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Abstract

This paper presents experiments of unsupervised adaptation
for a speaker detection system. The system used is a standard
speaker verification system based on cepstral features and Gaus-
sian mixture models. Experiments were performed on cellular
speech data taken from the NIST 2002 speaker detection eval-
uation. There was a total of about 30.000 trials involving 330
target speakers and more than 90% of impostor trials. Unsu-
pervised adaptation significantly increases the system accuracy,
with a reduction of the minimal detection cost function (DCF)
from 0.33 for the baseline system to 0.25 with unsupervised on-
line adaptation. Two incremental adaptation modes were tested,
either by using a fixed decision threshold for adaptation, or by
using the a posteriori probability of the true target for weight-
ing the adaptation. Both methods provide similar results in the
best configurations, but the latter is less sensitive to the actual
threshold value.

1. Introduction

Automatic speaker verification systems generally have to deal
with limited enrollment data per speaker, which limits the accu-
racy of the system. Not only the amount of data is important,
but also the diversity of acoustic and channel conditions. For a
fixed amount of speech, multiple enrollment sessions improve
significantly the performance. Furthermore, voice is known to
evolve over time; taking into account recent sessions is needed
to couterbalance the model aging (see e.g. [1]). For real appli-
cations of speaker verification, unsupervised adaptation of the
speaker models is thus a very useful feature, but the risk of cor-
rupting the models with impostor data must be carefully con-
trolled.

In this paper we report on unsupervised adaptation of a
speaker verification system. Experiments are carried out on cel-
lular speech data from the NIST one-speaker detection task [6].
The baseline speaker verification system is a standard text-
independent Gaussian-mixture models (GMM) system [2]. A
specificity of the test set used is the very high proportion of im-
postor trials (above 90%). This departs from another situation
already reported for the online adaptation of a speaker verifica-
tion system, where fewer impostors than true speakers are ex-
pected in normal exploitation [4, 5].

In the next section we describe the experimental conditions
and the baseline system without adaptation. In Section 3 we re-
view the supervised and unsupervised adaptation protocols that
were tested. The experimental results are presented and dis-
cussed in Section 4.

2. Experimental setup
In this section, we describe the NIST one-speaker detection
task, the corpora used to carried out the experiments, and the
baseline speaker verification system.

2.1. Corpus and task

The speaker recognition experiments were conducted on cellu-
lar telephone conversational speech from the Switchboard cor-
pus. This data was selected by NIST for the 2002 one-speaker
detection task [3]. Given a speech segment of about 30 sec-
onds, the goal is to to decide whether this segment was spoken
by a specific target speaker or not. For each of 330 target speak-
ers (139 males and 191 females), two minutes of untranscribed,
concatenated speech is available as enrollment data for training
the target model. Overall 2679 test segments (1085 males and
1594 females), lasting between 15 and 45 seconds, as defined
by NIST for the primary test condition, were selected for these
experiments. For each of the 330 target speakers, between 74
and 110 tests are conducted, with a mean of about 89 trials per
target, and a total of about 30.000 trials. There are up to 17 true
speaker trials per target speaker, with a mean of about 7 true
speaker trials, and for 15 targets there are no true speaker trials
at all. In the standard, unsupervised protocol, each trial has to
be performed independently of the other, ignoring the score of
all other trials. The gender of the target speaker is known and
only gender-matching trials are considered. The proportion of
impostor trials is 92.3%.

We made use of the cellular data from the NIST 2001 eval-
uation in order to train background models or impostor models
for score normalization, and estimate a priori distribution of im-
postor and true target scores. This data includes files from 60
development speakers (2 minutes of speech for each of 38 males
and 22 females) which are used to train the background models,
and files from 174 target speakers (2 minutes of speech for each
of 74 males and 100 females) used as enrollment for impostor
target models.

2.2. Baseline system

Acoustic features are extracted from the speech signal every
10ms using a 30ms window. The feature vector estimated on the
0-3.8kHz bandwidth is comprised of 15 MEL-PLP cepstrum co-
efficients, 15 delta coefficients plus the delta energy, for a total
of 31 features. Acoustic features are normalized using feature
warping [7] over a 3 seconds sliding window before comput-
ing the delta coefficients. Feature warping consists in mapping
the observed cepstral feature distribution to a normal distribu-
tion. It was shown to outperform the classical Cepstral Mean
Substraction approach for speaker recognition tasks.

