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Reduced models are derived for a strongly magnetized collisionless plasma at scales large
relatively to the electron thermal gyroradius, in two asymptotic regimes. One corresponds
to cold ions and the other to far sub-ion scales. By including the electron pressure dy-
namics, these models improve the Hall reduced MHD and the kinetic Alfvén wave model
of Boldyrev et al. (2013), respectively. We show that the two models can be obtained
either within a gyrofluid formalism (Brizard 1992) or as suitable weakly nonlinear limits
of the FLR-Landau fluid of Sulem & Passot (2015) which extends anisotropic Hall-
magnetohydrodynamics by retaining low-frequency kinetic effects. It is noticeable that,
at the far sub-ion scales, the simplifications originating from the gyroaveraging operators
in the gyrofluid formalism and leading to subdominant ion velocity and temperature
fluctuations, correspond, at the level of the FLR-Landau fluid, to cancellation between
hydrodynamic contributions and ion finite Larmor radius corrections. Energy conserva-
tion properties of the models are discussed and an explicit example of closure relation
leading to a model with a Hamiltonian structure is provided.

PACS codes: Authors should not enter PACS codes directly on the manuscript, as these
must be chosen during the online submission process and will then be added during the
typesetting process (see http://www.aip.org/pacs/ for the full list of PACS codes)

1. Introduction

With the aim of describing the dynamics of kinetic Alfvén waves (KAWs) that play
an important role in solar wind turbulence, the present paper is devoted to the devel-
opment of three-dimensional reduced fluid models suitable for finite-beta plasmas, in
regimes where magnetic fluctuations along the guide field are non negligible. When con-
centrating on scales large compared to the ion gyroradius, reduced models were derived
from two-fluid equations (Hazeltine et al. 1985; Fitzpatrick & Porcelli 2004; Schekochihin
et al. 2009; Tassi et al. 2010), possibly extended by retaining leading-order finite Larmor
radius (FLR) effects (Hsu et al. 1986). Differently, when considering a quasi-transverse
collisionless dynamics at scales comparable to or smaller than the ion thermal Larmor
radius, gyrofluid models have been constructed by considering the time evolution of a
few velocity moments derived from the gyrokinetic equation. As KAWs are low-frequency
waves, it seems suitable to turn to gyrofluids. Nevertheless, as most of such models were
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developed for fusion plasmas, they often assume negligible parallel magnetic field fluctu-
ations (as in, e.g., Snyder & Hammett (2001)). In contrast, spacecraft observations in the
solar wind show that parallel and transverse magnetic fluctuations become comparable
at small scales (Kiyani et al. 2013). This led us to use as a starting point the gyrofluid
model described by Brizard (1992), where parallel magnetic fluctuations are retained.
The approximations made in this model for computing finite Larmor radius (FLR) con-
tributions are discussed in Dorland & Hammett (1993), where it is argued that the effect
of gyro-averaging is overestimated, at least at the smallest scales. However, as in the
present paper we concentrate on two asymptotic regimes, corresponding to either cold
ions or to transverse scales much smaller than the ion thermal gyroradius but much
larger than the electron gyroradius, the difference between the gyroaveraging performed
by Brizard (1992) or by Dorland & Hammett (1993) becomes irrelevant.
The present paper is organized as follows. Starting in Section 2 with the gyrofluid

model of Brizard (1992), we consider in Section 3 its limiting formulation in the two
previously mentioned asymptotic regimes. In the cold-ion regime, the resulting model
can be viewed as a Hall reduced MHD model retaining dynamical equations for the par-
allel and perpendicular electron pressures. The derivation of the sub-ion scale model,
on the other hand, provides a systematic basis to the semi-phenomenological model of
Boldyrev et al. (2013), in a formulation not limited to isothermal electrons but including
a description of the electron pressure dynamics, which thus permits closures of the fluid
hierarchy retaining electron Landau damping, as in the approach initiated by Hammett
& Perkins (1990). Section 3 addresses the issue of energy conservation, together with
considerations on closure relations ensuring the Hamiltonian character of the system. In
Section 4, we construct a weakly-nonlinear version of the FLR-Landau fluid model pre-
sented in Sulem & Passot (2015). In Section 5, we show that the two derived asymptotic
gyrofluid models can be recovered from this reduced FLR-Landau fluid, when taking the
corresponding limits. It is noticeable that, in contrast with gyrofluids, the FLR-Landau
fluid does not involve a drift description and does not prescribe a priori pressure balance.
As a consequence, the present analysis provides a bridge between the gyrofluid formalism
and a generalized anisotropic Hall-MHD description where low-frequency kinetic effects
have been supplemented. Section 6 discusses the spectral validity range of the small-scale
model where deviation from kinetic theory can be mainly attributed to the neglect of
electron inertia. We conclude in Section 7.

2. The gyrofluid model

We consider as starting point a simplified version of the gyrokinetic equation presented
in Brizard (1989, 1992), where background magnetic inhomogeneities and curvature have
been neglected. It reads

∂Fα

∂t
+

c

B

[
J0δφ− v

c
J0δA‖ +

µα

qα

2

k⊥ρ⊥α

J1δBz , Fα

]
+ v

∂Fα

∂z

−
(

qα
mαc

∂

∂t
J0δA‖ +

qα
mα

∂

∂z
J0δφ+

µα

mα

2

k⊥ρ⊥α

∂

∂z
J1δBz −

qα
mαB

[J0δA‖ , J0δφ]

− µα

mαB

[
J0δA‖ ,

2

k⊥ρ⊥α

J1δBz

])
∂Fα

∂v
= 0,

(2.1)

where Fα(x, y, z, v, µα, t) is the gyrocenter distribution function for the particle species
α. For simplicity, we consider a plasma composed of electrons and by one single ionized
ion species, permeated by a constant magnetic guide field. The index α will then take the
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values i for ions and e for electrons. In particular, one has qi = e and qe = −e to indicate
the charge of the ions and of the electrons, respectively. On the other hand, we denote
as mi = M and me = m the ion and electron mass, respectively. The spatial Cartesian
coordinates x, y, z span a domain [0, Lx] × [0, Ly] × [0, Lz] where we impose periodic
boundary conditions, whereas v ∈ R, µα ∈ R, t ∈ R with t > 0 and µα > 0. We denote as
k = k⊥+k‖ the wave vector of a generic field in Fourier space, with k⊥ = kxx̂+kyŷ and
k‖ = kz ẑ indicating the components perpendicular and parallel to the strong background
magnetic guide field directed along the z axis. Based on the strong guide field ordering,
we assume kz/k⊥ ∼ δBz/B0 ∼ ǫ ≪ 1, with k⊥ the modulus of the perpendicular wave
vector, B0 the (constant) amplitude of the strong guide field component and δBz the
perturbation along the guide field direction. With such assumptions, the expression for
the magnetic field (up to terms of order ǫ2) is given by B(x, y, z, t) = ∇δA‖(x, y, z, t)×ẑ+
(B0+δBz(x, y, z, t))ẑ. The field δφ(x, y, z, t), on the other hand, denotes the electrostatic
potential.The coordinate v represents the velocity along the z direction. The expression
for the magnetic moment µα, on the other hand, is given, to lowest order, by µα =
mαv

2
⊥/2B0, with v⊥ indicating the modulus of the perpendicular velocity coordinate.

The constant c refers to the speed of light, whereas J0 and J1 are operators that, in
Fourier space, correspond to the multiplicative factors J0(k⊥ρ⊥α) and J1(k⊥ρ⊥α), with
J0 and J1 denoting the zeroth and first order Bessel functions of the first kind. Here,
ρ⊥α = v⊥/Ωα and Ωα = |qα|B0/(mαc) are the Larmor radius and the cyclotron frequency
associated with the species α, respectively. Finally, the canonical bracket of two functions
f and g is defined as [f, g] = ∂xf∂yg − ∂yf∂xg.

The distribution function of each gyrocenter species is assumed to be given by the sum

Fα(x, y, z, v, µα, t) = Feqα(v, µα) + f̃α(x, y, z, v, µα, t), (2.2)

of an equilibrium Maxwellian

Feqα(v, µα) = n0

(
mα

2πTα

)3/2

exp

(
−mαv

2

2Tα
− µαB0

Tα

)
(2.3)

where n0 is the uniform equilibrium density, and a perturbation f̃α so that f̃α/Feqα =
O(ǫ).

The scalar electromagnetic fields δφ, δA‖ and δBz are related to the perturbed distri-

bution functions f̃α by means of Poisson’s equation

∇2
⊥δφ = −4π

∑

α=e,i

qα

∫
dWα

(
J0f̃α + (J2

0 − 1)Feqα

qαδφ

Tα
+

µαB0

Tα
J0

2J1
k⊥ρ⊥α

Feqα

δBz

B0

)
,

(2.4)
and of the parallel and perpendicular components of Ampère’s law

∇2
⊥δA‖ = −4π

c

∑

α=e,i

qα

∫
dWα vJ0f̃α, (2.5)

and

∇⊥δBz × ẑ = 4πẑ×
∑

α=e,i

∫
dWα

(
µα

2J1
k⊥ρ⊥α

∇⊥f̃α + µαJ0
2J1

k⊥ρ⊥α
Feqα∇⊥

qαδφ

Tα

+
µ2
αB

Tα

(
2J1

k⊥ρ⊥α

)2

Feqα∇⊥
δBz

B0

)
.

(2.6)

We then introduce the following gyrofluid moments built from the perturbation of the
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distribution function:

Ñα =

∫
dWαf̃α, n0Ũα =

∫
dWαvf̃α, (2.7)

P̃‖
α
= mα

∫
dWα v2f̃α, P̃⊥α

=

∫
dWα µαB0f̃α, (2.8)

Q̃‖
α
= mα

∫
dWα v3f̃α − 3n0TαŨα, Q̃⊥α

=

∫
dWα µαB0vf̃α − n0TαŨα, (2.9)

mαR̃‖⊥α = mα

∫
dWα v2µαB0f̃α − TαP̃‖

α
− TαP̃⊥α

+ T 2
αÑα, (2.10)

mαR̃⊥⊥α =
1

2

∫
dWα µ2

αB
2
0 f̃α − 2TαP̃⊥α

+ T 2
αÑα, (2.11)

with the volume element dWα defined by dWα = (2πB0/mα)dµαdv. In Eqs. (2.7)-(2.11),

Ñα and Ũα indicate the gyrofluid density and parallel velocity, P̃‖
α
and P̃⊥α

the parallel

and perpendicular pressure, Q̃‖
α
and Q̃⊥α

the parallel and perpendicular components

of the parallel heat fluxes, and R̃‖⊥α and R̃⊥⊥α the perpendicular component of the
parallel and perpendicular energy-weighted pressure tensors, respectively. Furthermore,
n0 and Tα are the equilibrium density and temperature (assumed isotropic) of particles
of species α, respectively.

