
HAL Id: hal-01434301
https://hal.science/hal-01434301v1

Submitted on 13 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Usage analysis in an e-learning system: LD
representation significance

Vincent Barré, Christophe Choquet, Sébastien Iksal, Alain Corbière

To cite this version:
Vincent Barré, Christophe Choquet, Sébastien Iksal, Alain Corbière. Usage analysis in an e-learning
system: LD representation significance. IEEE International Conference on Advanced Learning Tech-
nologies (ICALT’2004), 2004, Joensuu, Finland. pp.570–574, �10.1109/ICALT.2004.1357479�. �hal-
01434301�

https://hal.science/hal-01434301v1
https://hal.archives-ouvertes.fr

Usage Analysis in an e-Learning System: LD Representation Significance

Vincent Barré, Christophe Choquet, Alain Corbière and Sébastien Iksal
LIUM / IUT de Laval

52, rue des docteurs Calmette et Guérin
53020 Laval Cedex 9, FRANCE

FirstName.LastName@univ-lemans.fr

Abstract

In a pedagogical re-engineering process, it is
important to be able to compare the effective system
usage with prescribed scenario (which can be
formalized with an Educational Modeling Language).
We think that computer tracks resulting from e-
learning system usage make up pedagogical objects by
themselves and thus they can be modeled with the help
of an EML. In this paper, we will show that such an
approach is interesting. We will more particularly
focus on how to represent computer tracks with a
specific EML (IMS Learning Design) and to highlight
some cases in which this comparison of two LD
scenarios (the prescribed one and the synthesized one)
brings useful information to understand the effective
progress of the learning session.

1. Introduction

In the framework of MOCA project [1] we are
interested in the pedagogical re-engineering of an e-
learning system. This project falls into a normalization
context (use of work done by IEEE/LTSC –
http://ltsc.ieee.org/– i.e. LOM for description of
pedagogical resources and LTSA for the architecture)
and relates, amongst other things, to the definition of a
pedagogical re-engineering methodology [4].

In order to do that, we have designed some
experiments whose main goals were: (1) to determine
the distance between learner activities and
preconceived scenarios, (2) and to gather information
on interactions between human actors (intervention
strategies and content).

To investigate the first point, the prescribed scenario
will logically be expressed in an educational modeling
language (an EML) whereas the “scenario” of observed
uses of the system will be derived from computer
tracks obtained during the session.

We have chosen to use a specific EML to define
prescribed scenarios: Learning Design (LD) from the
IMS consortium [6] (which itself is derived from an
EML introduced in early 2000 at the Open University

of Netherlands by Koper [5]). This choice is in
particular due to the fact that we want to associate
ourselves to a normalization context. But also, and
importantly, because LD has the most advanced
specifications and several projects of LD editors or LD
players are well advanced. Lastly, in the future LD will
be closer to the SCORM specifications
(http://www.adlnet.org/) which adds to its significance.
A more detailed description of the LD language and a
more explicit account of our motivations to choose LD
can be found in [2]. We nevertheless think that it is
interesting to briefly recall some characteristics of this
EML.

From the LD specification designer's point of view,
any pedagogical scenario can be modeled as a method
specifying activities to certain actors and in a certain
order. A scenario must at least contain a collection of
components and a method. Components can be roles
(learners, tutors… that can be split in many
subgroups), activities or static scheduling of activities
(activity-structures), whereas who (which role) does
what (which activity) and at which moment is
determined by the method (which, strictly speaking,
can be considered as the scenario). A method is made
up of one or many plays formed by a series of acts.
Different plays will represent alternative scenarios
while acts are subsets of the scenario that allow the
activity synchronization for the different roles (all
actors involved in an act must have finished it before
starting the next one).