For each target speaker, a speaker-specific GMM with diag-
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Figure 1: Protocol used for the offline adaptation of the system.
Some test segments from T4 were used for incremental adapta-
tion of the target model A, which was then used for scoring T>
trials.

onal covariance matrices was trained via maximum a posteriori
(MAP) adaptation [8] of the Gaussian means of the matching
gender background model using 5 iterations of the EM algo-
rithm, with a prior weight 7 = 10. Each of the two gender-
dependent background models includes 1024 Gaussians. These
two models were trained on a total of about 2 hours of data from
the 60 development speakers.

Each verification trial is comprised of a test segment and
a target speaker. The test segment is scored against the target
model and a cohort of gender-matching impostor models, ig-
noring low energy frames (about 10%). According to T-norm
score distribution scaling [9], for a given test segment X and a
target model ), the decision score is

S(X, )\) — log f’(X|)‘) 2.

ax

where f'(X|X) is the normalized likelihood of the speech seg-
ment (of length L(X)) for a given model X, i.e., f'(X|\) =
F(XIA)YE) and is scaled according to the mean px and
standard deviation ox of the likelihoods of the test segment
given the gender-matching impostor cohort models.

2.3. Performance measure

The primary performance measure for the NIST speaker de-
tection task is the detection cost function (DCF) defined as a
weighted sum of missed detection and false alarm probabilities
(see [3]) DCF = Pasiss + 9.9 X Praise Alarm- FOr OUr exper-
iments, we report the minimal DCF value obtained a posteriori
for the best possible detection threshold, and the equal-error rate
(EER). For unsupervised online adaptation, we also give the ra-
tio of both types of adaptation errors: false adaptation using an
impostor test segment (FAd) and missing the adaptation for a
true speaker test segment (MAd).

3. Adaptation protocols

The evaluation of the performance of an online unsuper-
vised adaptation system is complicated by its inherent non-
stationarity, the goal being to improve the system performance
along its use. Before testing the online unsupervised situation,
it was decided to calibrate the performance of such a system by
testing it under more controlled conditions: supervised offline
and supervised online mode.
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Figure 2: Incremental protocol used for the online adaptation
of the system.

3.1. Offline adaptation

For the offline adaptation experiments, all trials involving a
given target were shuffled in random order, and split in two
halfs, 71 and T». Ti was used for the adaptation of the tar-
get models, T was used for assessing the performance of the
model without further modification. Two protocols for super-
vised offline adaptation were used:

e Oracle: One to four true speaker tests were selected from
T, for supervised adaptation of the target model. Due
to the limited and varied amount of true target tests per
target model, targets for which the count of true test seg-
ments was not available were discarded from the experi-
mentst.

o Nearest impostors: for each target, the impostor test seg-
ments in Ty best matching the target model were used for
adaptation of the target model. One to four impostor test
segments were selected. The goal of this protocol was to
assess the corruption of the target models brought by the
most confusable impostor trials.

In all situations, the adaptation consisted in the MAP adapta-
tion of the Gaussian means only with a fixed prior weight .
For adaptation using several test segments, the segments were
presented in sequence, and the adapted target replaced the cur-
rent one after each adaptation (cf. Figure 1).

3.2. Online adaptation

For the online adaptation experiments, all trials involving a
given target A were shuffled in random order, and processed in
sequence. For each segment X, the decision score S(X, ) is
computed. According to this score, a decision is made to adapt
or not the target model using the test segment. The adapted
model then replaces the initial model for the subsequent trials
(cf. Figure 2). Obviously, the adaptation threshold v may be
different from the decision threshold, in order to control the
corruption of the target models. For the simplicity of the ap-
plication, we chose to test here incremental adaptation, instead
of re-adaption from the background model using all speech data
attributed to the speaker.

Supervised and unsupervised online adaptation were com-
pared. In the supervised mode, the adaptation is done for all
and only for the true target trials. This is the online counterpart
of the oracle offline adaptation described in the previous sec-
tion, and provides an upper bound for the performances of an
unsupervised online adaptation system.

