambas 2013; Galloway et al., in prepa-
ration). There is also no direct correlation between primary bars
and secondary bars, with ∼30 per cent of all disc galaxies having a
secondary bar (Mulchaey & Regan 1997; Martini & Pogge 1999;
Regan & Mulchaey 1999; Erwin & Sparke 2002; Laine et al. 2002).
These results indicate that bars – both primary and secondary bars
– may not fuel AGN.

Almost all previous observational work on the bar–AGN con-
nection has been limited to the local universe, where the number
density of AGN is low. Thus a compelling link between bars and
AGN might still be found at earlier epochs, when the number den-
sity of AGN is higher (Ueda et al. 2003; Silverman et al. 2008b; Aird
et al. 2010). In this work we focus on galaxies at 0.2 < z < 1.0. The
upper limit of z = 1 is based on Melvin et al. (2014), who show that
bars are detectable out to z = 1 with the Hubble Space Telescope
Advanced Camera for Surveys (HST/ACS).

We describe the data in Section 2. Our sample selection, and in
particular, our selection of control samples of inactive galaxies is
detailed in Section 3. Section 4 presents our main result that there is
no statistically significant excess of bars in AGN hosts. We discuss
the implications of our results in Section 5. Conclusions follow in
Section 6. Throughout this paper, we assume a flat cosmological
model with H0 = 70 km s−1 Mpc−1, �m = 0.30, and �� = 0.70,
and all magnitudes are given in the AB magnitude system.

2 DATA

In this section, we briefly describe the three surveys and their re-
spective data products that are used in this paper. We also describe
Galaxy Zoo: Hubble (GZH), which uses high-resolution HST/ACS

1 Unless otherwise stated, we use ‘bars’ to refer to large-scale structures in
isolated systems, i.e. we do not consider bars created through interactions.
These large-scale bars are commonly referred to as primary bars while
small-scale (less than, or of the order of 1 kpc) bars are commonly referred
to as secondary bars.

Table 1. Survey summary.

AEGIS COSMOS GOODS-S

Area (deg2) 0.197 1.8 0.07
HST/ACS exp. time (s)a 2180 2028 2223

Pixel scale (arcsec pixel−1) 0.03 0.05 0.03
PSF FWHM (arcsec) 0.120 0.090 0.125

aFor AEGIS and GOODS-S, this is the average exposure time of the two
observed HST/ACS bands used in this work (see Sections 2.1 and 2.3).

imaging to accurately visually classify galaxies. Thus this paper
will only focus on the area of these surveys that have HST/ACS
imaging. A summary of the three surveys is presented in Table 1.

2.1 AEGIS

The All-wavelength Extended Groth strip International Survey
(AEGIS; Davis et al. 2007) is an international collaboration that
produced one of the most comprehensive multiwavelength data sets
currently available. This data set includes HST/ACS imaging, which
is centred on the Extended Groth Strip (EGS) region and is com-
posed of 63 pointings in both the F606W (V) and the F814W (I)
filters. The final images have a pixel scale of 0.03 arcsec pixel−1

and a point-spread function (PSF) of 0.12 arcsec full width at half-
maximum (FWHM). The HST/ACS images cover a total area of
∼710 arcmin2.

The multiwavelength coverage of AEGIS also includes Chandra
ACIS-I (Garmire et al. 2003) X-ray observations that have a nominal
exposure of 800 ks (Nandra et al. 2005; Georgakakis et al. 2006;
Laird et al. 2009).

The spectroscopic redshifts (z) of AEGIS are from the DEEP2
and DEEP3 redshift surveys (Davis et al. 2003; Cooper et al. 2011,
2012; Newman et al. 2013), which used the DEIMOS spectrograph
(Faber et al. 2003) on the Keck II telescope. Spectroscopic redshifts
with quality code of 3 or 4 are considered secure; we only consider
these spectroscopic redshifts throughout this paper.

Measurements of AEGIS galaxy properties are from Cheung
et al. (2012), who compiled several galaxy measurements from
several different sources. Stellar masses, M∗, are from Huang et al.
(2013), and are estimated by fitting the multiwavelength AEGIS
photometry to a grid of synthetic SEDs from Bruzual & Charlot
(2003), assuming a Salpeter (1955) initial mass function (IMF)
and solar metallicity. These synthetic SEDs span a range of ages,
dust content, and exponentially declining star formation histories
(SFHs).

Rest-frame U − B colours are obtained through the KCORRECT

v4.2 code (Blanton & Roweis 2007) with CFHT BRI photometry
and spectroscopic redshifts as inputs.