We then define the following non-dimensional quantities (denoted with overbars):

t̄ = Ωit, x̄ =
x

ρs
, ȳ =

y

ρs
, z̄ =

z

ρs
, k̄⊥ = k⊥ρs, k̄z = kzρs, ∆s =

ρ2s
2
∇2

⊥,

N̄α =
Ñα

n0
, Ūα =

Ũα

cs
, P̄‖

α
=

P̃‖
α

n0Tα
, P̄⊥α

=
P̃⊥α

n0Tα
,

Q̄‖
α
=

Q̃‖
α

n0Tαcs
, Q̄⊥α

=
Q̃⊥α

n0Tαcs
, R̄xα

= mα

R̃‖⊥α

n0T 2
α

, R̄
(⊥)
⊥α

= mα
R̃⊥⊥α

n0T 2
α

,

ϕ =
eδφ

Te
, A‖ =

δA‖

B0ρs
, Bz =

δBz

B0
.

(2.12)

We introduce the non-dimensional parameters:

τ =
Ti

Te
, δ =

√
m

M
, βα = 8π

n0Tα

B2
0

, (2.13)

and assume the ordering

x̄ ∼ ȳ ∼ z̄ ∼ k̄⊥ ∼ βe = O(1),

k̄‖

k̄⊥
∼ 1

t̄
∼ N̄α ∼ Ūα ∼ P̄‖

α
∼ P̄⊥α

∼ Q̄‖
α
∼ Q̄⊥α

∼ R̄xα
∼ R̄

(⊥)
⊥α

∼ ϕ ∼ A‖ ∼ Bz = O(ǫ) ≪ 1,

(2.14)

where cs =
√
Te/M is the sound speed and ρs = cs/Ωi the sonic Larmor radius. Note

that the normalization and the ordering differ from those adopted in Brizard (1992).

Taking moments of Eq.(2.1) leads to the set of normalized evolution equations (where
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the overbars were removed from the non-dimensional quantities)

∂Ne

∂t
+ [eδ

2∆sϕ,Ne] + δ2[∆se
δ2∆sϕ, P⊥e

−Ne]− [eδ
2∆sA‖, Ue]− [eδ

2∆sBz, P⊥e
]

− δ2[∆se
δ2∆sBz, P⊥e

−Ne] +
∂Ue

∂z
= 0, (2.15)

∂

∂t

(
δ2Ue − eδ

2∆sA‖

)
+ δ2[eδ

2∆sϕ,Ue]− [eδ
2∆sA‖, P‖

e
]− δ2[∆se

δ2∆sA‖, P⊥e
−Ne]

− δ2[eδ
2∆sBz, Ue]− δ2[Bz, Q⊥e

]− Γ0(δ
2∆ϕ

s , δ
2∆A

s )[ϕ,A‖]

+ (Γ0(δ
2∆B

s , δ
2∆A

s ) + δ2∆sΓ1(δ
2∆B

s , δ
2∆A

s ))[Bz, A‖]

+
∂

∂z

(
P‖

e
− eδ

2∆sϕ+ eδ
2∆sBz

)
= 0, (2.16)

∂P‖
e

∂t
+ [eδ

2∆sϕ, P‖
e
] + δ2[∆se

δ2∆sϕ, P⊥e
−Ne]− [A‖, Q‖

e
]− 3[eδ

2∆sA‖, Ue]

− [eδ
2∆sBz, P‖

e
+ P⊥e

−Ne]− δ2[∆se
δ2∆sBz, P⊥e

−Ne]− [Bz, R‖⊥e
]

+
∂

∂z

(
Q‖

e
+ 3Ue

)
= 0, (2.17)

∂P⊥e

∂t
+ [(1 + δ2∆s)e

δ2∆sϕ, P⊥e
] + δ2[∆s(2 + δ2∆s)e

δ2∆sϕ, P⊥e
−Ne]− [eδ

2∆sA‖, Ue]

− [A‖, Q⊥e
]− [(2 + δ2∆s)e

δ2∆sBz, 2P⊥e
−Ne]− δ2[∆s(3 + δ2∆s)e

δ2∆sBz, P⊥e
−Ne]

− 2[Bz, R⊥⊥e] +
∂

∂z
(Ue +Q⊥e

) = 0, (2.18)

∂Ni

∂t
+ [eτ∆sϕ,Ni] + τ [∆se

τ∆sϕ, P⊥i
−Ni]− [eτ∆sA‖, Ui] + τ [eτ∆sBz, P⊥i

]

+ τ [∆se
τ∆sBz, P⊥i

−Ni] +
∂Ui

∂z
= 0, (2.19)

∂

∂t

(
Ui + eτ∆sA‖

)
+ [eτ∆sϕ,Ui]− τ [eτ∆sA‖, P‖

i
]− τ [∆se

τ∆sA‖, P⊥i
−Ni]

+ τ [eτ∆sBz, Ui] + τ [Bz, Q⊥i
] + Γ0(τ∆

ϕ
s , τ∆

A
s )[ϕ,A‖]

+ τ(Γ0(τ∆
B
s , τ∆

A
s ) + τ∆sΓ1(δ

2∆B
s , δ

2∆A
s ))[Bz, A‖] +

∂

∂z

(
τP‖

i
+ eτ∆sϕ+ eτ∆sBz

)
= 0,

(2.20)

∂P‖
i

∂t
+ [eτ∆sϕ, P‖

i
] + τ [∆se

τ∆sϕ, P⊥i
−Ni]− [A‖, Q‖

i
]− 3[eτ∆sA‖, Ui]

+ τ [eτ∆sBz, P‖
i
+ P⊥i

−Ni] + τ2[∆se
τ∆sBz, P⊥i

−Ni]

+ τ [Bz, R‖⊥i] +
∂

∂z

(
Q‖

i
+ 3Ui

)
= 0, (2.21)

∂P⊥i

∂t
+ [(1 + τ∆s)e

τ∆sϕ, P⊥i
] + τ [∆s(2 + τ∆s)e

τ∆sϕ, P⊥i
−Ni]− [eτ∆sA‖, Ui]

− [A‖, Q⊥i
] + τ [(2 + τ∆s)e

τ∆sBz, 2P⊥i
−Ni] + τ [∆s(3 + τ∆s)e

τ∆sBz, P⊥i
−Ni]

+ 2τ [Bz, R⊥⊥i] +
∂

∂z
(Ui +Q⊥i

) = 0. (2.22)

for the first four electron and ion gyrofluid moments, where terms of order up to ǫ2 have
been retained, while FLR effects have been estimated only up to leading order in the
terms involving heat fluxes and energy-weighted pressures. The operators Γ0 and Γ1 are
defined as Γ0(z, z

′) = I0(zz
′) exp(z + z′) and Γ1(z, z

′) = I1(zz
′) exp(z + z′), where In
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is the modified Bessel function of the first kind of order n. Furthermore, the symbols
∆B

s ,∆
A
s and ∆ϕ

s refer to the Laplacian operator ∆s acting on Bz, A‖ and ϕ, respectively.
Equations (2.15)-(2.22) are supplemented by Poisson’s equation

v2A
c2

∇2
⊥ϕ = eδ

2∆sNe + δ2∆se
δ2∆s(P⊥e

−Ne)− (I0(2δ
2∆s)− 1)e2δ

2∆sϕ

+ (I0(2δ
2∆s) + I1(2δ

2∆s))e
2δ2∆sBz − eτ∆sNi − τ∆se

τ∆s(P⊥i
−Ni)

− (I0(2τ∆s)e
2τ∆s − 1)

ϕ

τ
− (I0(2τ∆s) + I1(2τ∆s))e

2τ∆sBz,

(2.23)

where vA = B0/(4πMn0)
1/2 is the Alfvén speed at equilibrium, and by the parallel and

perpendicular components of Ampère’s law which yield

∇2
⊥A‖ =

βe

2
(eδ

2∆sUe − eτ∆sUi), (2.24)

and

Bz = −βe

2

(
eδ

2∆sP⊥e
+ δ2∆se

δ2∆s(P⊥e
−Ne)− (I0(2δ

2∆s) + I1(2δ
2∆s))e

2δ2∆sϕ

+2(I0(2δ
2∆s) + I1(2δ

2∆s))e
2δ2∆sBz + τeτ∆sP⊥i

+ τ2∆se
τ∆s(P⊥i

−Ni)

+(I0(2τ∆s) + I1(2τ∆s))e
2τ∆sϕ+ 2τ(I0(2τ∆s) + I1(2τ∆s))e

2τ∆sBz

)
.

(2.25)

Equations (2.23), (2.24) and (2.25), obtained from Eqs. (2.4), (2.5) and (2.6) respectively,
provide relations that permit the fields ϕ , A‖ and Bz to be expressed in terms of the
eight gyrofluid moments Ne, Ni, Ue, Ui, P‖

e
, P‖

i
, P⊥e

and P⊥i
.

3. Two asymptotic regimes

The complexity of the gyrofluid model discussed above suggests to pay attention to two
asymptotic regimes where drastic simplifications take place in the model formulation.