Unsupervised online adaptation was first tested using a
fixed decision threshold v and a fixed adaptation weight 7.
However, this binary decision mode may be too rigid, and a

1Contrastive experiments without adaptation were made with the
same restricted target set to insure that the results remained compara-
ble to the default condition.



[ Nb. adaptation | min. DCF | EER (%) |

[ Baseline (on72) [ 0333 | 89 |
1 0.234 6.1
2 0.187 4.6
3 0.164 3.9
4 0.145 3.6

Table 1. System performance of the oracle system with an in-
creased count of true segment adaptations, using a MAP adap-
tation weight = = 10.
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Figure 3: Shift of the impostor scores distribution for the oracle
system, with an increased count of true segment adaptations.

probabilized adaptation mode was also tested. Given the a pri-
ori probability of the true speaker and using the conditional dis-
tribution of true speaker and impostor scores estimated on the
development database, it is possible to estimate the a posteriori
probability of the true target P(A|X) given the score S(X, ).
Given a test segment X = {z;}, the EM MAP adaptation of
the mean pu, of the &** Gaussian of X is performed by weight-
ing the contribution of the new segment with the a posteriori
probability as follows:

s = T + PAX) X, Yeewe
k 7+ P(AX) 32, ke

where v is the posterior probability of the Gaussian & for
the frame z;.

4. Experimental results

The baseline system has a minimal DCF of 0.330 and an EER
of 8.3% using all primary condition trials of the NIST 2002
one-speaker limited data evaluation. This is similar to the per-
formances we already reported on this task [10].

4.1. Offline adaptation results

For testing offline adaptation, the data set was randomly split in
two parts 71 and T>. On the T part, the baseline system has
a minimal DCF of 0.333 and an EER of 8.9%, showing only a
slight bias from the baseline system due to the random split.
We tested the oracle, supervised offline protocol, with an in-
creased count of true speaker test segment for adaptation rang-
ing from 1 to 4, and using a MAP adaptation weight = = 10.
Results in Table 1 show that a reduction above 50% of both min-
imal DCF and EER can be reached with at least 3 adaptations.
Performances seem to further improve beyond 3 segments, but
experiments were limited by the count of true speaker segments
per target speaker in the corpus. The adaptation affects both
impostor and true speaker scores. The distribution of impos-

[ Nb. adaptation | min. DCF | EER (%) |

[ Baseline (on72) [ 0.333 | 89 |
1 0.407 105
2 0.479 11.9
3 0.547 125
4 0.585 13.9

Table 2: System performance degradation with an increased
number of nearest impostor segment adaptations, using a MAP
adaptation weight 7 = 10.

| 7 | min. DCF | EER (%) |

[ Baseline | 0330 | 83 ]
8 0.223 5.6
10 0.189 49
12 0.177 4.7
14 0.177 47

Table 3: Performances of the online supervised adaptation of
the system, as a funtion of the MAP adaptation weight 7.

tor scores is shifted towards lower scores (cf. Figure 3), and
the distribution of true speaker scores is only slightly shifted
towards higher scores. The shift of impostor scores may be re-
lated to an increased distance between the adapted models and
the unchanged cohort models used for the T-norm.

As a contrastive experiment, offline adaptation using 1 to
4 nearest impostor segments was also performed, keeping the
same MAP adaptation weight 7 = 10. We observe in Table 2 a
performance degradation of about 20% for a single misadapta-
tion, quickly exceeding 50% of relative degradation with several
misadaptations.

4.2. Online adaptation results

Online, supervised adaptation was evaluated for different values
of 7. More than 40% relative reduction of the minimal DCF and
EER can be reached for 7 = 12 (cf Table 3). This score covers
the global performance of the system for all the trials, using
increasingly adapted target models. This must be seen as an
upper bound for the unsupervised adaptation protocol.