Structural parameters such as the global Sérsic index (n), effective
radius (re), and axis ratio (b/a) are measured with GIM2D through
a single Sérsic fit on the HST/ACS V and I images (Simard et al.
2002).

2.2 COSMOS

The Cosmological Evolution Survey (COSMOS; Koekemoer et al.
2007; Scoville et al. 2007) is the largest contiguous HST/ACS imag-
ing survey to date, covering ∼1.8 deg2 in the F814W (I) band and
consists of 590 pointings. The final images have a pixel scale of
0.05 arcsec pixel−1 and a PSF of 0.09 arcsec FWHM.

In addition to the HST/ACS coverage, COSMOS also includes
Chandra ACIS-I observations that cover the central part of the
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COSMOS field with four pointings, each totalling to a nominal ex-
posure of 200 ks (Elvis et al. 2009). We use the Chandra COSMOS
catalogue as described in Civano et al. (2012).

The spectroscopic zs of COSMOS are mainly from zCOSMOS
(Lilly et al. 2009). Supplemental spectroscopic zs are from the
Chandra COSMOS survey (e.g. from Trump et al. 2009). We only
consider spectroscopic zs that are deemed secure by these surveys,
e.g. for zCOSMOS, we only consider zs with confidence class of
3.x, 4.x, 1.5, 2.4, 2.5, 9.3, 9.5, 13.x, 14.x, 23.x, and 24.x.

Measurements of COSMOS galaxy properties are from a vari-
ety of sources. Stellar masses and rest-frame U − V colours are
from the UltraVISTA survey (Muzzin et al. 2013). The M∗s are
estimated using FAST (Kriek et al. 2009) to fit the galaxy SEDs to
Bruzual & Charlot (2003) models, assuming solar metallicity, a
Chabrier (2003) IMF, a Calzetti et al. (2000) dust extinction law,
and exponentially declining SFHs.

The rest-frame U − V colours are estimated by using EAZY

(Brammer, van Dokkum & Coppi 2008) to determine the colours by
integrating the best-fitting SED through the redshifted filter curves
over the appropriate wavelength range.

The structural parameters of COSMOS galaxies, i.e. n, re, and
b/a, are provided by the ACS-GC catalogue (Griffith et al. 2012);
they used GALFIT (Peng et al. 2002) to fit a single Sérsic profile on
the HST/ACS I images.

2.3 GOODS-S

The Great Observatories Origins Deep Survey (GOODS;
Dickinson et al. 2003; Giavalisco et al. 2004; Rix et al. 2004) is
a deep multiwavelength survey that includes the deepest HST im-
ages to date. The GOODS survey targeted two separate fields, the
Hubble Deep-Field North (HDF-N; now referred to as GOODS-
N) and the Chandra Deep-Field South (CDF-S; now referred to as
GOODS-S). We will only use the GOODS-S for this paper.

The HST/ACS imaging of GOODS-S was carried out in sev-
eral bands, of which we are only interested in two – F606W (V)
and F850LP (z). The imaging comprises of 15 pointings, with a
final pixel scale of the images of 0.03 arcsec pixel−1 and a PSF of
0.125 arcsec FWHM. The HST/ACS imaging area of GOODS-S
covers a total area of ∼160 arcmin2.

In addition to containing the deepest Hubble images to date,
GOODS-S also contains the deepest Chandra observations to date.
The 4 Ms CDF-S Survey (Luo et al. 2008; Xue et al. 2011) made
54 Chandra ACIS-I observations over a period of three Chandra
observing cycles in 2000, 2007, and 2010. We use the catalogue
presented by Xue et al. (2011).

The spectroscopic zs of GOODS-S come from a variety of
sources, many of which are listed in table 2 of Griffith et al. (2012).
We only consider redshifts of the highest quality (≥3).

Stellar masses and rest-frame U − B colours of GOODS-S galax-
ies are from the CANDELS survey (Barro et al. 2011; Grogin et al.
2011; Koekemoer et al. 2011; Guo et al. 2013; Williams et al. 2014).
The M∗s are estimated with the FAST code by fitting galaxy SEDs
based on optical to infrared photometry to models of Bruzual &
Charlot (2003), assuming a Chabrier (2003) IMF. They also as-
sumed a Calzetti et al. (2000) extinction law, solar metallicity, and
exponentially declining SFHs.

Rest-frame U − B colours are estimated with the EAZY code by
fitting galaxy SEDs to the templates from Muzzin et al. (2013).