3.1. The cold-ion limit

We here consider the limit of negligible electron inertia (δ ≪ 1), cold ions (τ ≪ 1) and
non-relativistic Alfvén speed (vA/c ≪ 1). Introducing the constant b = (βe/2)(1 + βe)

−1

and the parallel gradient operator

∇‖ =
∂

∂z
− [A‖, ·], (3.1)
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Eqs. (2.15)-(2.22), (2.23), (2.24) and (2.25) become

∂Ne

∂t
+ [ϕ,Ne]− [Bz, P⊥e

] +∇‖Ue = 0, (3.2)

∂A‖

∂t
−∇‖

(
P‖

e
− ϕ+Bz

)
= 0, (3.3)

∂P‖
e

∂t
+ [ϕ, P‖

e
]− [Bz, P‖

e
]− [Bz, P⊥e

] + [Bz, Ne]− [Bz, R‖⊥e
] +∇‖

(
Q‖

e
+ 3Ue

)
= 0,

(3.4)

∂P⊥e

∂t
+ [ϕ, P⊥e

]− 4[Bz, P⊥e
] + 2[Bz, Ne]− 2[Bz, R⊥⊥e] +∇‖ (Ue +Q⊥e

) = 0, (3.5)

∂Ni

∂t
+ [ϕ,Ni] +∇‖Ui = 0, (3.6)

∂

∂t

(
Ui +A‖

)
+ [ϕ,Ui] +∇‖ϕ = 0, (3.7)

∂P‖
i

∂t
+ [ϕ, P‖

i
] +∇‖

(
Q‖

i
+ 3Ui

)
= 0, (3.8)

∂P⊥i

∂t
+ [ϕ, P⊥i

] +∇‖ (Ui +Q⊥i
) = 0, (3.9)

∇2
⊥ϕ = Ne −Ni, (3.10)

∇2
⊥A‖ =

βe

2
(Ue − Ui), (3.11)

Bz = −bP⊥e
. (3.12)

Provided that closures for heat fluxes and fourth order moments are given, the system
(3.2)-(3.12) yields a model for finite electron beta plasmas, accounting for parallel mag-
netic perturbations and valid at scales larger than the electron thermal gyroradius, in
the limit of low ion temperature.

3.2. Sub-ion scale limit

We consider in this section a different situation, where we still have vA/c ≪ 1 and
2δ2∆s = ρ2e∇2

⊥ ≪ 1, with ρe indicating the electron thermal gyroradius, but where
scales are now much smaller than the ion thermal radius ρi, i.e. 2τ∆s = ρ2i∇2

⊥ ≫ 1.
In order to derive a model in this sub-ion scale limit, it is convenient to introduce an
additional dimensionless parameter µ ≪ 1. We then impose the following subsidiary
ordering between the non-dimensional quantities:

∂

∂x
∼ ∂

∂y
= O(1/µ),

τ ∼ βe = O(1),

∂

∂t
= O(ǫ/µ),

∂

∂z
∼ Uα ∼ Q⊥α

∼ Q‖
α
= O(ǫ),

Nα ∼ P‖
α
∼ P⊥α

∼ Rxα
∼ R

(⊥)
⊥α

∼ ϕ ∼ Bz = O(ǫµ),

A‖ = O(ǫµ2).

(3.13)

As a result of such an ordering and of the assumption 2δ2∆s ≪ 1, one still obtains from
Eqs. (2.15)-(2.18) the evolution equations (3.2)-(3.5) for the four electron moments, as
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in Sec. 3.1. On the other hand, in the sub-ion scale limit, Poisson’s equation (2.23) yields

ϕ = −τNe − τBz, (3.14)

whereas the parallel and perpendicular Ampère’s law (2.24) and (2.25) give

∇2
⊥A‖ =

βe

2
Ue, (3.15)

and

Bz = b(ϕ− P⊥e
), (3.16)

respectively.

From Eqs. (3.14) and (3.16) one obtains the relations

ϕ = − τ

1 + τb
Ne +

τb

1 + τb
P⊥e

, Bz = − τb

1 + τb
Ne −

b

1 + τb
P⊥e

, (3.17)

which, together with Eq. (3.15), permit, in this regime, electromagnetic fluctuations to
be expressed in terms of gyrofluid moments. Note that evolution equations for the ion
moments do not enter this model.

Thus, Eqs. (3.2)-(3.5), together with Eqs. (3.15) and (3.17), yield a set of equations
applicable to plasmas with finite beta for both ions and electrons, accounting for parallel
magnetic perturbations and valid on scales larger than the electron thermal gyroradius
but smaller than the ion thermal gyroradius.

3.3. Energy conservation

The two asymptotic models derived in the previous subsections are not closed because
expressions for the electron and ion heat fluxes Q‖

e
, Q⊥e

, Q‖
i
, Q⊥i

as well as for the elec-
tron energy-weighted pressure tensor R‖⊥e

and R⊥⊥e, in terms of lower order moments,
are not provided. Because no dissipative effect has been included in the derivation of the
models, it is important to verify that, unless dissipation is introduced through closure
relations on the heat fluxes and energy-weighted pressure tensors, both systems pos-
sess conserved energy functionals. For this purpose, it is convenient to rewrite the two
models replacing the pressures in favor of the parallel and perpendicular temperature
fluctuations, defined as T‖

α
= P‖

α
−Nα and T⊥α

= P⊥α
−Nα, respectively, for α = e, i.
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The cold-ion model then reads

∂Ne

∂t
+ [ϕ,Ne] +∇‖Ue = 0, (3.18)

∂A‖

∂t
+ [ϕ,A‖]−∇‖

(
T‖

e
− bT⊥e

+ (1− b)Ne − ϕ
)
= 0, (3.19)

∂T‖
e

∂t
+ [ϕ, T‖

e
] + b[T⊥e

, T‖
e
] + b[Ne, T‖

e
]

+ b[T⊥e
, R‖⊥e

] + b[Ne, R‖⊥e
] +∇‖

(
Q‖

e
+ 2Ue

)
= 0, (3.20)

∂T⊥e

∂t
+ [ϕ, T⊥e

]− 2b[T⊥e
, Ne] + 2b[T⊥e

, R⊥⊥e] + 2b[Ne, R⊥⊥e] +∇‖Q⊥e
= 0, (3.21)

∂Ni

∂t
+ [ϕ,Ni] +∇‖Ui = 0, (3.22)

∂

∂t

(
Ui +A‖

)
+ [ϕ,Ui] +∇‖ϕ = 0, (3.23)

∂T‖
i

∂t
+ [ϕ, T‖

i
] +∇‖

(
Q‖

i
+ 2Ui

)
= 0, (3.24)

∂T⊥i

∂t
+ [ϕ, T⊥i

] +∇‖Q⊥i
= 0, (3.25)

∇2
⊥ϕ = Ne −Ni, (3.26)

∇2
⊥A‖ =

b

1− 2b
(Ue − Ui), (3.27)

where we also made use of relation (3.12) to replace Bz in favor of P⊥e
.

If we denote with D = A‖+Ui the ion parallel canonical momentum, and consider the
energy functional

H =
1

2

∫
d3x

(
(1− b)N2

e +
T 2
‖
e

2
+ (1− b)T 2

⊥e
− 2bNeT⊥e

− ϕ(Ne −Ni)

−A‖(Ue − Ui) +A2
‖ +D2 − 2A‖D

)

=
1

2

∫
d3x

(
N2

e +
T 2
‖
e

2
+ T 2

⊥e
− bP 2

⊥e
+ |∇ϕ|2 + 1− 2b

b
|∇A‖|2 + U2

i

)
, (3.28)

we obtain, from Eqs.(3.18)-(3.27), the following relation

Ḣ =

∫
d3x

(
−T‖

e
∇‖Q‖

e
+ bP⊥e

∇‖Q⊥e
− T⊥e

∇‖Q⊥e

−(b/2)T‖
e
[P⊥e

, R‖⊥e
]− 2bT⊥e

[P⊥e
, R⊥⊥e]

)
,

(3.29)

where a dot indicates time derivative. It follows in particular that, if the closures on the
heat flux and energy-weighted pressure tensor fluctuations are such that the integral on
the right-hand side of Eq. (3.29) vanishes, the energy functional H is conserved.

We remark that the functional H consists in the sum of terms involving free energy
fluctuations (first three terms on the third line of Eq. (3.28)), energy due to parallel and
perpendicular magnetic perturbations (fourth and sixth term, respectively), energy due
to electrostatic fluctuations (fifth term) and parallel ion kinetic energy (seventh term).

The expression for the functional H can be constructed starting from the expression
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of the conserved energy functional for the gyrokinetic equations

∂gα
∂t

+
c

B

[
δφ− v

c
δA‖ +

µα

qα
δBz , gα

]
+v

∂

∂z

(
g̃α +

qα
Tα

(
δφ− v

c
δA‖ +

µα

qα
δBz

)
Feqα

)
= 0,

(3.30)

where g̃α = f̃α + (qα/Tα)(v/c)FeqαA‖, for α = e, i and where Eqs. (3.10)-(3.12) have to
be used to determine the electromagnetic perturbations δφ, δA‖ and δBz.

Equation (3.30) is obtained from the original gyrokinetic equation (2.1) by assuming

f̃α/Feqα = O(ǫ), applying the ordering (2.14) and retaining only terms of order ǫ2. The
gyroaveraging operators have also been approximated by J0 ∼ 1 and J1 ∼ k⊥ρ⊥α/2,
which can be seen a posteriori to be consistent with the asymptotic limits τ ≪ 1 and
δ ≪ 1 (the model (3.18)-(3.27) could indeed be alternatively derived directly by taking
moments of Eqs. (3.30) and then applying the limit τ ≪ 1, δ ≪ 1 to the resulting
equations). The system composed by Eqs. (3.30), (3.10), (3.11) and (3.12) admits the
conserved energy functional

H =
1

2

∑

α=e,i

∫
d3xdWα

(
Tα

g̃2α
Feqα

+ qα

(
δφ− v

c
δA‖ +

µα

qα
δBz

)
g̃α

)
. (3.31)

One can then suppose that the perturbed functions g̃α are amenable to the following ex-
pansion in terms of Hermite-Laguerre polynomials, truncated to account for the dynam-
ical variables present in the fluid model, that is, density, canonical momentum, parallel
and perpendicular temperatures:

g̃α = Feqα

[
Ñα

n0
+

(
Ũα

vtα
+

qαA‖

mαvtαc

)
v

vtα
+

1

2

T̃‖
α

Tα

(
v2

v2tα
− 1

)
− T̃⊥α

Tα

(
1− µαB

Tα

)]
,

(3.32)
with vtα =

√
Tα/mα. One can insert expression (3.32) into the functional (3.31) and then

take the limit τ ≪ 1 and δ ≪ 1. The resulting functional is namely (3.28). Therefore the
origin of the expression for the functional (3.28) is explained by the consistency with the
conserved energy functional of the underlying gyrokinetic model. A similar procedure
was used to establish energy conservation theorems for gyrofluid models in Scott (2010).