In the framework of a pedagogical re-engineering
process, it is necessary to be able to “track” the
activities of all actors of the system. These “observed
uses” will be mainly used after a session to determine
the distance between learner activities and
preconceived scenarios, but can also be (at least
partially) used during the session to help tutoring
activities. In all cases, these computer tracks need to be
represented in a format that will be usable by the
designer or the tutor. This format will ideally be able to
express most of the information contained in the
computer tracks, whilst remaining “understandable” by
designers or tutors.

Many track analysis methods linked to data-mining
or more particularly web-mining (see for example [3])
can bring up information on the effective learner
activity. These methods generally rely on mathematical
techniques (variance analysis…) in order to identify
patterns in data. These patterns are then used to support
a decision making process (reorganization of a web
site, definition new sales strategies…) with some
explanations on user navigation history.

Data mining, and web mining generally deal with
four major problems: segmentation (grouping
individuals in homogeneous groups), association
(identifying dependencies between observed
characteristics), classification (explanation of a
qualitative characteristic from other ones) and
estimation (explanation of a quantitative characteristic
from other ones).

But these methods are not specifically designed to
bring together the observed activity and the prescribed
scenarios (which are not generally specified in a formal
way). Moreover, these tools do not integrate the
specificity linked to the usage in a pedagogical
environment.

Indeed, in the context of an e-learning environment,
computer tracks obtained from learner activity are a
little particular in that they contain a certain
pedagogical semantic (for example, the observed route
of a learner can be used to give feedback information
on the effective learning). In this way, these tracks are
true pedagogical objects containing information on
learner activity during the whole session. It is thus
natural to want to express them with an educational
modeling language that allows the representation of the
session dynamics.

In order to synthesize computer tracks, we have
chosen IMS Learning Design but other EML languages
(as defined by CEN/ISSS [8]) could also have been
chosen (as long as the prescribed scenario and
computer tracks synthesis are expressed with the same
language). Such a representation with an EML has
many advantages :

 computer tracks are expressed in a language
that highlights its pedagogical semantics,

 using the same language to describe the
prescribed scenario and the track synthesis
allows us to compare them both and to bring a
real meaning to the tracks,

 using the same environment to build prescribed
scenarios and to explore computer tracks makes
the designer's work easier.

We are presently working on such a tool that will
construct LD scenarios with information contained in
computer tracks arising from learner sessions.

2. Representing computer tracks with an
EML

In order to build an LD scenario from computer
tracks, we must be able to define activities done by
actors and to indicate their scheduling.

So, we need to identify what has been done
(delimiting activities) and who has done it (which
learner made which activity) in the tracks.

Prescribed scenarios characterize the activity that
will be found in computer tracks. The “components”
section, from the prescribed scenario, contains all
activities that are to be done by the system actors.
These activities have to be singled out in the computer
tracks by identifying corresponding patterns. Those
patterns (for example the identifier of an activity) must
be set up by scenario designer in activities description
(e.g. using metadatas, even if LD does not actually
propose a ‘natural’ way to do it). In addition, it is the
LMS that add learner identification information to it’s
tracks. With this information, we are then able to
define activities done by actors and to indicate their
scheduling.

An observed scenario (activity schedule) for a
learner (or a tutor) can be represented by an activity-
structure (in the components section, which is static) or
by a play (in the methods section, which represents the
dynamics of the scenario). These two choices are
feasible in theory, but we must keep in mind that the
reconstructed scenario must be expressed in a language
that has the same “common meaning” as the source
language. Plays allow us to indicate what should be
done and who must do it. It is thus natural to prioritize
their use (moreover it is mandatory to use a play to
maintain the “common meaning” of the language, even
if this play can use an activity-structure to describe the
behavior of learner or tutors in a static way).

The next question that arises is whether to use one
play per reconstructed scenario or alternatively one
single play with as many role-parts as necessary (this
binds an actor to an activity). LD specification points
out that if many plays are present, they will be
executed in parallel. Thus, this method is only
interesting if we do not need to show the interactions
between many learner activities (the interactions with
tutors can be included in each play). Notice that if we
have a single learner with no interactions with other
actors (other learners or tutors) we may also want to
use IMS Simple Sequencing [7] to express the
computer tracks. On the other hand, if we want to be
able to express potential interactions between learners
or groups of learners in the reconstructed scenario,
there must be only one play section in which many acts
may possibly be present in order to synchronize actor
activities (this will eventually lead to the creation of

new roles, different from those representing each
individual learner).