Varying the decision threshold and the adaptation weight
for a binary unsupervised adaptation, the best result observed
was a minimal DCF of 0.250 and an EER of 6.6, i.e. a relative
improvement of 20-25% over the baseline system (cf Table 4).
Looking at the adaptation errors, we see in this situation that
the MAd rate is about 25%, with a very low FAd rate of 0.35%.
Taking into account the a priori probability of true targets un-
der 8%, it follows that only 5% of model adaptations were per-

[ 7 [ v [ min. DCF | EER (%) [ MAd (%) | FAd (%) |
83 0.279 72 30.6 0.18
103 0.258 65 25.9 0.26
23 0.250 6.6 234 0.35
%3 0.255 6.7 219 0.48
122 0.258 6.8 119 2.11
12 [25[ 0251 6.8 16.9 0.96
123 0.250 6.6 234 0.35
12 [35 ] 0261 6.9 311 0.14

Table 4: Performances of the online unsupervised adaptation of
the system along with the missed adaptation (MAd) and false
adaptation (FAd) errors, as a function of the MAP adaptation
weight 7 and the adaptation threshold v.



[ max. 7 | min. DCF | EER (%) ]

[ Baseline | 0330 | 83 ]
8 0.271 6.8
10 0.252 6.7
12 0.252 6.8
14 0.261 6.6

Table 5: Performances of the online unsupervised adaptation
of the system, for a soft adaptation, as a function of the MAP
adaptation weight 7.
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Figure 4: DET curves for the baseline system and the sytems
with online supervised and online unsupervised adaptation.
Circles are drawn at minimal DCF operating point.

formed using an impostor segment. Target model corruption is
thus very limited; more precisely, 10% of target models were
corrupted with one impostor segment, 2.5% with two segments,
and none with more than two. Missed adaptation were less bal-
anced: all true speaker instances were used for adaptation for
30% of target speakers, but more than half of the true trials were
missed for adaptation for also about 30% of target speakers. All
speakers do not benefit equally from the unsupervised adapta-
tion. In average, about 160 seconds of true speaker speech were
added to the 2 minutes of initial enroliment, i.e. more than dou-
bling the training data.

The unsupervised online soft adaptation, taking into ac-
count the a posteriori probability of the target for weighting
the adaptation, provides very similar results (cf Table 5). Dis-
tributions of impostor scores and of true speaker scores were
estimated by histograms on the NIST 2001 cellular data, lead-
ing to the estimation of the probability P(A|X) given the score
S(X, ). For efficiency, a minimal adaptation threshold was
still used for low values of P(A|X): the audio segments for
which P(A|X) < 0.1 were not used for adaptation. However
the system is much less sensitive to this threshold than to the
hard decision threshold v, this is an advantage for practical use.

The Detection Error Tradeoff (DET) curves for both the on-
line supervised and unsupervised systems are shown along with
the DET curve of the baseline system (cf Table 4). The unsuper-
vised online adaptation of the system seems to provide perfor-
mance balanced along the DET curve between the baseline and
the supervised adaptation setup, except for low miss detections
where it gets closer of the baseline system: the unsupervised
adaptation did not improve performances for the target speak-

ers with the lowest detection scores.

5. Conclusion

Online unsupervised adaptation of a speaker verification system
was evaluated in the context of a speaker detection task, where
impostor trials are the majority. It was shown that, despite the
low proportion of true speaker trials, the performances of the
system can be significantly increased, with a reduction of the
minimal DCF from 0.33 to 0.25 on cellular speech data taken
from the NIST 2002 one speaker detection task. This result is
quite encouraging. There is in fact very few misadaptations,
thus limiting the corruption of the target models. By contrast, a
minimal DCF of about 0.18 could be reached by using an oracle
supervised adaptation.

Two incremental adaptation modes were tested, either by
using a fixed decision threshold for adaptation, or by using the
a posteriori probability of the true target for weighting the adap-
tation. Both provide similar results in the best configuration, but
the latter takes into account the whole distribution of the impos-
tor and true speaker trial scores. It is thus less sensitive to the
actual threshold value.

Experiments were limited by the amount of trials per tar-
get speaker in the database, which was not initially designed
for an adaptation task. Further improvements should probably
be observed when increasing the number of trials. Since a shift
was observed in the distribution of the scores when adapting the
models, reduction of this phenomenon may further increase the
performance. At last, some target models showing lower true
speaker trial scores did not benefit of the unsupervised adap-
tation; speaker-specific score normalization [5] may be needed
for these cases.
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