With regard to the second model, valid for the sub-ionic scales, its equations can be
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rewritten as

∂Ne

∂t
+ [ϕ,Ne] +

τ

1 + τb
[Ne, T⊥e

] +∇‖Ue = 0, (3.33)

∂A‖

∂t
−∇‖

(
T‖

e
− b

1 + τb
T⊥e

+
1− b

1 + τb
Ne − ϕ

)
= 0, (3.34)

∂T‖
e

∂t
+ [ϕ, T‖

e
] +

b

1 + τb
[T⊥e

, T‖
e
] + b

1 + τ

1 + τb
[Ne, T‖

e
]

+
b

1 + τb
[T⊥e

, R‖⊥e
] + b

1 + τ

1 + τb
[Ne, R‖⊥e

] +∇‖

(
Q‖

e
+ 2Ue

)
= 0, (3.35)

∂T⊥e

∂t
+ [ϕ, T⊥e

]− 3τb+ 2b

1 + τb
[T⊥e

, Ne]

+
2b

1 + τb
[T⊥e

, R⊥⊥e] +
2b(1 + τ)

1 + τb
[Ne, R⊥⊥e] +∇‖Q⊥e

= 0, (3.36)

ϕ = τ
b− 1

1 + τb
Ne +

τb

1 + τb
T⊥e

, (3.37)

∇2
⊥A‖ =

b

1− 2b
Ue, (3.38)

where we made use of Eq. (3.17) and of the relation P⊥e
= T⊥e

+ Ne to express Bz in
terms of Ne and T⊥e

.
By means of a procedure analogous to that adopted for the cold-ion model, one obtains

that the energy functional for the system (3.33)-(3.38) reads

H =
1

2

∫
d3x

(
N2

e +
1− 2b

2b
|∇A‖|2 +

T 2
‖
e

2
+ T 2

⊥e
− ϕNe −

τb

1 + τb
NeP⊥e

− b

1 + τb
P 2
⊥e

)
,

(3.39)
and that its time evolution is governed by

Ḣ =

∫
d3x

(
T‖

e

(
1

2
[Bz, R‖⊥e

]−∇‖Q‖
e

)

+

(
T⊥e

− τb

1 + τb
Ne −

b

1 + τb
P⊥e

)(
2[Bz, R⊥⊥e]−∇‖Q⊥e

))
. (3.40)

Also in this case, depending on the closure relation, the functional H can be conserved.
A natural question that arises in connection with the energy conservation properties

of the systems, concerns the existence of a Hamiltonian structure for such models. Typ-
ically, in the absence of dissipative terms, fluid models for plasmas expressed in terms
of Eulerian variables, possess a noncanonical Hamiltonian structure (see, e.g. Morrison
(1998)). In particular, reduced drift or gyrofluids models in their two-dimensional limit
possess noncanonical Poisson brackets of Lie-Poisson type (see, e.g. Thiffeault & Mor-
rison (2000); Waelbroeck & Tassi (2012); Hazeltine et al. (1987)) and the extension of
the Hamiltonian structure to three dimensions, in the limit kz/k⊥ ≪ 1, can be obtained
following the prescription of Tassi et al. (2010). Clearly, the possibility for the existence
of a Hamiltonian structure depends on the adopted closures. A systematic identification
of all possible closures leading to Hamiltonian models with a Lie-Poisson bracket lies
outside the scope of this paper, but we note that, for example, by choosing the closure

Q‖
e
= Q⊥e

= Q‖
i
= Q⊥i

= 0, (3.41)

R⊥⊥e = 0, R‖⊥e
= − 1

1 + 2b
T‖

e
. (3.42)
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the cold-ion model acquires a Hamiltonian structure consisting of the functional (3.28)
as Hamiltonian with the Poisson bracket

{F,G} = {F,G}e − {F,G}i, (3.43)

where

{F,G}e =
∫

d3x

(
Ne

(
[FNe

, GNe
] + 2

1 + b

1 + 2b
[FT‖

e

, GT‖
e

]

)

+A‖

(
[FNe

, GA‖
] + [FA‖

, GNe
] + 2([FA‖

, GT‖
e

] + [FT‖
e

, GA‖
])
)
+

T‖
e

(
[FNe

, GT‖
e

] + [FT‖
e

, GNe
] +

1 + 3b

1 + 2b
[FT‖

e

, GT‖
e

]

)

+T⊥e

(
[FNe

, GT⊥e
] + [FT⊥e

, GNe
]− 2b

1 + 2b
[FT‖

e

, GT‖
e

] +
1 + b

b
[FT⊥e

, GT⊥e
]

)

+FNe

∂

∂z
GA‖

+ FA‖

∂

∂z
GNe

+ 2FA‖

∂

∂z
GT‖

e

+ 2FT‖
e

∂

∂z
GA‖

)
,

(3.44)

and

{F,G}i =
∫

d3x (Ni[FNi
, GNi

]

+D([FNi
, GD] + [FD, GNi

] + 2([FD, GT‖
i

] + [FT‖
i

, GD]))

+T‖
i
([FNi

, GT‖
i

] + [FT‖
i

, GNi
] + 2[FT‖

i

, GT‖
i

])

+T⊥i
([FNi

, GT⊥i
] + [FT⊥i

, GNi
])

+FNi

∂

∂z
GD + FD

∂

∂z
GNi

+ 2FT‖
i

∂

∂z
GD + 2FD

∂

∂z
GT‖

i

)
.

(3.45)

Here, the subscripts on functionals indicate functional derivatives. The bracket (3.43) is
the direct sum of two Poisson brackets, acting on electron and ion moments, respectively.
The coupling in the dynamics, on the other hand, comes from the Hamiltonian (3.28). It
can be verified that the two operations (3.44) and (3.45) satisfy bilinearity, antisymmetry
as well as Leibniz and Jacobi identities.

3.4. Particle moment formulation

The cold-ion model (3.2)-(3.12) and the sub-ion scale model consisting of Eqs. (3.2)-
(3.5), together with Eqs. (3.15) and (3.17), are written in terms of gyrofluid moments.
For a more complete physical interpretation, it is however important to determine their
expression also in terms of particle moments. This is accomplished in the following Secs.
3.4.1 and 3.4.2.

3.4.1. Cold-ion limit

In the limit of cold ions and for scales larger than the electron thermal gyroradius,
the transformation between the gyrofluid and the particle moments is given by Brizard



Reduced models accounting for parallel magnetic perturbations 13

(1992) as

Ne = ne − B̂z, Ue = ue, (3.46)

P‖
e
= p‖

e
− B̂z, P⊥e

= p⊥e
− 2B̂z, (3.47)

Ni = ni − B̂z −∇2
⊥ϕ̂, Ui = ui, (3.48)

P‖
i
= p‖

i
− B̂z −∇2

⊥ϕ̂, P⊥i
= p⊥i

− 2B̂z − 2∇2
⊥ϕ̂, (3.49)

Q‖
α
= q‖

α
, Q⊥α

= q⊥α
, (3.50)

Rxα
= rxα

− 2B̂z, R
(⊥)
⊥α

= r
(⊥)
⊥α

− 6B̂z, (3.51)

for α = e, i. In Eqs. (3.46)-(3.51), the quantities nα, uα, p‖α
, p⊥α

, q‖α
, q⊥α

, rxα
and r

(⊥)
⊥α

,
for α = e, i, indicate the moments with respect to the perturbed particle distribution
function. We indicated with a hat the electromagnetic fluctuations expressed in terms of
the particle moments, so that, for instance, Bz(P⊥e

) = B̂z(p⊥e
). Transformations (3.46)-

(3.51) are consistent with the asymptotic limits and the assumptions made to derive Eqs.
(3.2)-(3.12).

In terms of the particle moments, the system (3.2)-(3.12) can be written (after sup-
pression of the hats) as

d

dt
(ne −Bz) +∇‖ue = 0, (3.52)

dA‖

dt
−∇‖p‖

e
+

∂ϕ

∂z
= 0, (3.53)

d

dt
(p‖

e
−Bz)− [Bz, p‖

e
] + [Bz, ne]− [Bz, r‖⊥e] +∇‖

(
q‖

e
+ 3ue

)
= 0, (3.54)

d

dt
(p⊥e

− 2Bz) + 2[Bz, ne]− 2[Bz, r⊥⊥e] +∇‖ (ue + q⊥e
) = 0, (3.55)

d

dt
(ni −Bz −∇2

⊥ϕ) +∇‖ui = 0, (3.56)

d

dt

(
ui +A‖

)
+

∂ϕ

∂z
= 0, (3.57)

d

dt
(p‖

i
−Bz −∇2

⊥ϕ) +∇‖

(
q‖

i
+ 3ui

)
= 0, (3.58)

d

dt
(p⊥i

− 2Bz − 2∇2
⊥ϕ) +∇‖ (ui + q⊥i

) = 0, (3.59)

ne = ni, (3.60)

∇2
⊥A‖ =

βe

2
(ue − ui), (3.61)

Bz = −βe

2
p⊥e

, (3.62)

where we introduced the operator

d

dt
=

∂

∂t
+ [ϕ, ]. (3.63)

We remark that, in terms of the particle perturbed moments, Eqs. (3.60) and (3.62) take
the familiar form of the quasi-neutrality condition and of the balance between magnetic
and pressure perturbations (in this case, the latter are restricted to the electron pressure
because of the cold ion limit). In particular, from Eqs. (3.60), (3.61), (3.52) and (3.56),
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one gets

d∇2
⊥ϕ

dt
+

2

βe
∇‖∇2

⊥A‖ = 0, (3.64)

which corresponds to the usual vorticity equation of reduced magnetohydrodynamics.
By imposing isotropic and isothermal electrons, i.e. p‖

e
= p⊥e

= ne = −(2/βe)Bz, one
obtains, from Eqs. (3.52), (3.53) and (3.57), the set of equations

dBz

dt
− βe

2 + βe
∇‖

(
2

βe
∇2

⊥A‖ + ui

)
= 0, (3.65)

dA‖

dt
+

2

βe
∇‖Bz +

∂ϕ

∂z
= 0, (3.66)

dui

dt
− 2

βe
∇‖Bz = 0, (3.67)

which, together with the vorticity equation (3.64), forms the closed system of Hall reduced
MHD (Schekochihin et al. 2009). From such system, if the evolution equation (3.67) is
replaced by ui = 0, one recovers the three-field low-ion beta model of Boldyrev et al.