Up to now, we have mentioned the idea of a
“reconstructed” scenario, but there is not only one, but
many, types of reconstructed scenarios:

 a scenario transcribing an individual track,
 a prescribed scenario “enhanced” (or

decorated) with information gathered from
computer tracks,

 an “observed scenario” that contains, for each
activity, all observed continuations (eventually
re-transcribing the interaction with other actors
during the activity's progress).

It also will be interesting to add information in the
prescribed scenario to point out elements to be tracked
during a session (for example using LD properties and
notifications). This information will be given to
learners and especially to tutors (and in this case why
not also use EML formalism to represent the useful
computer tracks ?). Thus, the use of computer tracks
will be done both during and after a learning session.

During a given session, we can obtain a “map” of
activities done by learners (this can be also done by the
learning management system). To do so, we should use
the on-completion (action to be done when an activity
is completed) property of an activity to set up a local
property (loc-property) associated with this activity.
This property can be used, for example, to determine
number of learners having finished this activity. Then,
during the session, it will be possible to consult this
information with a monitor (LD mechanism allowing
an actor to display its properties) before incorporating
it in the scenario resulting from the computer tracks.

<loc-property identifier="P-AC1" >
 <datatype="integer" />
 <initial-value="0" />
</loc-property>

<learning-activity identifier="LA-AC1" >
 <on-completion>
 <change-property-value>
 <property-ref="P-AC1">
 <property-value>
 <sum>
 <property-ref="P-AC1" />
 <property-ref="P-increment" />
 </sum>
 </property-value>
 </change-property-value>
 </on-completion>
</learning-activity>

definition of a new
property

one more learner
has completed this

activity

After a session we will construct scenarios
“enhanced” by the gathered information. For example,
the “observed scenario” will be assembled in the
following way:

In the components section we will find a list of all
prescribed activities, each one associated with a loc-
property representing the number of learners having
completed this activity.

We will use an activity-structure in order to show all
observed continuations after an activity (associated
with observed percentages during a session).

For example, if we extract the following
information from computer tracks:

 AC1 AC2 AC3 AC4 AC5 AC6
AC1 25% 75%
AC2
AC3 33% 66%
AC4
AC5 25%
AC6 5%

we can incorporate this information into LD
scenario in the following way:

<loc-property identifier="P-suites-AC1-AC2" >
 <datatype="real" />
 <initial-value="0.25" />
</loc-property>

<activity-structure identifier="AS-suites-AC1"
number-to-select="1" structure-type="selection">

 <learning-activity-ref ref="LA-AC2" />
 <learning-activity-ref ref="LA-AC3" />
</activity-structure>

<activity-structure identifier="AS-AC1"
number-to-select="2" structure-type="sequence">

 <learning-activity-ref ref="LA-AC1" />
 <activity-structure-ref ref="AS-suites-AC1" />
</activity-structure>

The preceding scenario does not take into account
potential interactions between learners or between
learners and tutors. Nevertheless, it can be interesting
to take into account the modifications arising from
those interactions. One could, for example, want to
express the following situation:

 LA-AC1 activity done alone 25% of
learners intend to continue with activity LA-
AC2,

 LA-AC1 activity done together with
support activity SA-AC1 66% of learners
intend to continue with activity LA-AC2.