The structural parameters of GOODS-S galaxies, i.e. n, re, and
b/a, are provided by the ACS-GC catalogue (Griffith et al. 2012);

they used GALFIT (Peng et al. 2002) to fit a single Sérsic profile on
the HST/ACS V and z images.

2.4 Calculating LX

To identify AGN, we use full-band (0.5–10 keV for AEGIS and
COSMOS, 0.5–8 keV for GOODS-S) X-ray fluxes from Chan-
dra observations described by Laird et al. (2009), Civano et al.
(2012), and Xue et al. (2011) for AEGIS, COSMOS, and GOODS-S,
respectively. We calculate X-ray luminosities using the equation
LX = 4πd2

Lfx(1 + z)�−2, where dL is the luminosity distance, z is
the redshift, fx is the flux, and � is the power-law photon index.
We set � = 1.8, which is a typical power-law photon index for
intrinsic AGN spectra. In Section 3.2, we select AGN using these
X-ray luminosities.

2.5 Galaxy Zoo: Hubble

Our work relies on bar identifications from the GZH citizen science
project (Melvin et al. 2014). Volunteers were asked to visually clas-
sify the morphologies of galaxies at z ∼ 1 based on HST/ACS optical
imaging from the surveys listed above. Like the previous Galaxy
Zoo project, Galaxy Zoo 2 (Willett et al. 2013), GZH used a deci-
sion tree with multiple branches and nested, dependent questions.2

These questions include, ‘Is there a sign of a bar feature through
the centre of the galaxy?’, which can only be reached if a volunteer
identifies some type of a feature (e.g. clumps, spiral arms, rings,
bars) or a disc within a galaxy. Thus a galaxy must have a feature
or a disc in order to be classified as barred.

Each galaxy is classified by at least 33 volunteers, with the median
number of volunteers per galaxy being 47. These classifications pro-
duce vote percentages that we refer to throughout as ‘likelihoods’;
e.g. if 25 out of 50 volunteers classified a galaxy as having a bar, then
the bar likelihood is pbar = 0.5, moduli small corrections to down-
weight consistently unreliable classifiers (following the procedure
explained in Willett et al. 2013).

GZH only classifies galaxies brighter than the following magni-
tudes: for AEGIS and COSMOS, HST/ACS F814W <23.5 (AB)
mag, and for GOODS-S, HST/ACS F850LP<23.5 (AB) mag.

2.5.1 Selecting barred galaxies

We consider galaxies to be barred if they have bar likelihoods greater
than 0.5 (pbar ≥ 0.5) and no obvious dust lanes3 (pdust lane < 0.5). The
bar threshold of pbar = 0.5 is based on previous Galaxy Zoo works
that have shown it to be a reliable indicator of strong bar features
(Masters et al. 2011, 2012; Willett et al. 2013; Melvin et al. 2014).

To calculate the bar fraction, fbar, one can divide the total number
of barred galaxies by the total number of disc galaxies in the sample.
Varying the bar likelihood threshold between 0.3 ≤ pbar ≤ 0.6 does
not change our qualitative conclusions.

In our analysis, we also use the average bar likelihood, pbar,
defined as the average of all the bar likelihoods of a sample of
galaxies. This parameter is another measure of bar presence and
has been used by other studies (e.g. Skibba et al. 2012; Casteels
et al. 2013; Cheung et al. 2013).

2 The complete decision tree is available at http://data.galaxyzoo.org
3 The exclusion of this criterion does not significantly affect the measured
bar fractions, nor does it change our conclusions.
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Table 2. Sample statistics. The first row represents the total num-
ber of galaxies at 0.2 < z < 1.0 with secure spectroscopic zs and
HST/ACS imaging in our sample, and the second row represents
the number of face-on disc galaxies that are in the previous row.
The rest of the table shows the median counts from the 100 AGN
control samples (see Section 3.3), and the resulting bar fraction,
fbar, and average bar likelihood, pbar.

AEGIS COSMOS GOODS-S

0.2 < z < 1.0 3958 6673 1023
Face-on disc 1227 2244 260

AGN 25 86 9
Control 75 258 27

Barred AGN 2 12 0
Barred control 6 28 2

fbar,AGN 0.08+0.09
−0.03 0.14+0.05

−0.03 0.07+0.10a
−0.05

fbar, Control 0.08+0.04
−0.02 0.11+0.02

−0.02 0.07+0.08
−0.03

pbar, AGN 0.23 ± 0.04 0.23 ± 0.03 0.12 ± 0.03
pbar, Control 0.20 ± 0.02 0.20 ± 0.01 0.18 ± 0.04

aAccording to Cameron (2011), when fbar = 0, one can adopt the
median of the beta distribution likelihood function as one’s best
guess for the true fbar.