(2013). On the other hand, Eqs. (3.52) and (3.53) are compatible with Eqs. (107) and
(106) of Boldyrev et al. (2013), and the model (3.52)-(3.62) generalizes the electron
dynamics to account for anisotropic pressure evolution, when compared to the models of
Boldyrev et al. (2013). However, the ion dynamic is treated in a different way, for in our
case the cold ion, low ion-beta limit is taken.

3.4.2. Sub-ion limit

In this regime, for the electron moments, the mapping between gyrofluid and particle
moments is the same as in Sec. 3.4.1 and is thus given by

Ne = ne − B̂z, Ue = ue, (3.68)

P‖
e
= p‖

e
− B̂z, P⊥e

= p⊥e
− 2B̂z, (3.69)

Q‖
e
= q‖

e
, Q⊥e

= q⊥e
, (3.70)

Rxe
= rxe

− 2B̂z, R
(⊥)
⊥e

= r
(⊥)
⊥e

− 6B̂z, (3.71)

When transformed in terms of particle moments, the sub-ion model becomes

d

dt
(ne −Bz)− [Bz, p⊥e

] +∇‖ue = 0, (3.72)

dA‖

dt
−∇‖p‖

e
+

∂ϕ

∂z
= 0, (3.73)

d

dt
(p‖

e
−Bz)− [Bz, p‖

e
]− [Bz, p⊥e

] + [Bz, ne]− [Bz, r‖⊥e] +∇‖

(
q‖

e
+ 3ue

)
= 0,

(3.74)

d

dt
(p⊥e

− 2Bz)− 4[Bz, p⊥e
] + 2[Bz, ne]− 2[Bz, r⊥⊥e] +∇‖ (ue + q⊥e

) = 0, (3.75)

ϕ = −τne, (3.76)

∇2
⊥A‖ =

βe

2
ue, (3.77)

Bz = −τ
βe

2
ne −

βe

2
p⊥e

. (3.78)
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Note that the electromagnetic fluctuations ϕ, A‖ and Bz are entirely expressed in terms of
electron particle moments and agree with those of Schekochihin et al. (2009) and Boldyrev
et al. (2013). The evolution equations for the electron moments, on the other hand,
remain unchanged with respect to those of the previous section because in both cases
we assumed δ2∆s ≪ 1. Furthermore, if instead of Eqs. (3.74) and (3.75), an isothermal
isotropic electron pressure (p‖

e
= p⊥e

= ne) is prescribed, the system reduces to

(
1 + (1 + τ)

βe

2

)
∂ne

∂t
+

2

βe
∇‖∇2

⊥A‖ = 0, (3.79)

∂A‖

∂t
− (1 + τ)∇‖ne = 0, (3.80)

which corresponds, although written with a different normalization, to the model of
Boldyrev et al. (2013) for the sub-proton scales.

We remark that, for the ions, the transformation from gyrofluid to particle moments,
in the limit k⊥ρi ≫ 1 is not invertible and yields, to leading order,

ni = p‖
i
= p⊥i

= −ϕ

τ
, (3.81)

ui = 0 (3.82)

which corresponds to an isothermal isotropic fluid with a Boltzmann response to the
potential fluctuations and with negligible parallel ion velocity. This corresponds to the
hypotheses adopted in Boldyrev et al. (2013).

4. A reduced FLR-Landau fluid model

The starting point is provided by the FLR-Landau fluid model discussed in Section 5 of
Sulem & Passot (2015), considered at the lowest relevant order relatively to the ordering
defined in Eq. (2.14), and written in a non-dimensional form, using the units defined by
Eqs. (2.12). In contrast with the previous section, it is not convenient here to separate
everywhere the equilibrium profiles from the fluctuations. We thus keep the original
notations of the various variables and indicate, when needed, fluctuations by means of
the symbol δ. Furthermore, we use the notation u‖α for the parallel (hydrodynamic)
velocity of particles of species α, which was referred to as uα in the previous sections.
When neglecting electron inertia, the electron velocity equation leads to

u⊥e = E× b̂− 1

n
b̂×∇ · pe, (4.1)

where b̂ denotes the unit vector in the direction of the ambient field, and n is the density
of both the ions and the electrons, due to electric quasi-neutrality.
Within the ordering defined by Eqs. (2.14), and assuming isotropic equilibrium pres-

sures and scales large compared with the electron gyroradius (which makes electron finite
Larmor radius effect negligible) one has

∇ · pe = ∇p⊥e +∇‖(p‖e − p⊥e)b̂, (4.2)

It follows that, to leading order, (∇ · pe)⊥ = ∇⊥p⊥e and b̂ · (∇ · pe) = ∇‖p‖e, where, in
the present asymptotics, transverse differential operators are defined with respect to the
guide field. Similarly, one can approximate b̂×∇ by ẑ×∇, which gives

u⊥e = ẑ×∇(ϕ− p⊥e). (4.3)
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From Faraday equation and Ohm’s law (E = −ue×B−(1/n)∇·pe), one has to leading
order

dBz

dt
− [p⊥e, Bz]−∇‖u‖e +∇ · ue − [p⊥e, n] = 0, (4.4)

where, when not differently specified, the parallel component of the various vector fields
and their z-components can be identified. In order to eliminate ∇ · ue, it is convenient
to use the electron continuity equation

dn

dt
− [p⊥e, n] +∇ · ue = 0. (4.5)

One gets

d

dt
(n−Bz) +∇‖u‖e − [Bz, p⊥e] = 0. (4.6)

The equation for the electron pressures read

∂tp‖e + ue · ∇p‖e + p‖e∇ · ue + 2p‖eb̂ · ∇ue · b̂+ (∇ · qe):τ = 0 (4.7)

∂tp⊥e + ue · ∇p⊥e + 2p⊥e∇ · ue − p⊥eb̂ · ∇ue · b̂+
1

2
(∇ · qe):n = 0, (4.8)

where τ = b̂⊗ b̂ and n = I− τ . To leading order, one can write

(∇ · qe) : τ = ∇‖q‖e +∇ · S‖
⊥e (4.9)

1

2
(∇ · qe) : n = ∇‖q⊥e +∇ · S⊥

⊥r. (4.10)

Here, the nongyrotropic heat fluxes contributions, described by the vectors S
‖
⊥e and S⊥

⊥r,
are estimated for scales much larger than the electron gyroscales by Eqs. (3.8) and (3.9)
of Sulem & Passot (2015), in the form

S
‖
⊥e = − 1

B
b̂× (p⊥e∇T‖e +∇r̃‖⊥e) (4.11)

S⊥
⊥e = − 2

B
b̂× (p⊥e

∇T⊥e +∇r̃⊥⊥e), (4.12)

where, at the order of the present analysis, the fluctuations of the magnetic field origi-
nating from the local Larmor radius, are to be retained. Furthermore, the contribution of
the gyrotropic fourth-order cumulant r̃‖⊥e , not retained in Eq. (3.7) of Sulem & Passot
(2015), turns out to be potentially relevant, for example within the closure model defined
by Eqs. (3.24)-(3.27) and (3.17)-(3.19) of the above reference, where r̃‖⊥e scales like M/m
in the units of that paper. Differently, within this framework, r̃⊥⊥e is negligible.

Combining with the equation for Bz, one gets

d

dt
(p‖e −Bz)− [Bz, p⊥e]− [Bz, p‖e − n+ r̃‖⊥e] +∇‖(3u‖e + q‖e) = 0 (4.13)

d

dt
(p⊥e − 2Bz)− 4[Bz, p⊥e] + 2[Bz, n− r̃⊥⊥e] +∇‖(u‖e + q⊥e) = 0. (4.14)

Ampère law directly gives that, to leading order,

u‖e = u‖i +
2

βe
∇2

⊥A‖. (4.15)

Equating the expressions of the electric field given by Ohm’s law and Faraday equation
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(taken in the form E = −∇ϕ− ∂tA), leads for the parallel component to

dA‖

dt
−∇‖p‖e + ∂zϕ = 0, (4.16)

and for the perpendicular one to

−∇⊥ϕ = ẑ×
(
ui −

2

βe
∇×B

)
−∇⊥p⊥e, (4.17)

or when writing u⊥i = −∇⊥χc +∇⊥ × (χsẑ) and taking the transverse divergence,

∇2
⊥(ϕ+ χs −

2

βe
Bz − p⊥e) = 0. (4.18)

.
Note that the quantities ϕ, Bz and A‖ determine the full electromagnetic field, as the

condition B = ∇ × A, together with the gauge condition ∇ · A = 0 gives ∇2
⊥A⊥ =

ẑ×∇Bz − ∂z∇A‖.
One now turns to the equation for the ion velocity where the electric field has been

expressed using Ohm’s law. It reads

D(i)

Dt
ui +

1

n
∇ · (p(G) +Π)− 2

βe

1

n
(∇×B)×B = 0, (4.19)

where D(i)/Dt = ∂t+ui ·∇, while p(G) denotes the total gyrotropic pressure tensor and
Π the non-gyrotropic contribution to the ion pressure. One writes ∇ ·Π = ∇ · (−An+
Bǫ ·b+b⊗Π‖+Π‖⊗b), where n = I−b⊗b. The scalar quantities A and B, together
with the vector Π‖, are defined by Eqs. (5.7)-(5.9) of Sulem & Passot (2015).

The equation for u‖i is obtained by estimating Π‖ from Eq. (5.9) of Sulem & Passot
(2015), which, to leading order, gives

∂tu‖i + [u‖i, χs] +∇‖(τp‖i + p‖e) + τ Ĉ2

(
∇2

⊥∇‖p‖e +∇‖(n:∇E)
)
= 0, (4.20)

where it is sufficient to write (n:∇E) = −∇2
⊥ϕ. Furthermore, Ĉ2 is an operator which in

Fourier space reduces to the multiplication by the factor

C2 =
1

bi
(1− Γ0(bi)). (4.21)

Here, Γn(bi) = exp(−bi)In(bi) where In denotes the modified Bessel function of order n.
The variable bi, which is defined in the physical variables by bi = (k2⊥ρ

2
i )/2 (where ρi holds

for the ion thermal gyroradius) reduces in the present units to bi = τk2⊥. Furthermore,

in the limit bi → 0, C2 → 1 while for b → ∞, C2 = 1/bi +O(1/b
3/2
i ).