Such behavior will be considered in the method
section (that is, in the dynamics of the scenario) using
conditions that allow the modification of properties
associated with observed continuations of an activity:

<method>
 <play>
 <act>
 <role-part>
 <role-ref ref="R-apprenant" />
 <learning-activity-ref ref="LA-AC1" />
 </role-part>
 <role-part>
 <role-ref ref="R-tuteur" />
 <support-activity-ref ref="SA-AC1" />
 </role-part>
 <on-completion>
 <change-property-value property-ref="P-suites-AC1-AC2"

property-value="0.66" />
 </on-completion>
 </act>
 </play>
</method>

It will also be instructive to consider the order in
which activities are done so as to highlight the
influence of this order on the observed continuations of
an activity.

From this point of view, a more general problem is
how to represent the order in which activities are done.
This representation is natural when we are constructing
the scenario followed by a particular learner, but it is

also relevant to supply synthesized information such
as: for a given activity, at what precise moment is it
done by learners?

In the particular framework of an evaluation activity
(such as a multiple-choice questionnaire), it is
particularly valuable to keep scores obtained by
learners (for example to see if when an evaluation is
done has an influence on its results). Thus, it will be
helpful to represent information such as:

x% of learners are doing evaluation as the 1st

activity with an associated success rate of x’
y% of learners are doing evaluation as the 2nd

activity with an associated success rate of y’
z% of learners are doing evaluation as the 3rd

activity with an associated success rate of z’
…
A worthwhile solution would be to use an array to

associate this information with an activity.
Unfortunately, the LD specification does not allow this
(properties must be of a simple type, not arrays).
Nevertheless, one can create as many properties as
necessary, but it is not the best solution.

Another typical configuration that can be extracted
from computer tracks is the “loops” in the scenario of
an individual session. A loop in the observed scenario
can be typical of “normal” learning (if the learner
needs to go backwards in order to understand
something better), but a loop can be also an indication
of a problem in the activity scheduling or of the
malfunctioning of the activity. It is thus fundamental to
be able to return this information to designers or tutors.
Such a loop can be represented by an activity-structure
having the same activity at the beginning and at the
end of the sequence.

Moreover it would be informative to associate
different information to activities at each repetition of
the loop (for example the success rate in an activity or
the score obtained in a test). Ideally, this information
must be stored at each repetition of the loop, as
specified by the designer.

To do this, it would again be useful to have array
properties.

3. Prescribed scenarios, reconstructed
scenarios and comparison perspectives

Another advantage linked to the synthesis of a
“scenario” with the help of the same EML as the one
used for expressing the prescribed scenario, is that it is
possible (and useful) to compare them. This
comparison enhances information gathered from
computer tracks and will be valuable to the designer
for improving the scenario.

Let us take an example from our experiments. Our
scenario prescribed six activities that learners were free
to tackle in any order [1]. Nevertheless, the designer

conceived one “predicted” scenario, and this scenario
included a multiple-choice questionnaire whose main
goal was to evaluate knowledge acquisition. After our
first experiment, some computer tracks revealed that
only a few learners successfully completed the
questionnaire, which was surprising. The reason for
this “failure” was that a relatively important number of
learners used this questionnaire in order to evaluate a
priori their knowledge but not a posteriori as it was
intended by the designer. One way to focus on this fact
in the reconstructed scenario would have been to
consider information such as: « x% of learners have
done the questionnaire as intended in the prescribed
scenario, with an associated success rate of x but y%
(significant) have done it differently with a success rate
of y ». Moreover, it would be interesting to be able to
itemize those results.

In order to do this, we can use the preceding
assemblies. First, we need to define how many learners
completed the questionnaire as the first activity (with
the associated result), as well as how many learners
completed the questionnaire as the second activity
(with the associated result), and so on. Next, we need
to determine a sub-sequence of the prescribed scenario
and observe its implementation (for example, our
questionnaire evaluating a learning activity). Lastly, we
need to identify this sub-sequence in the graph
synthesized from the computer tracks, using
information on the order in which activities are done in
conjunction with graph of the observed continuations.

Another use of computer tracks in understanding the
“failure” of an activity (whether it evaluates or not) is
to highlight the learners effective route through this
activity and to compare it with the anticipated one. We
can use both the observed continuations graph and the
loops observed in synthesized scenario to do this.