3 SA M P L E SE L E C T I O N

Since our study seeks to determine if AGN activity is linked with
bars, we first construct a parent sample of face-on, disc-dominated
objects whose bars can be robustly identified (Section 3.1). We
then select AGN-hosting galaxies from this parent sample based on
their X-ray luminosity (Section 3.2). Finally, we construct samples
of inactive control galaxies that are matched to the AGN galaxies
(Section 3.3). The number counts of these samples are listed in
Table 2.

3.1 Face-on disc selection

The face-on disc samples for each field are defined by the following
criteria:

(i) 0.2 < z < 1.0 – to obtain the most accurate X-ray luminosi-
ties and to identify broad-line AGN (which may contaminate their
host galaxy measurements), we choose only galaxies with secure
spectroscopic redshifts. Although the ability to identify a bar is not
uniform over this redshift range, our robust matching of AGN and
inactive control galaxies ensures that the two samples have the same
distributions of completeness for bar detection: see Section 3.4.

(ii) b/a > 0.5 – since bars in highly inclined galaxies are difficult
to identify, we exclude edge-on galaxies with global axis ratios less
than or equal to 0.5.

(iii) re > 8 pixels – selecting galaxies with re larger than 8 pixels,
which corresponds to about twice the FWHM of the HST/ACS PSF,
ensures that any bars with semimajor axes � 3 kpc will be identified.
Since the typical bar lengths in the local universe are 2–7 kpc (Erwin
2005; Gadotti 2011; Hoyle et al. 2011), we should be able to detect
most large-scale barred galaxies, assuming bars at z > 0 are similar
to bars at z ∼ 0.

(iv) NBar question/NTotal ≥ 0.15 – in order to answer the bar question,
the GZH decision tree requires a volunteer to classify a galaxy as
displaying some kind of feature or disc. Thus demanding that at least
15 per cent of a galaxy’s classifiers answer the bar question results
in an effective selection for disc galaxies. Although the number of
AGN is sensitive to the exact NBar question/NTotal threshold, our qual-

itative conclusions are not, e.g. requiring NBar question/NTotal ≥ 0.75
does not change our ultimate conclusion. Moreover, the majority
of our NBar question/NTotal ≥ 0.15 sample has more than 10 bar clas-
sifications, which is more than most visual bar classifications (e.g.
Nair & Abraham 2010b; Lee et al. 2012a).

(v) pmerge < 0.65 – in order to separate out the effects of mergers
from our analysis, we choose non-interacting galaxies by requiring
a merging likelihood (pmerge) less than 0.65. This criterion mirrors
that of Melvin et al. (2014) and eliminates a small fraction of our
sample. Discarding this criterion does not affect our conclusion.

3.2 AGN selection

Out of these face-on disc samples (one from each survey), we
select AGN hosts with X-ray luminosities 1042 erg s−1 < LX <

1044 erg s−1. The lower limit removes starburst galaxies with weak
X-ray emission (Bauer et al. 2002), and the upper limit excludes qua-
sars that may have optical point sources which would contaminate
the measurements of their host galaxies (Silverman et al. 2008a).

We also discard luminous unobscured AGN which might also
contaminate the visible appearance of their host galaxy measure-
ments. In AEGIS and COSMOS, we use broad emission lines to
identify such AGN since they dominate the optical spectra of their
host galaxies. There are zero broad-line AGN in AEGIS and five
broad-line AGN in COSMOS, which we reject from our sample.
GOODS-S lacks a public catalogue of broad-line AGN, and so we
instead use low X-ray hardness (HR < −0.3; Mainieri et al. 2007)
as a proxy for unobscured AGN: this results in the rejection of one
AGN. The rejection or inclusion of these six potential-contaminant
AGN does not affect our qualitative conclusions.

Table 2 lists the final AGN count for each survey.

3.3 Control selection

For each AGN host galaxy, we select three unique, non-AGN control
galaxies from the same survey (AEGIS, COSMOS, or GOODS-S)
that are matched in M∗, U − B,4 n, re, and z. These parameters
have been shown to correlate with both AGN presence and bar
presence (e.g. Kauffmann et al. 2003; Nandra et al. 2007; Schaw-
inski et al. 2009; Masters et al. 2011; Cheung et al. 2013) and thus
must be controlled for in order to uncover any underlying bar–AGN
connection.