Considering the transverse component of Eq. (4.19) and taking the transverse diver-
gence, one gets to leading order the transverse pressure balance equation

∇2
⊥(τp⊥i + p⊥e +

2

βe
Bz −A) = 0, (4.22)

where, from Eq. (5.7) of Sulem & Passot (2015), A = τ(Â1ω‖i + Â2T⊥i), with ω‖i =

−∇2
⊥χs denoting the parallel ion vorticity. The operators Â1 and Â2 reduce in Fourier

space to the multiplicative factors

A1 = 1− Γ1(bi)

bi[Γ0(bi)− Γ1(bi)]
+

Γ1(bi)

Γ0(bi)
(4.23)

A2 = −Γ1(bi)

Γ0(bi)
. (4.24)
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For bi → 0, A1 → 1/2 and A2 → 0, while for bi → ∞, A1 ∼ 1/bi and A2 → −1.
Equation (4.22) rewrites

∇2
⊥

[
2

βe
Bz + τn+ p⊥e − τ Â1ω‖i + τ(1− Â2)T⊥i

]
= 0. (4.25)

Combining this equation with Eq. (4.18) also gives

∇2
⊥[τp⊥i + ϕ+ χs − τ Â1ω‖i − τ Â2T⊥i] = 0. (4.26)

The equation for the parallel ion vorticity reads

D(i)ω‖i

Dt
−(ω·∇)u‖i+(∇·ui)ω‖i+ẑ·∇×

[
1

n
∇ · (pi + pe)

]
− 2

βe
ẑ·∇×

[
1

n
(∇×B)×B

]
= 0.

(4.27)
The ion continuity equation shows that ∇ · ui is second-order in magnitude, making
(∇ · ui)ω‖i negligible and indicating that, to leading order, u⊥i = −ẑ×∇⊥χs, and thus

D(i)/dt = ∂t + [·, χs]. The ion vorticity equation rewrites

∂tω‖i + [ω‖i, χs]− [n, τp⊥i + p⊥e +
2

βe
Bz] +

2

βe
∇‖∇2

⊥A‖ −∇2
⊥B = 0, (4.28)

where, from Eq. (5.8) of Sulem & Passot (2015),

B = τ
[
B̂3n:∇ui − B̂1b̂ · (∇×EH)

]
(4.29)

with

n:∇ui = ∇⊥ · u⊥i + [A‖, u‖i]. (4.30)

and

EH =
1

n

(
2

βe
(∇×B)×B−∇ · pe

)
(4.31)

or

b̂ · (∇×EH) = − 2

βe
∇‖∇2

⊥A‖ + [n, p⊥e +
2

βe
Bz]. (4.32)

Furthermore,

B1 = [Γ0(bi)− Γ1(bi)]

(
Γ0(bi)− Γ1(bi)

1− Γ0(bi)
+ 2

)
− 1

bi
(4.33)

B3 = −B1 −
1

bi
+

Γ0(bi)− Γ1(bi)

1− Γ0(bi)
. (4.34)

For bi → 0, B1 → −1/4 and B3 → −1/2, while for bi → ∞, B1 ∼ −1/bi and B3 ∼
−1/(2

√
2πb

3/2
i ).

At this stage, ∇ · ui, is eliminated by using the continuity equation for the ions

∇⊥ · u⊥i = −∂tn− [n, χs]− ∂zu‖i. (4.35)

Equation (4.28) becomes

∂t(ω‖i + τB̂3∇2
⊥n) + [ω‖i, χs] + τB̂3∇2

⊥([n, χs] + ∂zu‖i)

−τ [n, p⊥i]− (1− τB̂1∇2
⊥)[n, p⊥e +

2

βe
Bz]

+
2

βe
(1− τB̂1∇2

⊥)∇‖∇2
⊥A‖ − τB̂3∇2

⊥[A‖, u‖i] = 0. (4.36)
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It is also of interest to write the equation for the ion pressures. Neglecting terms that
are subdominant in the present ordering in the case of a scalar equilibrium pressure, the
equations for the parallel and perpendicular ion pressure writes

D(i)

Dt
p‖i +∇ · ui + 2b̂ · ∇ui · b̂+ (Π ·∇ui)

S: τ +∇ · (q‖ib̂) = 0, (4.37)

D(i)

Dt
p⊥i + 2∇ · ui − b̂ · ∇ui · b̂+ (Π ·∇ui)

S: n+∇ · (q⊥ib̂+ S⊥
⊥i) = 0, (4.38)

where the superscript s indicates that the tensor is symmetrized. The last term in Eq.
(4.38) reduces to

∇ · S⊥
⊥i = τ∇2

⊥

(
Ê4b̂ · (∇×EH) + Ê6n:∇ui

)
, (4.39)

where

E4 = [Γ0(bi)− Γ1(bi)]

(
1

bi
− Γ0(bi)− Γ1(bi)

1− Γ0(bi)

)

+2(Γ0(bi)− Γ1(bi))−
1

bi
Γ1(bi) (4.40)

E6 = E4 +
1

bi
− Γ0(bi)− Γ1(bi)

1− Γ0(bi)
. (4.41)

For bi → 0, E4 → 9/4 and E6 → 3, while for bi → ∞, E4 ∼ 160/(128b2i
√
2πbi) and

E6 ∼ 1/bi. Furthermore, in the present asymptotics, one has for the quantities associated
with the work of the nongyrotropic pressure forces

(Π ·∇ui)
S: n = 2Π⊥:∇⊥u⊥i (4.42)

(Π ·∇ui)
S: τ = 2Π‖ · ∇⊥u‖i. (4.43)

Here Π⊥ = (∇⊥ ⊗ ∇⊥ − (ẑ × ∇⊥) ⊗ (ẑ × ∇⊥))(−∇2
⊥)

−1A and Π‖ = −b̂ × ∇D2, with
D2 given, up to normalization, by Eq. (5.11) of Sulem & Passot (2015), where the last
term is negligible.

The ion temperatures thus obey

∂tT‖i + [T‖i, χs] + 2∇‖u‖i + (Π ·∇ui)
S: τ +∇‖q‖i = 0, (4.44)

∂tT⊥i + [T⊥i, χs] + (Π ·∇ui)
S: n

+∇‖q⊥i − b̂iE4b̂ · (∇×EH) + (1− b̂iE6)n:∇ui = 0, (4.45)

where, in the latter equation, one can use Eqs. (4.30) and (4.32). In this equation,∇⊥ ·u⊥i

is again eliminated using the ion continuity equation, which leads to

∂t

(
T⊥i − (1− b̂iE6)n

)
− (1− b̂iE6)

(
[n, χs] + ∂zu‖i

)
+ [T⊥i, χs] + (Π ·∇ui)

S: n

+∇‖q⊥i − b̂iE4b̂ · (∇×EH) + (1− b̂iE6)[A‖, u‖i] = 0. (4.46)

A closed system (up to the closure of the fluid hierarchy) is thus provided by the
dynamical equations (4.6) for (n − Bz), (4.13) for (p‖e − Bz), (4.14) for (p⊥e − 2Bz),

(4.16) for A‖, (4.20) for u‖i, (4.44) for T‖i, (4.46) for (T⊥i − (1− b̂iE6)n), and (4.36) for

(ω‖i + τB̂3∇2
⊥n) (with ω‖i = −∇2

⊥χs), together with the explicit expressions (4.15) for
u‖e and (4.18) for ϕ, provided Bz given by Eq. (4.25) can be expressed in terms of the
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above quantities. For this purpose, this equation is rewritten
(
τ + 2(1 +

1

βe
) + τ2Â1B̂3∇2

⊥ + τ(1− Â2)(1− b̂iE6)

)
δBz =

(
τ + τ2Â1B̂3∇2

⊥ + τ(1− Â2)(1− b̂iE6)
)
(δn− δBz)− (δp⊥e − 2δBz)

−τ Â1

(
ω‖i + τB̂3∇2

⊥n
)
+ τ(1− Â2)

(
δT⊥i − (1− b̂iE6)δn

)
. (4.47)

It follows that Bz is well-defined, provided

τ + 2

(
1 +

1

βe

)
− τbiA1B3 + τ(1− A2)(1− bE6) 6= 0, (4.48)

be satisfied, a condition which was numerically checked to hold for any transverse wavenum-
ber.

Appropriate fluid closures can then be chosen in order to express heat fluxes in terms
of lower order moments. The simplest assumption is the adiabatic approximation which
prescribes zero heat fluxes. A more refined approach is provided by Landau fluid closures
(Hammett & Perkins 1990; Snyder & Hammett 2001; Sulem & Passot 2015) which are
aimed at reproducing the linear kinetic theory, and thus include Landau damping. Note
that in Sec. 6, the heat fluxes are directly computed from the linearized kinetic theory
in the low-frequency limit. Involving operators that are non-local in time, this approach
is limited to the linearized problem and thus cannot be viewed as a genuine closure.

5. Asymptotic regimes

The above model strongly simplifies in two asymptotic regimes which are discussed
below. In particular, it will be shown that in such regimes one can retrieve the reduced
models derived in Secs. 3.4.1 and 3.4.2 from the gyrofluid approach.

5.1. The limit of cold ions

Equations (4.13) and (4.14) are unchanged, while in the limit τ → 0, Eq. (4.25) reduces
to p⊥e = −(2/βe)Bz. Consequently, Eq. (4.6) becomes

d

dt
(n−Bz) +∇‖u‖e = 0, (5.1)

and Eq. (4.18) gives χs = −ϕ. Furthermore, combining Eq. (4.20) with Eq. (4.16) gives

d

dt
(u‖i +A‖) + ∂zϕ = 0. (5.2)

Using that ω‖i = ∇2
⊥ϕ, Eq. (4.36) reduces to

d

dt
∇2

⊥ϕ+
2

βe
∇‖∇2

⊥A‖ = 0. (5.3)

Although subdominant, the ion pressures can be evaluated. We first note that, in the
limit τ → 0, the considered scales are much larger than the ion thermal gyroradius, so
one can consider the expression of the nongyrotropic pressure tensor given by Eqs. (3.1)-
(3.3) of Sulem & Passot (2015) and derived for example in Schekochihin et al. (2010).
In evaluating the contributions of the work of the nongyrotropic pressure forces in the
parallel and parallel pressure equations, it is enough to evaluate Π to first order, in the
form

Π = τ
(
b̂× (∇ui)

S
· (I+ 3τ )− (I+ 3τ ) · (∇ui)

S × b
)
. (5.4)
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One easily checks that in this case, (Π · ∇ui)
S: n and (Π · ∇ui)

S: τ are subdominant
and can be neglected.