In our experiments, learners had to devise a Java
application, compile it and test it. We noticed that some
learners had an abnormally low success rate for the
“application testing” activity. Use of synthesized
information from computer tracks has shown that those
learners were generally following a scenario that
looped on the activities edit, compile, test, edit… Such
a loop can be the result of programming mistakes, but
it was not relevant here (a tutor was available). In fact,
in order to “understand” this problem, we had to look
deeper into the computer tracks to discover that those
particular learners had not saved their source code
before compiling it (and so they were constantly
compiling the same faulty code).

In some cases, the use of the synthesized scenario
alone is thus not sufficient to “understand” the
problem. That is particularly the case when the
problem involves activities which are not specified in
the prescribed scenario (for example because they are
implied).

4. Conclusion

In a re-engineering cycle, highlighting relevant
information obtained from computer tracks is of prime
importance. From this viewpoint, in this paper we have
proposed a way to synthesize pedagogical information
obtained during a learning session by using an
educational modeling language identical to the one that
describes the prescribed scenario. We think that using
the same language is strategic at several different
levels: it is easier for the designer to understand the
observed uses of the e-learning system, we have a
natural way to compare prescribed scenarios to
observed uses, and using an EML highlights the
pedagogical information embedded in computer tracks.

We are presently developing an analysis tool that
will allow us to synthesize a set of LD scenarios using
computer tracks and the prescribed scenario.

From this viewpoint, LD specification allows us to
reconstruct scenarios using observed uses (as they are
shown through computer tracks). Nevertheless, the
design of our tool puts the focus on some points that
could be enhanced in LD specification, which in turn
would improve the reconstruction of observed scenario
and their usability. For example, how to deal with
problems arising from the fact that properties in LD
must be simple data types (even though arrays would
be useful). Another example is that nothing is provided
to allow the designer to indicate interesting information
to track. Lastly, there is nothing in the LD specification
that offers a natural solution to the problem of finding
activities from the prescribed scenario in computer
tracks.

Nevertheless, we think that using an EML to
express information found in computer tracks is
valuable for designers and that IMS LD already has a
number of qualities to do this.

5. References

[1] V. BARRE, Ch. CHOQUET, A. CORBIERE, Ph.
COTTIER, X. DUBOURG & P. GOUNON, “MOCA, une
approche expérimentale de l’ingénierie des EIAH”,
Environnements Informatiques pour l’Apprentissage
Humain, Strasbourg (France), pp. 55-66, 2003.

[2] V. BARRE, “EMLs : case study in distance learning
education”, CALIE’04, Grenoble (France), pp. 155-160,
2004.

[3] M. BAZSALISCZA & P. NAIM, Data Mining pour le
Web, Editions Eyrolles, Paris, 05/2001

[4] A. CORBIERE & Ch. CHOQUET, “Designer integration
in training cycles: IEEE LTSA model adaptation”,
CALIE’04, Grenoble (France), pp. 51-62, 2004.

[5] R. KOPER, “Modeling units of study from a pedagogical
perspective : the pedagogical meta-model behind EML”,
06/2001.

[6] R. KOPER, B. OLIVIER & T. ANDERSON eds., IMS
Learning Design Information Model, IMS Global Learning
Consortium, Inc., version 1.0, 20/01/2003.

[7] M. NORTON & A. PANAR eds., IMS Simple Sequencing
Information and Behavior Model, IMS Global Learning
Consortium, Inc., version 1.0, 03/03/2003.

[8] A. RAWLINGS, P. ROSMALEN, R. KOPER, M.
RODRIGUEZ-ARTACHO & P. LEFRERE, Survey of
Educational Modelling Languages (EMLs), CEN/ISSS
WS/LT Learning Technologies Workshop, version 1,
19/09/2002.

	1. Introduction
	2. Representing computer tracks with an EML
	3. Prescribed scenarios, reconstructed scenarios and comparison perspectives
	4. Conclusion
	5. References