For a given AGN host galaxy, we first select a pool of control
galaxies satisfying the following conditions:

(i) | log M∗,AGN/M∗| < 0.35
(ii) |(U − B)AGN − (U − B)| < 0.4
(iii) |log re, AGN/r| < 0.48
(iv) |nAGN − n| < 2.0
(v) |zAGN − z| < 0.4.

These limits are tuned in order to find enough control galaxies for
each AGN. Our conclusions are not sensitive to the exact limits, e.g.
reducing these limits by 50 per cent does not change the conclusions.

With this initial pool of control galaxies, we perform a five-
stage matching process that iteratively reduces the pool until it
reaches a final set of three unique and matched control galaxies.
The first stage cuts the initial pool of control galaxies to the 15
closest matched galaxies in one of the matching parameters, i.e.
M∗,AGN, U − BAGN, (see footnote 4) nAGN, re, AGN, or zAGN. Each

4 U − V for COSMOS
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successive stage matches the remaining control galaxies to one of
the unused matching parameters and eliminates the three worst
matched galaxies. Thus the second stage reduces the pool to 12, the
third stage reduces the pool to 9, the fourth reduces the pool to 6,
and finally, the fifth stage reduces the pool to 3. Ultimately, for each
survey we have a control sample that contains no duplicates and is
three times larger than the AGN sample (see Table 2).

This five-stage matching process was performed for each AGN
host in our sample. However, there were four AGN – one from
AEGIS, one from COSMOS, and two from GOODS-S – that were
discarded due to a lack of control galaxies for the AGN host. These
host galaxies have abnormally high n for their rest-frame colours
and/or M∗ compared to the pool of control galaxies.

The AGN and control samples that this matching technique pro-
duces are affected by the order in which we match the AGN hosts
to the control galaxies and the order in which the matching pa-
rameters are used. In order to adequately sample the parameter
space, we repeat this five-stage matching technique 100 times for
each survey, with each iteration randomly shuffling the order of the
AGN hosts, the order of the control galaxies, and the order of the
matching parameters. Ultimately, we generate 100 AGN samples
and 100 control samples for each survey. For brevity and clarity,
we define an ‘AGN-control sample’ to be all AGN hosts and their
corresponding control galaxies for a given survey and for a given
matching iteration. We use the median counts and the resulting fbar

and pbar of the 100 AGN control samples in presenting our results
(see Table 2).

To demonstrate the quality of our matching procedure, Fig. 1
presents stacked histograms of the distribution of parameter differ-
ences between the AGN hosts and their matched control galaxies.
Each panel stacks 100 translucent histograms, with each histogram
representing one AGN control sample. To elaborate, each histogram
represents the difference in a parameter between each AGN and its
three control galaxies for a given realization. The highly shaded
regions represent the most populated parameter space, which are
generally centred around 0 with small spreads, as supported by
the mean and standard deviation at the upper left of each panel,
indicating that our matching technique works well. Moreover, we
also calculated the two-sample Kolmogorov–Smirnov (KS) null
probability for each pair of AGN control parameter distributions,
where small values indicate that the two distributions in ques-
tion are probably not from the same underlying distribution. We
display the median KS null probability, PKS, of all 100 pairs of
AGN control distributions in each panel, most of which show
high values, indicating that the AGN and control samples are
consistent.

However, it is clear that the histograms of GOODS-S are slightly
broader and more skewed than those of AEGIS and COSMOS,
especially in Sérsic index and redshift, as supported by PKS. The
relatively small sample size of GOODS-S (see Table 2) makes it
difficult to identify well-matched control galaxies for the GOODS-
S AGN hosts. However, Section 4 shows that the results from the
GOODS-S sample are consistent with those of AEGIS and COS-
MOS, indicating that the skewness of the GOODS-S AGN control
samples does not bias our analysis.

To further illustrate the quality of our matching technique, we
show images of two matched sets of AGN control galaxies from each
survey in Fig. 2. Each set of AGN control galaxies is reassuringly
similar in appearance, confirming that our matching technique is
reasonable.

The X-ray luminosity–redshift distribution of all X-ray sources in
our chosen redshift range, i.e. from the first row of Table 2 labelled

‘0.2 < z < 1.0’, is shown in Fig. 3. The dashed horizontal lines
define our AGN selection. The black points encircled in green rep-
resent the AGN that satisfy our face-on disc criteria, and hence are
eligible to undergo our matching process. The red points encircled
in green represent the face-on disc AGN that have enough control
galaxies, and thus are in our AGN samples. Fig. 3 shows that our
AGN samples span most of LX–z space. It also shows that the num-
ber of moderate-luminosity AGN increases with z, a well-known
behaviour that has been shown by previous works (e.g. Ueda et al.
2003; Silverman et al. 2008b; Aird et al. 2010).