Combining Eq. (4.44) with Eq. (5.1), and using Eq. (4.15) together with Eq. (5.3), one
gets

d

dt
(p‖i −Bz −∇2

⊥ϕ) +∇‖(3u‖i + q‖i) = 0. (5.5)

Similarly, from Eqs. (4.46) and (4.6), it follows that

d

dt
(p⊥i − 2Bz − 2∇2

⊥ϕ) +∇‖(u‖i + q⊥i) = 0. (5.6)

To summarize, in the cold-ion asymptotic regime, the reduced model derived from
the FLR-Landau fluid yields the model of Sec. 3.4.1. Indeed, the electron equations
(5.1), (4.16), (4.13), (4.14) correspond namely to Eqs. (3.52), (3.53), (3.54) and (3.55),
respectively. Similarly, the ion equations (5.2), (5.5) and (5.6), correspond to Eqs. (3.57),
(3.58) and (3.59), respectively. The vorticity equation (5.3), on the other hand, together
with the quasi-neutrality assumption ne = ni, which is intrinsic to the FLR reduced
fluid model, and with the electron continuity equation (5.1), yields Eq. (3.56). Finally,
Eq. (4.15) corresponds to Eq. (3.61) and, as above stated, Eq. (4.25) reduces to Eq.
(3.62).

Note that when assuming a polytropic scalar electron pressure, the present cold-ion
model reduces to the Hamiltonian four-field model of Tassi et al. (2010) (when neglect-
ing electron inertia), which extends to three dimensions the two-dimensional model of
Fitzpatrick & Porcelli (2004, 2007).

5.2. The sub-ion scale limit

The equations for the electrons remain valid in this regime, and the main issue concerns
the ion dynamics. In particular, it will be shown that ion velocities are subdominant and,
as a consequence, the perpendicular ion pressure satisfies an isothermal equation of state.
In order to address this issue, the additional small parameter µ ∝ k−1

⊥ measuring the
magnitude of the inverse transverse wavenumber must be introduced. While the smallness
of the parameter µ is physically limited by the ratio of the electron to ion gyroradius,
and thus by the square root of the electron to ion mass ratio, it is technically relevant
to take the limit µ → 0 where important simplifications take place. In particular, the

operators (1 − b̂iA1), (1 + b̂iB1) and b̂iE4 vanish asymptotically, while b̂iE6 = 1 and

b̂iB3 = −1/(2
√
2πb

3/2
i ).

The amplitude of the fields δn, ϕ, δBz, δp⊥e and δp‖e are now scaled by the small
parameter ǫµ. The parallel space variable is stretched by a factor ǫ, while the time
variable is scaled by the factor ǫ/µ, that results from a dominant balance between the
linear terms of the electronic equations. This regime is indeed dominated by the dynamics
of kinetic Alfvén waves (KAWs) whose dispersion relation is ω ∝ k‖k⊥.

A first remark is that in the material derivative, the transport operator [·, χs] =
(1/µ2)O(χs) is negligible compared to ∂t = O(ǫ/µ). Indeed, otherwise, χs would be
larger than ǫµ and thus u⊥i larger than ǫ, which is unrealistic in the present ordering.
This point will be checked a posteriori.

From Eq. (4.16), it follows that A‖ = O(ǫµ2), and from Eq. (4.15) that u‖e = O(ǫ),
provided the magnitude of u‖i does not exceed ǫ. From the density equation, ∇ · ui =
O(ǫ2), and so is the transverse part ∇⊥ · u⊥i.

Equation (4.28) then reduces to

∂

∂t
ω‖i − τ [n, p⊥i]− ̂

1/(2
√

2πbi)(n:∇ui) = 0. (5.7)
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The last term is O(ǫ2µ). It follows that, provided δT⊥i . O(ǫµ2), one has χs = O(ǫµ4)
and |u⊥i| = O(ǫµ3), consistent with the previous assumptions.

Let us now turn to the equation for the ion perpendicular pressure. As in this limit,
Π⊥ involves only the temperature contribution, (Π · ∇ui)

S:n = O(ǫµ)O(δT⊥i) and is
thus negligible in Eq. (4.45) which reduces to

∂T⊥i

∂t
+∇‖q⊥i = O(ǫ2µ). (5.8)

The latter equation describes the relaxation of the parallel temperature fluctuations
under the effect of the heat flux, leading indeed to δT⊥i = O(ǫµ2).

Returning to Eq. (4.26), we find that the fluctuations δϕ of ϕ and δn of n satisfy

δϕ = −τδn, (5.9)

which is Eq. (3.76). The term A in the pressure balance equation (4.22) is also subdom-
inant and condition (3.78) is recovered.

The last point concerns Eq. (3.77), which requires that the ion parallel velocity be
smaller than ǫ. In the small-scale limit, the electron pressure gradient terms cancel out
in Eq. (4.20). Using Eq. (5.9), this equation reduces to

∂tu‖i +∇‖T‖i = O(ǫ2µ2), (5.10)

where the driving term in the rhs originates from the subdominant contribution to C2.

Furthermore, in the equation for the parallel pressure, one has to evaluate the work
of the nongyrotropic pressure given by 2Π‖∇⊥ · u‖i where in the small-scale limit Π‖ =

−b̂ × ∇⊥D2. The evaluation of this term requires considering the asymptotic behavior
for bi → ∞ of the various coefficients constructed with the functions Γ0 and Γ1 in the
expression of D2. It turns out that D2 scales like ǫµ2, so Π‖ = O(ǫµ) and 2Π‖ ·∇⊥u‖i =
O(ǫ2µ2)O(|u‖|). This term is asymptotically small compared to ∇‖u‖i. The equation for
the ion parallel temperature thus reduces to

∂tT‖i + 2∇‖u‖i + ∂‖q‖i = 0. (5.11)

Without specifying the heat flux q‖, it is possible to derive magnitude estimates from
Eqs. (5.10) and (5.11). The latter equation can be viewed as describing the relaxation of
the parallel temperature fluctuations under the effect of the heat flux, in the presence of
a driving originating from the parallel velocity fluctuations. This suggests that the first
term in Eq. (5.11) cannot exceed the second one, indicating that the magnitude of the
ratio T‖i/u‖i cannot exceed µ. This makes the temperature contribution negligible in Eq.
(5.10), which ensures that u‖i = O(ǫµ3). Consequently, T‖i 6 O(ǫµ4). It follows that
both the ion temperature fluctuations and the ion parallel velocity are subdominant and
can be neglected in this regime.

Interestingly, the above estimates are consistent with the linear kinetic theory. Indeed,
inspection of Eqs. (B5) and (B7) of Passot & Sulem (2007) indicates that, at the level of
the linear kinetic theory,

T‖i

u‖i
=

1√
2τ

1−R(ζi) + 2ζ2i R(ζi)

ζiR(ζi)
, (5.12)

where R is the plasma response function related to the plasma dispersion function Z
by R(ζ) = 1 + ζZ(ζ), and ζi = (1/

√
2τ)(ω/|kz|). It follows that for large ζi, T‖i/u‖i =

O(1/ζi) = O(µ).
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Similarly, at the level of the linear kinetic theory, one also has,

q‖i

T‖i
=

√
2τ

ζi[1− 3R(ζi) + 2ζ2i R(ζi)]

1−R(ζi) + 2ζ2i R(ζi)
, (5.13)

which behaves like 3/(2ζi) when ζi → ∞, indicating that q‖i is subdominant in Eq. (5.11).
The two other terms balance each other, consistent with T‖i/u‖i = O(µ).

The complete system of equations of the small-scale gyrofluid model can thus be re-
covered by the FLR-Landau fluid approach in the limit of small amplitude and large
transverse wavenumbers. Indeed, as previously mentioned, the electron equations (4.6),
(4.16), (4.13), (4.14) yield Eqs. (3.72), (3.73), (3.74) and (3.75), respectively. Eq. (5.9)
corresponds to Eq. (3.76). Finally, the above arguments leading to isotropic, isothermal
ion fluid, with negligible parallel velocity, yield Eqs. (3.77) and (3.78) from Eqs. (4.15)
and (4.18), respectively.

Note that the order of magnitude estimates for the various fields (and in particular for
the ion vorticity and divergence) from the fluid system are consistent with the kinetic
low frequency linear formulae of Appendix B in Passot & Sulem (2007). The non-trivial
cancellations with FLR corrections mentioned above are crucial to obtain these estimates.

6. Validity range of the small-scale gyrofluid model

It is of interest to study the validity of the small-scale model by analyzing, in the linear
regime, its prediction for the dispersion and damping of kinetic Afvén waves. For this
purpose, and in order not to introduce additional uncertainty related to the hierarchy
closure, electron heat fluxes are evaluated from the low-frequency kinetic theory, as done
in Passot & Sulem (2007). Indeed, in the present framework where the electron FLR
corrections are neglected, Eqs. (B12) and (B7) of this reference give

q‖e =

√
2M

m

ζe[1− 3R(ζe) + 2ζ2eR(ζe)]

1−R(ζe) + 2ζ2eR(ζe)
δT‖e. (6.1)

Here ζe = (1/
√

2M/m)(ω/|kz|) (where ω is the complex frequency) and R is the plasma
response function R(ζe) = 1 + ζeZ(ζe), with Z denoting the plasma dispersion function.
Similarly, Eqs. (B13) and (B6) lead to

q⊥e = −
√

2M

m

ζeR(ζe)

1−R(ζe)
δT⊥e. (6.2)

In order to simplify the writing, it is convenient to use the notations q‖e = Q‖(ζe)δT‖e

and q⊥e = Q⊥(ζe)δT⊥e. The linear system reads (keeping the same notation for the fields
and their Fourier modes)

ω

(
(1 +

τβe

2
)δn+

βe

2
δp⊥e

)
+

2kzk
2
⊥

βe
A‖ = 0 (6.3)

ωA‖ + kz(τδn+ δp‖e) = 0 (6.4)

ω

(
τβe

2
δn+ δp‖e +

βe

2
δp⊥e

)
+ kz

(
−Q‖(ζe)(δp‖e − δn) +

6k2⊥
βe

A‖

)
= 0 (6.5)

ω (τβeδn+ (1 + βe)δp⊥e) + kz

(
−Q(ζe)(δp⊥e − δn) +

2k2⊥
βe

A‖

)
= 0. (6.6)

It is easily seen that the parallel wavenumber only enters in the combination ω/kz.
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Equations (6.3)-(6.6) are conveniently solved numerically. In order to test the valid-
ity of this gyrofluid model, we also solve for the linear fully kinetic solution using the
WHAMP software (Rönnmark 1982), and for a low-frequency limit, equivalent to the
gyrokinetic approach. It consists in substituting the kinetic expressions of the ion and
electron density and velocity, as given in Appendix B of Passot & Sulem (2007), within
the quasi-neutrality condition, the parallel component of the Ampère equation and of its
curl (which isolates the contribution of the solenoidal velocities). This leads to a linear
system of three equations. The dispersion relation is then obtained by solving for the
determinant of a 3× 3 matrix M whose elements (in the case of isotropic pressures) are
given by (Kuznetsov et al. 2012)

M11 = −(Γ0(bi)− Γ1(bi))
(
R(ζi)− 1

)
+ (Γ0(be)− Γ1(be))

(
R(ζe)− 1

)
(6.7)

M12 = Γ0(bi)− 1 + τ(Γ0(be)− 1) (6.8)

M13 = −
[
Γ0(bi)R(ζi) + 1− Γ0(bi)

]
− τ
[
Γ0(be)R(ζe) + 1− Γ0(be))

]
(6.9)

M21 = (Γ1(bi)− Γ0(bi))R(ζi)− (Γ1(be)− Γ0(be))R(ζe) (6.10)

M22 = − k2⊥
βeζ2i

(6.11)

M23 = −
[
Γ0(bi)R(ζi) + τΓ0(be)R(ζe)

]
(6.12)

M31 = τβe(Γ0(bi)− Γ1(bi))
(
R(ζi)− 1

)
+ βe

(
Γ0(be)− Γ1(be))(R(ζe))− 1

)

−1− k2z
k2⊥

(6.13)

M32 = −τβe

2

(
Γ0(bi)− Γ1(bi)− Γ0(be) + Γ1(be)

)
(6.14)

M33 =
τβe

2

[
(Γ0(bi)− Γ1(bi))

(
R(ζi)− 1

)

−(Γ0(be)− Γ1(be))
(
R(ζe))− 1

)]
, (6.15)

where bα = (k2⊥ρ
2
α)/2, with α = i for the ions and α = e for the electrons. In the

latter approach, two cases can be distinguished, depending on whether the electron FLR
effects are retained or neglected (by taking be = 0). In all the three considered kinetic
approaches, electron inertia is implicitly built in, while it is neglected in the small-scale
gyrofluid model and thus in Eqs. (6.3)-(6.6).

In the linear regime, the angle of propagation θ between the ambient field and the
wavevector has to be specified. While it has almost no influence in the low-frequency
asymptotic description, it has to be chosen close to 90o in the Vlasov description in
order to avoid resonances. We have taken θ = 89.9o in order to prevent any finite angle
dependence in the considered range of wavenumbers). We further assume βe = τ = 1.

For comparison, we also consider the adiabatic and isothermal closures. In the adiabatic
case (q‖e = q⊥e = 0), an analytic solution is found for the frequency in the form

ω2

k2zk
2
⊥

=
4τ + 12 + (6τ + 10)βe

βe[2 + (τ + 2)βe]
. (6.16)

This solution contrasts from the isothermal one

ω2

k2zk
2
⊥

=
2(1 + τ)

βe[1 + (1 + τ)βe/2]
, (6.17)
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obtained by solving the subsystem of equations for δne and A‖, when imposing δp‖e =
δp⊥e = δn. In this regime, following Howes et al. (2006), an estimate of the Landau
damping can be obtained in the form

γ

kzk2⊥
= − 2πm

βeM

(
1− 1 + (1 + τ)βe

2[1 + (1 + τ)βe/2]2

)
. (6.18)

Figure 1 displays the real and imaginary parts ℜ(ω)/kz (left) and ℑ(ω)/kz (right)
of the complex frequency as a function of k⊥, resulting from the various approxima-
tions described above. The solid lines correspond to the fully kinetic system. The low-
frequency kinetic description, for which the dispersion relation is given by the the con-
dition det(M) = 0, is considered in two different cases. In the first one (referred to by
+ symbols), no assumptions are made on bi and be but for numerical convenience we
take R(ζi) = 0 which is valid for k⊥ larger than a few units, as expected for small-scale
kinetic Alfvén waves for which ω/kz ∼ k⊥ ≫ 1. Furthermore, R(ζe) is approximated
by a 4-pole Padé approximant with the parameters (N, p) defined in Table 1 of Hedrick
& Leboeuf (1992), are taken equal to (4, 1), for which the plasma response function is
globally approximated with a good accuracy. In the second case (referred to by ∗ sym-
bols), we concentrate on the small-scale asymptotic regime corresponding in the present
notations to be = 0 and bi = ∞ (here taken equal to 109). In this setting, the func-
tions R(ζi) and R(ζe) are both approximated by the above 4-pole Padé approximant.
The reduced model given by Eqs.(6.1)-(6.6) is indicated by ⋄ symbols. Finally, the upper
(lower) dashed lines correspond to the adiabatic (isothermal) solutions, the dashed line
of Fig. 1 (right) corresponding to the isothermal analytic damping rate, as given by Eq.
(6.18).

It is to be noticed that for the considered large angle of propagation, the low-frequency
limit with ions and electrons FLR corrections (+ symbols) displays almost no deviation
with respect to the fully kinetic solution up to k⊥ = 30 (in ρ−1

s units), confirming the
validity of the small-frequency asymptotics. When neglecting electron FLR correction
in the low-frequency kinetic theory (∗ symbols), some inaccuracy starts to be visible on
the real frequency (but not on the damping rate) by k⊥ = 15, but remains moderate for
all the considered scales. Differently, the gyrofluid (⋄ symbols) precisely predicts the real
frequency and the damping rate at moderately small scales but significantly departs from
the kinetic theory when k⊥ > 15, suggesting the importance of electron inertia (neglected
in the present theory) for k⊥ρi ' 20. When comparing with the real frequency predicted
by the conservative closures, we note that, while the adiabatic approximation is inaccu-
rate at all the scales, assuming isothermal electron provides a rather good approximation
of the real frequency up to the electron gyroscale.

7. Conclusion

We have considered a three-dimensional gyrofluid model accounting for magnetic fluc-
tuations along the guide field in two asymptotic regimes. One concerns the limit of cold
ions, the other concentrates on the spectral domain corresponding to transverse scales
large compared to the electron gyroradius but small relatively to the ion gyroradius. The
cold-ion model extends the“Hall reduced MHD” (Schekochihin et al. 2009), by including
a realistic description of anisotropic electron temperatures. The spectral validity range of
the second model may seem limited, as the ratio of the ion to electron thermal gyroradii
is given by the square root of the particle mass ratio. This model nevertheless deserves a
special attention, as it extends the kinetic Alfvén wave model of Boldyrev et al. (2013), by
retaining dynamical equations for the electron gyrotropic pressures instead of assuming
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Figure 1. Real part (left panel) and imaginary part (right panel) of ω/kz versus k⊥ (in units of
ρ−1

s
) for KAWs, in the conditions of the small-scale model, within various descriptions: adiabatic

and isothermal regimes (upper and lower dashed lines respectively, in the left panel) together
with the corresponding analytic damping rate in the isothermal case (dashed in the right panel),
gyrofluid model (diamonds), full kinetic theory assuming θ = 89.9o (solid line), low-frequency
kinetic theory including ions and electrons FLR corrections (crosses) and without electron FLR
contributions (stars).

an isothermal electron fluid. Interestingly, this limit involves important simplifications,
such as subdominant ion velocity and temperature fluctuations.
In both models, the pressure equations involve electron heat fluxes and energy-weighted

pressures (fourth order cumulants) which are to be estimated by prescribing closure
relations, possibly involving Landau damping (see Sulem & Passot (2015) and references
therein), an issue outside the scope of the present paper.

It turns out that the two asymptotic gyrofluid models can also be viewed as suit-
able weakly-nonlinear limits of the FLR-Landau fluid (Sulem & Passot 2015) where ion
nongyrotropic (i.e. FLR) contributions are estimated from the low-frequency linear ki-
netic theory phenomenologically corrected to take magnetic field line distortions into
account. Although this approach is less systematic that the gyrofluid formalism, it pro-
vides an easier identification of the physical origin of the various terms arising in the
model equations, such as the electron energy-weighted pressures in the pressure equa-
tions. Also, the fact that ion velocity and temperature fluctuations are negligible in the
small-scale model results in the fluid description from the cancellation of some hydro-
dynamic terms by FLR contributions. The agreement with the gyrofluid indicates that,
at least in the case of isotropic equilibrium pressures, the FLR-Landau fluid built to fit
the linear kinetic theory is also quantitatively accurate in the weakly-nonlinear regime
addressed by the gyrokinetic formalism.

As the second model is limited to scales large compared to the electron gyroradius, we
evaluated more quantitatively its spectral validity range, by making comparisons at the
level of dispersion and damping of kinetic Alfvén waves between the full linear kinetic
theory as provided by the WHAMP software (Rönnmark 1982) and the small-scale model
where the heat fluxes and fourth-order cumulants (not given by the model) are evaluated
asymptotically from the low-frequency kinetic theory, as in Appendix B of Passot &
Sulem (2007). It turns out that for isotropic and equal ion and electron temperatures
and corresponding betas equal to unity, a good agreement holds for k⊥ρe / 20.

Further developments include the extension of the small-scale model to electron scales.
Assuming for the sake of simplicity small betas for which nongyrotropic pressure correc-
tions are negligible, leading order corrections originating from electron inertia are to be
retained. Such an effect would in particular be needed to simulate collisionless magnetic
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reconnection. Furthermore, in the derivation of the asymptotic model from the FLR-
Landau fluid, an intermediate step led to a reduced formulation of the FLR-Landau fluid
valid at scales comparable to the ion gyroradius, in the weakly-nonlinear regime when
the equilibrium temperatures are isotropic. In this regime, the ion dynamics is relevant
and the corresponding model could be useful for a detailed analysis of the role of the ion
Landau damping which is supposed to potentially affect the kinetic Alfvén wave cascade
(Passot & Sulem 2015; Sulem et al. 2016).
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