3.4 Redshift effects on bar detection

Although redshift effects (e.g. cosmological surface brightness dim-
ming, angular size change, band shifting) hinder bar detection, our
experiment is a relative comparison between two matched samples
that controls for redshift and several of the most correlated param-
eters of bar presence (e.g. stellar mass, colour, and Sérsic index;
Nair & Abraham 2010b; Masters et al. 2011; Lee et al. 2012a; Che-
ung et al. 2013), so our study naturally takes this bias into account.
Assuming that there are no AGN-dependent selection effects, our
experiment should be robust against any known bar detection biases.

As an additional check, we tested for differential redshift effects
by splitting our sample into two redshift intervals, 0.20 < z < 0.84
and 0.84 < z < 1.00, and repeating our analysis. We chose these
z intervals because Sheth et al. (2008) argued that the ability to
detect bars at z > 0.84 is hampered by the overlap of the HST/ACS
I band with the rest-frame near-UV, where clumpy star formation
can hide smooth bar structures. However, as pointed out by Melvin
et al. (2014), the majority of the light gathered in the HST/ACS
I band at 0.84 < z < 1.00 is from the rest-frame optical, and it
is only beyond z ∼ 1 that this filter becomes dominated by rest-
frame UV where bar detection may be hindered. Therefore we do
not expect a reduction in our ability to detect bars above z = 0.84.
Repeating our analysis for these two z intervals corroborates our
expectations: there is no statistically significant (<3σ ) difference in
the AGN sample’s bar fraction and the control sample’s bar fraction
at either 0.20 < z < 0.84 or at 0.84 < z < 1.00. Therefore we find
no redshift dependence on our results, indicating that our results are
not affected by redshift biases.

4 R ESULTS

4.1 Do AGN hosts contain an excess of large-scale bars?

The main result of this paper is shown in Fig. 4, which plots the bar
fraction, fbar, and the average bar likelihood, pbar, of the AGN and
non-AGN control samples for the AEGIS, COSMOS, and GOODS-
S surveys. The uncertainties shown for fbar are 68.3 per cent binomial
confidence limits, calculated using quantiles of the beta distribution
given the bar counts, total sample counts, and desired confidence
level5 (Cameron 2011). The uncertainties shown for pbar are calcu-
lated as σ/

√
N , where σ is the standard deviation of pbar, and N is

the total number of galaxies.
We find no statistically significant enhancement in fbar or pbar

in AGN hosts compared to the non-AGN control galaxies. The
probabilities that each survey’s fbar, AGN and fbar, Control are different,
given the binomial errors, are insignificant (�1σ ). Conducting a
two-sample KS test on the pbar distributions of each survey’s AGN

5 For small samples, one can refer to the reference tables in Cameron (2011).
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Bar–AGN connection at 0.2 < z < 1.0 511

Figure 1. Normalized histograms of differences in matching parameters of the AGN and control samples. From top to bottom, the parameters are: stellar mass
(M∗), rest-frame colour (U − B or U − V), effective radius (re), global Sérsic index (n), and spectroscopic redshift (z). Each panel overlays 100 histograms,
one for each AGN control sample realization; the mean (μ), standard deviation (σ ), and the KS null probability (PKS) is displayed in the upper left of each
panel. The shading reveals the amount of overlap. Most of the histograms peak around zero, implying that the AGN and control galaxies are generally well
matched. The histograms of GOODS-S are slightly broader and more skewed than those of AEGIS and COSMOS, which is due to the relatively small sample
size of GOODS-S.
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512 E. Cheung et al.

Figure 2. HST/ACS images of two matched sets of AGN control galaxies for AEGIS (left), COSMOS (middle), and GOODS-S (right). Each AGN (upper-left
image of each block) has three matched, non-AGN control galaxies. Galaxies with pbar > 0.5 are considered barred. Galaxies within each AGN control set are
similar in appearance, demonstrating the quality of our matching technique. Images are from Griffith et al. (2012).

Figure 3. X-ray luminosity versus spectroscopic redshift for all sources detected in the AEGIS (left), COSMOS (middle), and GOODS-S (right) surveys
in our chosen redshift range. The dashed horizontal lines represent the lower and upper limits of our AGN selection. Our AGN samples, i.e. the red points
encircled in green, span most of LX–z space.
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Bar–AGN connection at 0.2 < z < 1.0 513

Figure 4. Left: the bar fraction, fbar, of the AGN (green squares) and non-AGN control samples (purple triangles) for the AEGIS, COSMOS, and GOODS-S
surveys. Right: the average bar likelihood, pbar, of the AGN and non-AGN control samples for the three surveys. The error bars on fbar and pbar are the
68.3 per cent binomial confidence limits and standard error, respectively. There is no statistically significant difference in fbar or pbar between the AGN and
non-AGN control samples across all three surveys, indicating that there is no large excess of bars in AGN hosts.

and control samples reveals that the AGN and control samples are
consistent with being drawn from the same parent sample to the
99.9 per cent level.

With our results, we can quantify the level of bar excess in AGN
hosts that we can eliminate by combining all three surveys together.
Using the combined counts of AGN, controls, barred AGN, and
barred controls, we find that the bar fraction of the combined AGN
sample cannot be greater than twice the bar fraction of the combined
control sample at 99.7 per cent confidence. Therefore, we conclude
that there is no large excess of bars in AGN hosts.

4.2 Are large-scale bars efficient fuellers of AGN?

A slightly different, but related question is, ‘Are bars efficient fu-
ellers of AGN?’ We answer this question by studying the AGN
fraction of barred and non-barred galaxies, as presented in Fig. 5.
From our face-on disc sample (see Section 3.1), we select barred
galaxies with the criteria described in Section 2.5.1. We then create a
control sample of non-barred galaxies by demanding that pbar < 0.05
and by using our five-stage matching technique that we described in
Section 3.3. That is, for each barred galaxy, we find three non-barred
galaxies matched in stellar mass, rest-frame colour, size, Sérsic in-
dex, and redshift. Using the AGN criteria defined in Section 3.2,
Fig. 5 shows that there is no statistically significant excess of AGN
among barred galaxies.

5 D ISCUSSION

At z ∼ 0, several works have previously found no link between
bars and AGN (Ho et al. 1997; Mulchaey & Regan 1997; Malkan

Figure 5. The AGN fraction, fAGN, of the barred (green squares) and non-
barred control samples (purple triangles) for the AEGIS, COSMOS, and
GOODS-S surveys. The error bars on fAGN are the 68.3 per cent binomial
confidence limits. There is no statistically significant difference in fAGN

between the barred and non-barred control samples across all three surveys,
indicating that there is no statistically significant excess of AGN in barred
galaxies.

et al. 1998; Hunt & Malkan 1999; Martini & Pogge 1999; Regan &
Mulchaey 1999; Erwin & Sparke 2002; Martini et al. 2003; Lee et al.
2012b; Cisternas et al. 2013, but see Knapen et al. 2000; Laine et al.
2002; Laurikainen et al. 2004; Oh et al. 2012; Alonso et al. 2013;
Galloway et al., in preparation), and our results suggest that this
absence of direct bar-driven AGN activity persists out to z = 1. Our
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514 E. Cheung et al.

chosen redshift range corresponds to an epoch where approximately
half of the local supermassive black hole mass density was formed
(Aird et al. 2010), indicating that bars are not directly responsible for
the buildup of at least half of the local supermassive black hole mass
density. Moreover, the paucity of bars at z > 1 (Kraljic, Bournaud
& Martig 2012; Simmons et al. 2014) indicates that bars were
probably not closely associated with AGN at z > 1 either. Therefore,
large-scale bars are likely not the primary fuelling mechanism for
supermassive black hole growth over cosmic time.

Recently, Cisternas et al. (2014) also searched for a bar–
AGN connection using a slightly smaller sample of 95 AGN in
COSMOS, with both photometric and spectroscopic redshifts at
0.15 < z < 0.84. Their results are broadly consistent with ours,
with neither a significant bar excess among AGN nor an AGN ex-
cess among barred galaxies at z > 0.4. However, Cisternas et al.
(2014) do suggest a marginal excess of bars among AGN (compared
to non-AGN) at z ∼ 0.3, which we do not detect in our results. This
difference is likely due to slight differences in bar identification,6 or
due to the differences in our matching of AGN and inactive galax-
ies: our samples are matched in five parameters, while Cisternas
et al. (2014) matched AGN and inactive galaxies in stellar mass and
redshift only. However, these are only small differences, and the
results of Cisternas et al. (2014) are consistent with our conclusion
that bars do not dominate AGN fuelling at z � 1.

However, before ruling out bars as the primary fuelling mech-
anism for supermassive black hole growth, one must ask if the
bar–AGN connection can be concealed if a bar dissolves while a
black hole is still accreting the bar-funnelled gas. In the present
analysis, we are assuming that the bar instantaneously funnels gas
to the central black hole upon its formation, and moreover, that there
is no delay in AGN activity.

The typical lifetimes of AGN and bars are uncertain. For AGN,
the current estimates range from 106 to 108 yr (Haehnelt & Rees
1993; Martini 2004, see Hanny’s Voorwerp in Keel et al. 2012
for an example of an AGN with a short lifetime). For bars, early
simulations of isolated disc galaxies by Bournaud & Combes (2002)
indicate that they are short-lived, with a lifetime of 1–2× 109 yr.
The latest simulations of isolated disc galaxies by Athanassoula,
Machado & Rodionov (2013), however, indicate that bars are long-
lived, with a lifetime as long as 1010 yr. This latter result is supported
by recent zoom-in cosmological simulations by Kraljic et al. (2012),
who show that bars formed at z ≈ 1 generally persist down to z = 0.
Despite the uncertainty in both AGN and bar lifetimes, even the
shortest bar lifetime is an order of magnitude larger than the longest
AGN lifetime, meaning that the bar–AGN connection is not likely
to be concealed by short bar lifetimes.

Small-scale, nuclear bars may also fuel supermassive black hole
growth. Unfortunately, we are unable to resolve such small struc-
tures in our images. However, work in the local universe shows
that nuclear bars are not more frequent in AGN hosts compared to
non-AGN hosts (Mulchaey & Regan 1997; Martini & Pogge 1999;
Regan & Mulchaey 1999; Erwin & Sparke 2002; Laine et al. 2002).
This result mirrors that of large-scale bars, suggesting that nuclear

6 The discrepancy in GZH bar fractions and those used by Cisternas et al.
(2014, which are similar to those of Sheth et al. 2008), has been explored
in Melvin et al. (2014); the most likely reason for this difference is that our
pbar threshold of 0.5 tends to identify strong bars, meaning that our work
concerns mainly strong bars. The bar fractions used by Cisternas et al. (2014)
are consistent with the total bar fractions of Sheth et al. (2008), meaning
that their work concerns both strong and weak bars.

bars do not fuel supermassive black hole growth at z ∼ 0 either.
Whether nuclear bars can fuel AGN at z > 0 will be left for future
work.

Interestingly, studies of the relative angle between AGN accretion
discs and host galaxy discs are consistent with our interpretation that
bars do not fuel AGN. If AGN accretion discs are fuelled by bar-
funnelled gas, then one would expect this gas to have an angular
momentum vector that is parallel to the bulk of the gaseous disc of
the galaxy. However, it appears that the accretion discs are randomly
orientated with respect to their host galaxies (Ulvestad & Wilson
1984; Kinney et al. 2000; Schmitt et al. 2002, 2003; Greenhill et al.
2009), which fits with our interpretation that bars do not directly
fuel AGN.

This misalignment could be interpreted even more generally –
there simply may not be a galactic-scale black hole fuelling mech-
anism. Instead, a collection of processes, including minor mergers
(e.g. Kaviraj 2014a,b), cooling flows (e.g. Best et al. 2007), and
multibody interactions with star clusters or clouds (e.g. Genzel,
Hollenbach & Townes 1994), may work to transport gas into the
vicinity of the black hole. This process, known as ‘stochastic fu-
elling’ (Sanders 1984), has been implemented in models that suc-
cessfully reproduce observations of low- to intermediate-luminosity
AGN (Hopkins & Hernquist 2006; Hopkins et al. 2014).

6 C O N C L U S I O N S

In this paper, we present a new study on the bar–AGN connection be-
yond the local universe. We combine Chandra and GZH data in the
AEGIS, COSMOS, and GOODS-S surveys to determine whether
AGN are preferentially fed by large-scale bars at 0.2 < z < 1.0.

Using GZH classifications and galaxy structural measurements,
we select non-merging, face-on disc galaxies that have sizes
large enough to accurately identify large-scale bars. From this
face-on disc sample, we identify AGN with X-ray luminosities
1042 erg s−1 < LX < 1044 erg s−1. We then use a novel multiparam-
eter technique to construct control samples of non-AGN galaxies ro-
bustly matched to the AGN hosts in stellar mass, rest-frame colour,
Sérsic index, effective radius, and redshift. With these samples, we
find no statistically significant excess of barred galaxies in AGN
hosts (and no excess of AGN in barred galaxies). Specifically, we
find that the bar fraction of the AGN sample cannot be greater than
twice the bar fraction of the control sample at 99.7 per cent confi-
dence. The simplest interpretation is that AGN are not preferentially
nor directly fed via large-scale bars at 0.2 < z < 1.0.
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